Программирование мк для чайников. Что нужно для программирования микроконтроллеров? Необходимый набор программ

Я не раз и не два говорил, что изучение МК надо начинать с ассемблера. Этому был посвящен целый курс на сайте (правда он не очень последовательный, но постепенно я его причесываю до адекватного вида) . Да, это сложно, результат будет не в первый день, но зато ты научишься понимать что происходит у тебя в контроллере. Будешь знать как это работает, а не по обезьяньий копировать чужие исходники и пытаться понять почему оно вдруг перестало работать. Кроме того, Си намного проще натворить быдлокода, который вылезет вилами в самый неподходящий момент.

К сожалению все хотят результат немедленно. Поэтому я решил пойти с другой стороны — сделать обучалку по Си, но с показом его нижнего белья. Хороший программист-эмбеддер всегда крепко держит свою железку за шкварник, не давая ей ни шагу ступить без разрешения. Так что будет вначале Си код, потом то что родил компилятор и как все это работает на самом деле:)

С другой стороны у Си сильная сторона это переносимость кода. Если, конечно, писать все правильно. Разделяя алгоритмы работы и их железные реализации в разные части проекта. Тогда для переноса алгоритма в другой МК достаточно будет переписать только интерфейсный слой, где прописано все обращение к железу, а весь рабочий код оставить как есть. И, конечно же, читаемость. Сишный исходник проще понять с первого взгляда (хотя.. мне, например, уже пофигу на что фтыкать — хоть си, хоть асм:)), но, опять же, если правильно все написать. Этим моментам я тоже буду уделять внимание.

В качестве подопытной железки на которой будет ставиться львинная доля всех примеров будет моя отладочная плата .

Первая программа на Си для AVR

Выбор компилятора и установка среды
Для AVR существует множество разных компиляторов Си:
В первую очередь это IAR AVR C — почти однозначно признается лучшим компилятором для AVR, т.к. сам контроллер создавался тесном сотрудничистве Atmel и спецов из IAR. Но за все приходится платить. И этот компилятор мало того, что является дорогущим коммерческим софтом, так еще обладает такой прорвой настроек, что просто взять и скомпилить в нем это надо постраться. У меня с ним правда не срослось дружбы, проект загнивал на странных ошибках на этапе линковки (позже выяснил, что это был кривой кряк).

Вторым идет WinAVR GCC — мощный оптимизирующий компилятор. Полный опенсорц, кроссплатформенный, в общем, все радости жизни. Еще он отлично интегрируется в AVR Studio позволяя вести отладку прямо там, что адски удобно. В общем, я выбрал его.

Также есть CodeVision AVR C — очень популярный компилятор. Стал популярен в связи со своей простотой. Рабочую программу в нем получить можно уже через несколько минут — мастер стартового кода этом сильно способствует, штампуя стандартыне инициализации всяких уартов. Честно говоря, я как то с подозрением к нему отношусь — как то раз приходилось дизасмить прогу написаную этим компилером, каша какая то а не код получалась. Жуткое количество ненужных телодвижений и операций, что выливалось в неслабый обьем кода и медленное быстродействие. Впрочем, возможно тут была ошибка в ДНК писавшего исходную прошивку. Плюс он хочет денег. Не так много как IAR, но ощутимо. А в деморежиме дает писать не более чем 2кб кода.
Кряк конечно есть, но если уж воровать, так миллион, в смысле IAR:)

Еще есть Image Craft AVR C и MicroC от микроэлектроники. Ни тем ни другим пользоваться не приходилось, но вот SWG очень уж нахваливает MicroPascal , мол жутко удобная среда программирования и библиотеки. Думаю MicroC не хуже будет, но тоже платный.

Как я уже сказал, я выбра WinAVR по трем причинам: халявный, интегрируется в AVR Studio и под него написана просто прорва готового кода на все случаи жизни.

Так что качай себе инсталяху WinAVR с и AVR Studio. Далее вначале ставится студия, потом, сверху, накатывается WinAVR и цепляется к студии в виде плагина. Настоятельно рекомендую ставить WinAVR по короткому пути, что то вроде C:\WinAVR тем самым ты избежишь кучи проблем с путями.

Cоздание проекта
Итак, студия поставлена, Си прикручен, пора бы и попробовать что нибудь запрограммировать. Начнем с простого, самого простого. Запускай студию, выбирай там новый проект, в качестве компилятора AVR GCC и вписывай название проекта.

Открывается рабочее поле с пустым *.c файлом.

Теперь не помешает настроить отображение путей в закладках студии. Для этого слазь по адресу:
Меню Tools — Options — General — FileTabs и выбираем в выпадающем списке «Filename Only». Иначе работать будет невозможно — на вкладке будет полный путь файла и на экране будет не более двух трех вкладок.

Настройка проекта
Вообще, классическим считается создание make файла в котором бы были описаны все зависимости. И это, наверное, правильно. Но мне, выросшему на полностью интегрированных IDE вроде uVision или AVR Studio этот подход является глубоко чуждым. Поэтому буду делать по своему, все средствами студии.

Тыкай в кнопку с шестеренкой.


Это настройки твоего проекта, а точнее настройки автоматической генерации make файла. На первой странице надо всего лишь вписать частоту на которой будет работать твой МК. Это зависит от фьюз битов, так что считаем что частота у нас 8000000Гц.
Также обрати внимание на строку оптимизации. Сейчас там стоит -Os это оптимизация по размеру. Пока оставь как есть, потом можешь попробовать поиграться с этим параметром. -O0 это отстутсвие оптимизации вообще.

Следующим шагом будет настройка путей. Первым делом добавь туда директорию твоего проекта — будешь туда подкладывать сторонние библиотеки. В списке появится путь «.\»

Make файл сгенерирован, его ты можешь поглядеть в папке default в своем проекте, просто пробегись глазами, посмотри что там есть.


На этом пока все. Жми везде ОК и переходи в исходник.

Постановка задачи
Чистый лист так и подмывает воплотить какую нибудь хитрую задумку, так как банальное мигание диодом уже не вставляет. Давай уж сразу брать быка за рога и реализуем связь с компом — это первым делом что я делаю.

Работать будет так:
При приходе по COM порту единички (код 0х31) будем зажигать диодик, а при приходе нуля (код 0х30) гасить. Причем сделано будет все на прерываниях, а фоновой задачей будет мигание другого диода. Простенько и со смыслом.

Собираем схему
Нам надо соединить модуль USB-USART конвертера с выводами USART микроконтроллера. Для этого берем перемычку из двух проводков и накидывам на штырьки крест накрест. То есть Rx контроллера соединяем с Tx конвертера, а Tx конвертера с Rx контроллера.

Получится, в итоге вот такая схема:


Подключение остальных выводов, питания, сброса не рассматриваю, оно стандартное

Пишем код

Сразу оговорюсь, что я не буду углубляться конкретно в описание самого языка Си. Для этого существует просто колоссальное количество материала, начиная от классики «Язык программирования Си» от K&R и заканчивая разными методичками.

Одна такая метода нашлась у меня в загашнике, я когда то именно по ней изучал этот язык. Там все кратко, понятно и по делу. Я ее постепенно верстаю и перестаскиваю на свой сайт.

Там правда еще не все главы перенесены, но, думаю, это ненадолго.

Вряд ли я опишу лучше, поэтому из учебного курса, вместо подробного разьяснения сишных тонкостей, я буду просто давать прямые линки на отдельные страницы этой методички.

Добавляем библиотеки.
Первым делом мы добавляем нужные библиотеки и заголовки с определениями. Ведь Си это универсальный язык и ему надо обьяснить что мы работаем именно с AVR, так что вписывай в исходник строку:

1 #include

#include

Этот файл находится в папке WinAVR и в нем содержится описание всех регистров и портов контроллера. Причем там все хитро, с привязкой к конкретному контроллеру, который передается компилятором через make файл в параметре MCU и на основании этой переменной в твой проект подключается заголовочный файл с описанием адресов всех портов и регистров именно на этот контроллер. Во как! Без него тоже можно, но тогда ты не сможешь использовать символические имена регистров вроде SREG или UDR и придется помнить адрес каждого вроде «0xC1», а это голову сломать.

Сама же команда #include <имя файла> позволяет добавить в твой проект содержимое любого текстового файла, например, файл с описанием функций или кусок другого кода. А чтобы директива могла этот файл найти мы и указывали пути к нашему проекту (директория WinAVR там уже по дефолту прописана).

Главная функция.
Программа на языке Си вся состоит из функций. Они могут быть вложенными и вызываться друг из друга в любом порядке и разными способами. Каждая функция имеет три обязательных параметра:

  • Возвращаемое значение, например, sin(x) возвращает значение синуса икс. Как в математике, короче.
  • Передаваемые параметры, тот самый икс.
  • Тело функции.

Все значения передаваемые и возвращаемые обязаны быть какого либо типа, в зависимости от данных.

Любая программа на Си должна содержать функцию main как точку входа в главную прогрмму, иначе это нифига не Си:). По наличию main в чужом исходнике из миллиона файлов можно понять, что это и есть головная часть программы откуда начинается все. Вот и зададим:

1 2 3 4 5 int main(void ) { return 0 ; }

int main(void) { return 0; }

Все, первая простейшая программа написана, не беда что она ничего не делает, мы же только начали.

Разберем что же мы сделали.
int это тип данных которая функция main возвращает.

Конечно, в микроконтроллере main ничего вернуть в принципе не может и по идее должна быть void main(void) , но GCC изначально заточен на PC и там программа может вернуть значение операционной системе по завершении. Поэтому GCC на void main(void) ругается Warning’ом.

Это не ошибка, работать будет, но я не люблю варнинги.

void это тип данных которые мы передаем в функцию, в данном случае main также не может ничего принять извне, поэтом void — пустышка. Заглушка, применяется тогда когда не надо ничего передавать или возвращать.

Вот такие вот { } фигурные скобочки это программный блок, в данном случае тело функции main , там будет распологаться код.

return — это возвращаемое значение, которое функция main отдаст при завершении, поскольку у нас int, то есть число то вернуть мы должны число. Хотя это все равно не имеет смысла, т.к. на микроконтроллере из main нам выходить разве что в никуда. Я возвращаю нуль. Ибо нефиг. А компилятор обычно умный и на этот случай код не генерит.
Хотя, если извратиться, то из main на МК выйти можно — например вывалиться в секцию бутлоадера и исполнить ее, но тут уже потребуется низкоуровневое ковыряние прошивки, чтобы подправить адреса перехода. Ниже ты сам увидишь и поймешь как это сделать. Зачем? Вот это уже другой вопрос, в 99.999% случаев это нафиг не надо:)

Сделали, поехали дальше. Добавим переменную, она нам не особо нужна и без нужны вводить переменные не стоит, но мы же учимся. Если переменные добавляются внутри тела функции — то они локальные и существуют только в этой функции. Когда из функции выходишь эти переменные удаляются, а память ОЗУ отдается под более важные нужды. .

1 2 3 4 5 6 int main(void ) { unsigned char i; return 0 ; }

int main(void) { unsigned char i; return 0; }

unsigned значит беззнаковый. Дело в том, что в двоичном представлении у нас старший бит отводится под знак, а значит в один байт (char) влазит число +127/-128, но если знак отбросить то влезет уже от 0 до 255. Обычно знак не нужен. Так что unsigned .
i — это всего лишь имя переменной. Не более того.

Теперь надо проинициализировать порты и UART . Конечно, можно взять и подключить библиотеку и вызвать какой нибудь UartInit(9600); но тогда ты не узнаешь что же произошло на самом деле.

Делаем так:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 int main(void ) { unsigned char i; #define XTAL 8000000L #define baudrate 9600L #define bauddivider (XTAL/(16*baudrate)-1) #define HI(x) ((x)>>8) #define LO(x) ((x)& 0xFF) UBRRL = LO(bauddivider) ; UBRRH = HI(bauddivider) ; UCSRA = 0 ; UCSRB = 1 << RXEN| 1 << TXEN| 1 << RXCIE| 0 << TXCIE; UCSRC = 1 << URSEL| 1 << UCSZ0| 1 << UCSZ1; }

int main(void) { unsigned char i; #define XTAL 8000000L #define baudrate 9600L #define bauddivider (XTAL/(16*baudrate)-1) #define HI(x) ((x)>>8) #define LO(x) ((x)& 0xFF) UBRRL = LO(bauddivider); UBRRH = HI(bauddivider); UCSRA = 0; UCSRB = 1<

Страшна? На самом деле реалного кода тут всего пять последних строк. Все что #define это макроязык препроцессора. Почти та же ботва, что и в Ассемблере, но синтаксис несколько иной.

Они облегчат твои рутинные операции по вычислении нужных коэффициентов. В первой строке мы говорим что вместо XTAL можно смело подставлять 8000000, а L — указание типа, мол long — это тактовая частота процессора. То же самое baudrate — частота передачи данных по UART.

bauddivider уже сложней, вместо него будет подставлятся выражение вычисленное по формуле из двух предыдущих.
Ну, а LO и HI из этого результата возьмут младший и старший байты, т.к. в один байт оно явно может не влезть. В HI делается сдвиг икса (входной параметр макроса) восемь раз в вправо, в результате от него останется только старший байт. А в LO мы делаем побитовое И с числом 00FF, в результате останется только младший байт.

Так что все что сделано как #define можно смело выкинуть, а нужные числа подсчитать на калькуляторе и сразу же вписать их в строки UBBRL = …. и UBBRH = …..

Можно. Но! Делать этого КАТЕГОРИЧЕСКИ НЕЛЬЗЯ !

Работать будет и так и эдак, но у тебя в программе появятся так называемые магические числа — значения взятые непонятно откуда и непонятно зачем и если ты через пару лет откроешь такой проект то понять что это за значения будет чертовски трудно. Да и сейчас, захочешь ты изменить скорость, или поменяешь частоту кварца и все придется пересчитывать заново, а так поменял пару циферок в коде и все само. В общем, если не хочешь прослыть быдлокодером, то делай код таким, чтобы он легко читался, был понятен и легко модифицировался.

Дальше все просто:
Все эти «UBRRL и Со» это регистры конфигурации UART передатчика с помощью которого мы будем общаться с миром. И сейчас мы присвоили им нужные значения, настроив на нужную скорость и нужный режим.

Запись вида 1< Означает следующее: взять 1 и поставить ее на место RXEN в байте. RXEN это 4й бит регистра UCSRB , так что 1< образует двоичное число 00010000, TXEN — это 3й бит, а 1< даст 00001000. Одиночная «|» это побитовое ИЛИ , так что 00010000 | 00001000 = 00011000. Таким же образом выставляются и добавляются в общуюу кучу остальные необходимые биты конфигурации. В итоге, собраное число записывается в UCSRB. Подробней расписано в даташите на МК в разделе USART. Так что не отвлекаемся на технические детали.

Готово, пора бы посмотреть что получилось. Жми на компиляцию и запуск эмуляции (Ctrl+F7).

Отладка
Пробежали всякие прогресс бары, студия переменилась и возле входа в функцию main появилась желтая стрелочка. Это то где процессор в текущий момент, а симуляция на паузе.

Дело в том, что изначально, на самом деле, она стояла на строке UBRRL = LO(bauddivider); Ведь то что у нас в define это не код, а просто предварительные вычисления, вот симулятор немного и затупил. Но теперь он осознал, первая инструкция выполнена и если ты залезешь в дерево I/O View , в раздел USART и поглядишь там на байт UBBRL то увидишь, что там значение то уже есть! 0х33.

Сделай еще один шаг. Погляди как изменится содержимое другого регистра. Так прошагай их все, обрати внимание на то, что все указаные биты выставляются как я тебе и говорил, причем выставляются одновременно для всего байта. Дальше Return дело не пойдет — программа кончилась.

Вскрытие
Теперь сбрось симуляцию в ноль. Нажми там Reset (Shift+F5) . Открывай дизассемблированный листинг, сейчас ты увидишь что происходит в контроллере в самом деле. View -> Disassembler . И не ЫЫАААА!!! Ассемблер!!! УЖОС!!! А НАДО. Чтобы потом, когда что то пойдет не так, не тупил в код и не задавал ламерских вопросах на форумах, а сразу же лез в потроха и смотрел где у тебя затык. Ничего там страшного нет.

Вначале будет ботва из серии:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 +00000000: 940C002A JMP 0x0000002A Jump +00000002: 940C0034 JMP 0x00000034 Jump +00000004: 940C0034 JMP 0x00000034 Jump +00000006: 940C0034 JMP 0x00000034 Jump +00000008: 940C0034 JMP 0x00000034 Jump +0000000A: 940C0034 JMP 0x00000034 Jump +0000000C: 940C0034 JMP 0x00000034 Jump +0000000E: 940C0034 JMP 0x00000034 Jump +00000010: 940C0034 JMP 0x00000034 Jump +00000012: 940C0034 JMP 0x00000034 Jump +00000014: 940C0034 JMP 0x00000034 Jump +00000016: 940C0034 JMP 0x00000034 Jump +00000018: 940C0034 JMP 0x00000034 Jump +0000001A: 940C0034 JMP 0x00000034 Jump +0000001C: 940C0034 JMP 0x00000034 Jump +0000001E: 940C0034 JMP 0x00000034 Jump +00000020: 940C0034 JMP 0x00000034 Jump +00000022: 940C0034 JMP 0x00000034 Jump +00000024: 940C0034 JMP 0x00000034 Jump +00000026: 940C0034 JMP 0x00000034 Jump +00000028: 940C0034 JMP 0x00000034 Jump

00000000: 940C002A JMP 0x0000002A Jump +00000002: 940C0034 JMP 0x00000034 Jump +00000004: 940C0034 JMP 0x00000034 Jump +00000006: 940C0034 JMP 0x00000034 Jump +00000008: 940C0034 JMP 0x00000034 Jump +0000000A: 940C0034 JMP 0x00000034 Jump +0000000C: 940C0034 JMP 0x00000034 Jump +0000000E: 940C0034 JMP 0x00000034 Jump +00000010: 940C0034 JMP 0x00000034 Jump +00000012: 940C0034 JMP 0x00000034 Jump +00000014: 940C0034 JMP 0x00000034 Jump +00000016: 940C0034 JMP 0x00000034 Jump +00000018: 940C0034 JMP 0x00000034 Jump +0000001A: 940C0034 JMP 0x00000034 Jump +0000001C: 940C0034 JMP 0x00000034 Jump +0000001E: 940C0034 JMP 0x00000034 Jump +00000020: 940C0034 JMP 0x00000034 Jump +00000022: 940C0034 JMP 0x00000034 Jump +00000024: 940C0034 JMP 0x00000034 Jump +00000026: 940C0034 JMP 0x00000034 Jump +00000028: 940C0034 JMP 0x00000034 Jump

Это таблица векторов прерываний. К ней мы еще вернемся, пока же просто посмотри и запомни, что она есть. Первая колонка — адрес ячейки флеша в которой лежит команда, вторая код команды третья мнемоника команды, та самая ассемблерная инструкция, третья операнды команды. Ну и автоматический коммент.
Так вот, если ты посмотришь, то тут сплошные переходы. А код команды JMP четырех байтный, в нем содержится адрес перехода, записанный задом наперед — младший байт по младшему адресу и код команды перехода 940C

0000002B: BE1F OUT 0x3F,R1 Out to I/O location

Запись этого нуля по адресу 0x3F, Если ты поглядишь в колонку I/O view, то ты увидишь что адрес 0x3F это адрес регистра SREG — флагового регистра контроллера. Т.е. мы обнуляем SREG, чтобы запустить программу на нулевых условиях.

1 2 3 4 +0000002C: E5CF LDI R28,0x5F Load immediate +0000002D: E0D4 LDI R29,0x04 Load immediate +0000002E: BFDE OUT 0x3E,R29 Out to I/O location +0000002F: BFCD OUT 0x3D,R28 Out to I/O location

0000002C: E5CF LDI R28,0x5F Load immediate +0000002D: E0D4 LDI R29,0x04 Load immediate +0000002E: BFDE OUT 0x3E,R29 Out to I/O location +0000002F: BFCD OUT 0x3D,R28 Out to I/O location

Это загрузка указателя стека. Напрямую грузить в I/O регистры нельзя, только через промежуточный регистр. Поэтому сначала LDI в промежуточный, а потом оттуда OUT в I/O. О стеке я тоже еще расскажу подробней. Пока же знай, что это такая динамическая область памяти, висит в конце ОЗУ и хранит в себе адреса и промежуточные переменные. Вот сейчас мы указали на то, откуда у нас будет начинаться стек.

00000032: 940C0041 JMP 0x00000041 Jump

Прыжок в сааааамый конец программы, а там у нас запрет прерываний и зацикливание наглухо само на себя:

1 2 +00000041: 94F8 CLI Global Interrupt Disable +00000042: CFFF RJMP PC-0x0000 Relative jump

00000041: 94F8 CLI Global Interrupt Disable +00000042: CFFF RJMP PC-0x0000 Relative jump

Это на случай непредвиденых обстоятельств, например выхода из функции main. Из такого зацикливания контроллер можно вывести либо аппаратным сбросом, либо, что вероятней, сбросом от сторожевой собаки — watchdog. Ну или, как я говорил выше, подправить это мест в хекс редакторе и ускакать куда нам душе угодно. Также обрати внимание на то, что бывает два типа переходов JMP и RJMP первый это прямой переход по адресу. Он занимает четыре байта и может сделать прямой переход по всей области памяти. Второй тип перехода — RJMP — относительный. Его команда занимает два байта, но переход он делает от текущего положения (адреса) на 1024 шага вперед или назад. И в его параметрах указывается смещение от текущей точки. Используется чаще, т.к. занимает в два раза меньше места во флеше, а длинные прееходы нужны редко.

1 +00000034: 940C0000 JMP 0x00000000 Jump

00000034: 940C0000 JMP 0x00000000 Jump

А это прыжок в самое начало кода. Перезагрузка своего рода. Можешь проверить, все вектора прыгают сюда. Из этого вывод — если ты сейчас разрешишь прерывания (они по дефолту запрещены) и у тебя прерывание пройзойдет, а обработчика нет, то будет программный сброс — программу кинет в самое начало.

Функция main. Все аналогично, даже можно и не описывать. Посмотри только что в регистры заносится уже вычисленное число. Препроцессор компилятора рулит!!! Так что никаких «магических» чисел!

1 2 3 4 5 6 7 8 9 10 11 12 <

00000036: E383 LDI R24,0x33 Load immediate +00000037: B989 OUT 0x09,R24 Out to I/O location 15: UBRRH = HI(bauddivider); +00000038: BC10 OUT 0x20,R1 Out to I/O location 16: UCSRA = 0; +00000039: B81B OUT 0x0B,R1 Out to I/O location 17: UCSRB = 1<

А вот тут косяк:

1 2 3 +0000003E: E080 LDI R24,0x00 Load immediate +0000003F: E090 LDI R25,0x00 Load immediate +00000040: 9508 RET Subroutine return

0000003E: E080 LDI R24,0x00 Load immediate +0000003F: E090 LDI R25,0x00 Load immediate +00000040: 9508 RET Subroutine return

Спрашивается, для чего это компилятор добавляет такую ботву? А это не что иное, как Return 0, функцию то мы определили как int main(void) вот и просрали еще целых четыре байта не пойми на что:) А если сделать void main(void) то останется только RET, но появится варнинг, что мол у нас функция main ничего не возвращает. В общем, поступай как хошь:)

Сложно? Вроде бы нет. Пощелкай пошаговое исполнение в режиме дизассемблера и позырь как процессор выполняет отдельные инструкции, что при этом происходит с регистрами. Как происходит перемещение по командам и итоговое зацикливание.

Продолжение следует через пару дней …

Offtop:
Alexei78 сварганил плагинчик для файрфокса облегчающий навигацию по моему сайту и форуму.
Обсуждение и скачивание,

Теперь, когда мы уже ознакомлены с некоторыми возможностями и функциями микроконтроллеров, естественно, возникает логичный вопрос: что нужно для программирования микроконтроллеров? Какие необходимы программы и устройства, где их взять?

Для того чтобы микроконтроллер мог решать задачи и выполнять определенные функции, его нужно запрограммировать, т. е. записать в него программу или же код программы.

Структура и порядок написания программы

Первым делом, прежде чем приступить к написанию любой программы, а точнее кода программы, следует четко представлять, какие функции будет выполнять микроконтроллер. Поэтому сначала нужно определить конечную цель программы. Когда она определена и полностью понятна, тогда составляется алгоритм работы программы. Алгоритм – это последовательность выполнения команд. Применение алгоритмов позволяет более четко структурировать процесс написания кода, а при написании сложных программ часто позволяет сократить время, затрачиваемое на их разработку и отладку.

Следующим этапом после составления алгоритма является непосредственное написание кода программы. Программы для микроконтроллеров пишутся на языке Си или Ассемблере . Только Ассемблер больше относится к набору инструкций, нежели к языку программирования и является языком низкого уровня.


Мы будем писать программы на Си, который относится к языку высокого уровня. Программы на Си пишутся гораздо быстрее по сравнению с аналогичными на Ассемблере. К тому же все сложные программы пишутся преимущественно на Си.

Здесь мы не будем сравнивать преимущества и недостатки написания программ на Ассемблере и Си. Со временем, приобретя некоторый опыт в программировании МК, вы сами для себя сделаете полезные выводы.

Сам код программы можно писать в любом стандартном текстовом редакторе, например в Блокноте. Однако на практике пользуются более удобными редакторами, о которых будет сказано далее.

Компиляция программы

Написанный нами код на Си еще вовсе не понятен микроконтроллеру, поскольку МК понимает команды только в двоичной (или шестнадцатеричной) системе, которая представляет собой набор нулей и единиц. Поэтому Си-шный код нужно преобразовать в нули и единицы. Для этого применяется специальная программа, называемая компилятор , а сам процесс преобразования кода называется компиляция .

Для прошивки МК применяется устройство, называемое программатор . В зависимости от типа программатора вход его подключается к COM или USB порту, а выход к определенным выводам микроконтроллера.


Существует широкий выбор программаторов и отладочных плат, однако нас вполне устроит самый простой программатор , который в Китае стоит не более 3 $.


После того, как микроконтроллер прошит, выполняется отладка и тестирование программы на реальном устройстве или, как еще говорят, на «железе».

Теперь давайте подытожим этапы программирования микроконтроллеров.


При написании простых программ можно обойтись без второго пункта, т. е. без составления алгоритма на бумаге, его достаточно держать в голове.

Следует заметить, что отладку и тестирование программы также выполняют до прошивки МК.

Необходимый набор программ

Существует множество полезных и удобных программ для программирования МК. Они бывают как платные, так и бесплатные. Среди них можно выделить три основных:

1) Atmel Studio

2) CodeVisionAVR

3) WinAVR

Все эти программы относятся к IDE I ntegrated D evelopment E nvironment – интегрированная среда разработки . В них можно писать код, компилировать и отлаживать его.

Следует обратить внимание на Code Vision AVR. Эта IDE позволяет упростить и ускорить написание кода. Однако программа платная.

На начальном этапе программирования все программы лучше прописывать вручную, без каких-либо упрощений. Это поможет быстро приобрести необходимые навыки, а в дальнейшем хорошо понимать и редактировать под свои нужды коды, написанные кем-то другим. Поэтому я рекомендую использовать программу Atmel Studio. Во-первых, она абсолютно бесплатна и постоянно обновляется, а во-вторых она разработана компанией, изготавливающей микроконтроллеры на которых мы будем учиться программировать.

Прошивка и отладка программы

Прошивать микроконтроллеры мы будем с помощью дополнительной программы .

Если микроконтроллера в наличии нет, то его работу можно эмитировать с помощью программы . Она значительно упрощает процесс отладки программы даже при наличии МК, чтобы его часто не перепрошивать, ведь любой МК имеет конечное число перезаписей, хотя это число и достаточно большое.

При прошивке и отладке МК его удобно располагать на макетной плате, но это вовсе не обязательно. Поэтому для большего удобства пригодится и макетная плата. Существует большой выбор макетных плат, однако я вам рекомендую брать ту, которая имеет по возможности большее число отверстий. Когда мы начнем подключать семисегментные индикаторы, вы оцените преимущества «больших» макетных плат.

Эту статью (а точнее цикл статей…) я решил полностью посвятить микроконтроллерам фирмы Atmel. Конечно, тема эта избитая… НО! На собственном опыте знаю, что познать истину среди этого, извините, БАРДАКА, очень и очень сложно! Поэтому решил попытаться внести хотя бы какую-нибудь ясность в головы жаждущих познать этого страшного зверя, зовущегося «Микроконтроллер».

Итак, цель этой статьи в том, чтобы описать и по возможности показать весь процесс создания устройства на основе микроконтроллера с «нуля». То есть, от задумки (например, решили мы собрать новогоднюю мигалку, подобную описанной уважаемым alx32 в статье …) до воплощения в железе. Разумеется, минуя все промежуточные стадии: постановка задачи, выбор МК, подбор обвязки, формулировка алгоритма, написание программы, отладка, создание платы и, самое долгожданное – запуск!!!

Обновлено: добавлены файлы. Итак, задача : нам нужно создать устройство, способное зажигать в определенном порядке (пусть будет по очереди) , N-ное количество светодиодов (пускай будет 8 штук).
(это для начала……..)


Теперь можно браться за программирование. Писать можно на чем угодно, но начинающим советую отдать предпочтение языку C , т.к. программировать проще и нагляднее. Лично я пользуюсь компилятором CodeVision AVR (он есть в файловом архиве), дальнейшие листинги программ будут приводиться именно для этого компилятора.

Определимся с алгоритмом . Нам нужно по очереди через определенный промежуток времени активировать один из выходов МК.

Включать/выключать можно разными способами :
- присваивать значения каждому выводу отдельно;
- записывать значения сразу всех выводов.

Значения (последовательность) можно получить :
- набрав все команды вручную;
- из массива;
- математическим методом.

Временной интервал можно задать :
- функциями delay (задержка);
- через таймер.

Поэкспериментируем со всеми этими способами. Но сначала нужна заготовка…

Чтобы создать заготовку программы воспользуемся генератором кода, встроенным в CVAVR . Для этого запускаем программу, нажимаем File -> New , в открывшемся окне выбираем “Project” и жмем OK . На вопрос «Воспользоваться генератором кода?» отвечаем “Yes”.
Появилось окно генератора кода. В нем выбираем тип МК и его тактовую частоту, остальное оставляем как есть:


Далее переходим на вкладку “Ports” и там в “PortB” и выставляем следующее:


Так мы определили все выводы порта B как выходы, а нолики означают, что при включении питания на них будет устанавливаться логический "0 ".
Остальные функции нам пока не нужны.

Жмем “File -> Generate, Save and Exit” , выбираем куда сохранить файлы проекта и видим окно с созданным генератором кодом.

Теперь давайте введем в программу наш код .
Простейший вариант реализации (хотя и самы не красивый с точки зрения программирования) – записываем значения каждого вывода, а задержки делаем через функцию delay .

delay_ms(x ); - задержка на x миллисекунд

delay_us(x ); - задержка на x микросекунд

PORTB - порт, с которым мы работаем.

PORTB.x - обращение к выводу x порта B

Находим в конце текста такие строки


Это бесконечный цикл (т.е.выполняется всё время, пока включено питание) нашей программы. Всё, что перед ним – команды предварительной настройки микроконтроллера. Строки, начинающиеся с “//” – комментарии, их тоже полезно иногда читать.

Исключён фрагмент. Наш журнал существует на пожертвования читателей. Полный вариант этой статьи доступен только


Жмем кнопочку Make the project

(в панели инструментов).

Матерится?
И правильно! Компилятор не знает функции delay_ms() , поэтому надо указать ему файл, в котором эта функция описана.
Для этого в самом начале текста программы нужно вставить строку #include (тут точка_с_запятой не нужна! )
Примерно вот так:

Снова жмем волшебную кнопочку.
Проект создан .
Теперь в папке, в которую мы сохранили сам проект, появился файл название_проекта .hex – это и есть прошивка микроконтроллера!

Но подождите, не торопитесь хвататься за паяльник… Мы ведь учимся программировать, а не паять!

Именно поэтому предлагаю проверить нашу программу в виртуальном режиме, а именно – в таком замечательном и любимом мною продукте от Labcenter Electronics - Proteus VSM Там можно моделировать абсолютно любые схемы (даже примитивы Лапласа есть!). Взять ее можно в прикрепленном архиве, вместе с файлами проекта. Правда версия не совсем крякнутая, поэтому не работает сохранение. Что с этим делать расскажу в отдельной статье.

Итак, запускаем ISIS (среда разработки принципиальных схем). В этом окне нажимам кнопочку “P”.

В строке “Keywords” вводим “attiny2313” и справа получаем:


Выбирать особо не из чего, поэтому щелкаем дважды по этой одинокой строке и видим слева в основном окне:


Это значит, что элемент добавлен.

Теперь введите в поле “Keywords” слова “LED-RED” и “RES” . Добавьте резистор и светодиод в проект и закройте окно выбора элементов.

Пробуем собрать схему (вывод RESET обязательно подключите к +5V, иначе ничего не заработает! и в жизни это тоже желательно!)

Вот небольшая подсказка :

А для редактирования свойств элементов достаточно щелкнуть по ним дважды.

Собрали? Надеюсь, не покалечили при этом себя, близких и окружающие предметы.

Простите за издевательство, просто если разберешься сам – уже не забудешь, так что, постигайте, программа очень мощная и она стоит того, чтобы ее освоить!

Когда схема собрана, можно прошить наш виртуальный МК. Для этого щелкаем по нему дважды и видим окно.

Микроконтроллерами называют особый вид микросхем, используемый для управления различными электронными устройствами.

Это миниатюрные компьютеры, все составляющие которых (процессор, ОЗУ, ПЗУ) располагаются на одном кристалле. От микропроцессоров их отличает наличие таймеров, контроллеров, компараторов и других периферийных устройств. В настоящее время микроконтроллеры используются при производстве:

  • датчиков для автомобилей;
  • игрушек;
  • индикаторов напряжения, зарядных устройств;
  • пультов управления;
  • миниатюрных электронных приборов.

Управление осуществляется при помощи специальных программ.

Начинать осваивать программирование микроконтроллеров для начинающих рекомендуется с изучения архитектуры и разновидностей. Промышленность выпускает следующие виды МК:

  • встраиваемые;
  • 8-, 16- и 32-разрядные;
  • цифровые сигнальные процессоры.

Производителям микроконтроллеров приходится постоянно балансировать между габаритами, мощностью и ценой изделий. Поэтому до сих пор в ходу 8-разрядные модели. Они обладают довольно низкой производительностью, но во многих случаях данный факт является преимуществом, т.к. позволяет экономить энергоресурсы. Цифровые сигнальные процессоры способны обрабатывать в реальном времени большие потоки данных. Однако их стоимость намного выше.

Количество используемых кодов операций может быть неодинаковым. Поэтому применяются системы команд RISC и CISC. Первая считается сокращенной и выполняется за один такт генератора. Это позволяет упростить аппаратную реализацию ЦП, повысить производительность микросхемы. CISC - сложная система, способная значительно увеличить эффективность устройства.

Изучить программирование микроконтроллеров для начинающих невозможно без понимания алгоритмов. На ЦП микросхемы команды подаются в определенном порядке. Причем их структура должна восприниматься процессором однозначно. Поэтому сначала программист составляет последовательность выполнения команд. Заставить ЦП немедленно остановить программу можно при помощи вызова прерывания. Для этого используют внешние сигналы либо встроенные периферийные устройства.

Семейства микроконтроллеров

Чаще всего встречаются микроконтроллеры следующих семейств:

  • MSP430 (TI);
  • ARM (ARM Limited);
  • MCS 51 (INTEL);
  • STMB (STMicroelectronics);
  • PIC (Microchip);
  • AVR (Atmel);
  • RL78 (Renesas Electronics).

Одной из наиболее популярных в электронной промышленности является продукция компании Atmel, построенная на базе RISC-ядра. Первые микросхемы, разработанные в 1995 году, относятся к группе Classic. Изучать программирование микроконтроллеров AVR для начинающих желательно на более современных моделях:

  • Mega - семейство мощных микросхем с развитой архитектурой.
  • Tiny - недорогие изделия, имеющие восемь выводов.

Необходимо помнить, что совместимость систем команд сохраняется лишь при переносе программы с малопроизводительного МК на более мощный.

Изделия компании «Атмел» просты и понятны. Однако для использования всего функционала придется разработать программное обеспечение. Приступать к программированию микроконтроллеров AVR для начинающих рекомендуется с загрузки специализированной среды Atmel Studio. Актуальная версия предоставляется официальным сайтом производителя на бесплатной основе. Для разработки ПО в этой среде дополнительные программные компоненты не требуются.

Комплекс «Атмел Студио» включает огромное количество примеров готовых проектов. Это поможет новичку быстрее освоить базовые возможности и начать создавать собственные программы. В нем также имеются модули для компиляции и окончательной отладки кода. Параллельно с его освоением нужно изучать языки программирования. Без них разработать программное обеспечение невозможно.

Языки программирования

По своей структуре языки программирования микроконтроллеров мало отличаются от тех, что используются для персональных компьютеров. Среди них выделяют группы низкого и высокого уровня. Современные программисты в основном используют С/С++ и Ассемблер. Между приверженцами этих языков ведутся бесконечные споры о том, какой из них лучше.

Низкоуровневый Ассемблер в последнее время сдает позиции. Он использует прямые инструкции, обращенные непосредственно к чипу. Поэтому от программиста требуется безукоризненное знание системных команд процессора. Написание ПО на Ассемблере занимает значительное время. Главным преимуществом языка является высокая скорость исполнения готовой программы.

На самом деле, можно использовать практически любые языки программирования микроконтроллеров. Но популярнее всех С/С++. Это язык высокого уровня, позволяющий работать с максимальным комфортом. Более того, в разработке архитектуры AVR принимали участие создатели Си. Поэтому микросхемы производства «Атмел» адаптированы именно к этому языку.

С/С++ - это гармоничное сочетание низкоуровневых и высокоуровневых возможностей. Поэтому в код можно внедрить вставки на Ассемблере. Готовый программный продукт легко читается и модифицируется. Скорость разработки достаточно высокая. При этом доскональное изучение архитектуры МК и системы команд ЦП не требуется. Компиляторы Си снабжаются библиотеками внушительного размера, что облегчает работу программиста.

Нужно отметить, что выбор оптимального языка программирования зависит также от аппаратного обеспечения. При малом количестве оперативной памяти использовать высокоуровневый Си нецелесообразно. В данном случае больше подойдет Ассемблер. Он обеспечивает максимальное быстродействие за счет короткого кода программы. Универсальной среды программирования не существует, но в большинстве бесплатных и коммерческих приложений можно использовать как Ассемблер, так и С/С++.

Микроконтроллеры PIC

Первые микроконтроллеры PIC появились во второй половине прошлого века. Быстрые 8-разрядные микросхемы компании Microchip мгновенно завоевали популярность. Двухшинная гарвардская архитектура обеспечивает беспрецедентную скорость. Ее разрабатывали на основе набора регистров, для которого характерно разделение шин.

Выбирая язык программирования микроконтроллеров PIC, необходимо учитывать, что в основе микросхем семейства лежит уникальная конструкция RISC-процессора. Симметричная система команд позволяет произвольно выбирать метод адресации, выполнять операции в любом регистре. На данный момент компания «Микрочип» выпускает 5 разновидностей МК, которые совместимы по программному коду:

  1. PIC18CXXX (75 команд, встроенный аппаратный стек);
  2. PIC17CXXX (58 команд 16-разрядного формата);
  3. PIC16CXXX (35 команд, большой набор периферийных устройств);
  4. PIC16C5X (33 команды 12-разрядного формата, корпуса с 18–28 выводами);
  5. PIC12CXXX (версии с 35 и 33 командами, интегрированный генератор).

В большинстве случаев МК PIC имеют однократно программируемую память. Встречаются более дорогие модели с Flash или ультрафиолетовым стиранием. Ассортимент из 500 наименований позволяет подобрать изделие для любой задачи. Сейчас производитель концентрирует усилия на развитии 32-разрядных версий с увеличенным объемом памяти.

Языки программирования микроконтроллеров PIC - это Ассемблер и Си. Для кодирования подходят любые интегрированные среды разработки (IDE). Программировать с их помощью очень удобно. Они автоматически переводят текст программы в машинный код. Важной характеристикой IDE является возможность пошаговой симуляции работы готового ПО. Мы рекомендуем пользоваться средой разработки MPLAB. Ее созданием занималась компания Microchip.

Перед началом работы в MPLAB советуем каждый раз заводить отдельную папку. Это нужно, чтобы не запутаться в файлах проектов. Интерфейс программы интуитивно понятный, и трудностей с ним возникнуть не должно. Для отладки используются фирменные отладчики Pickit, ICD, REAL ICE, IC PROG. В них имеется возможность просмотра содержимого памяти, установки контрольных точек.

Микроконтроллеры являются небольшими, но одновременно очень удобными приспособлениями для тех, кто желает создавать различные удивительные роботизированные или автоматизированные вещи у себя дома. В рамках этой статьи будет рассмотрено программирование AVR для начинающих, различные аспекты и нюансы этого процесса.

Общая информация

Микроконтроллеры можно встретить везде. Они есть в холодильниках, стиральных машинах, телефонах, станках на производстве, умных домах и ещё во множестве различных технических устройств. Их повсеместное применение обусловлено возможностью замены более сложных и масштабных аналоговых схем устройств. Программирование МК AVR позволяет обеспечить автономное управление над электронными устройствами. Эти микроконтроллеры можно представить как простейший компьютер, что может взаимодействовать с внешней техникой. Так, им под силу открывать/закрывать транзисторы, получать данные с датчиков и выводить их на экраны. Также микроконтроллеры могут осуществлять различную обработку входной информации подобно персональному компьютеру. Если освоить программирование AVR с нуля и дойти до уровня профессионала, то откроются практически безграничные возможности для управления различными устройствами с помощью портов ввода/вывода, а также изменения их кода.

Немного о AVR

В рамках статьи будет рассмотрено семейство микроконтроллеров, выпускаемых фирмой Atmel. Они имеют довольно неплохую производительность, что позволяет использовать их во многих любительских устройствах. Широко применяются и в промышленности. Можно встретить в такой технике:

  1. Бытовой. Стиральные машины, холодильники, микроволновые печи и прочее.
  2. Мобильной. Роботы, средства связи и так далее.
  3. Вычислительной. Системы управления периферийными устройствами, материнские платы.
  4. Развлекательной. Украшения и детские игрушки.
  5. Транспорт. Системы безопасности и управления двигателем автомобиля.
  6. Промышленное оборудование. Системы управления станками.

Это, конечно же, не все сферы. Они применяются там, где выгодно использовать не набор управляющих микросхем, а один микроконтроллер. Это возможно благодаря низкому энергопотреблению и Для написания программ используются языки С и Assembler, немного изменённые под семейство микроконтроллеров. Такие изменение необходимы из-за слабых вычислительных возможностей, которые исчисляются, как правило, в десятках килобайт. AVR-программирование без изучения этих языков не представляется возможным.

Как получить свой первый микроконтроллер?

AVR-программирование требует:

  1. Наличия необходимой среды разработки.
  2. Собственно самих микроконтроллеров.

Второй пункт рассмотрим подробнее. Существует три возможности обзавестись требуемым устройством:

  1. Купить непосредственно сам микроконтроллер.
  2. Обзавестись устройством в составе конструктора (например - Arduino).
  3. Собрать микроконтроллер самостоятельно.

В первом пункте ничего сложного нет, поэтому сразу перейдём ко второму и третьему.

Обзавестись устройством в составе конструктора

В качестве примера будет выбран известный Arduino. Это по совместительству удобная платформа для быстрой и качественной разработки различных электронных устройств. Плата Arduino включает в себя определённый набор компонентов для работы (существуют различные конфигурации). В неё обязательно входит AVR-контроллер. Этот подход позволяет быстро начать разработку устройства, не требует специальных умений и навыков, имеет значительные возможности в плане подключения дополнительных плат, а также в интернете можно найти много информации на интересующие вопросы. Но не обошлось и без минусов. Покупая Arduino, человек лишает себя возможности более глубоко окунуться в AVR-программирование, лучше узнать микроконтроллер, специфику его работы. Также негатива добавляет и относительно узкая линейка моделей, из-за чего часто приходится покупать платы под конкретные задачи. Особенностью также является и то, что программирование на "СИ" здесь отличается довольно сильно от стандартной формы. Несмотря на все свои недостатки, Arduino подходит для изучения новичкам. Но злоупотреблять не стоит.

Самостоятельная сборка

Следует отметить, что микроконтроллеры AVR отличаются достаточной дружелюбностью к новичкам. Собрать их самостоятельно можно с доступных, простых и дешевых комплектующих. Если говорить о плюсах, то такой подход позволяет лучше ознакомиться с устройством, самостоятельно выбирать необходимые комплектующие, подгоняя конечный результат под выдвигаемые требования, использование стандартных языков программирования и дешевизна. Из минусов можно отметить только сложность самостоятельной сборки, когда она осуществляется впервые, и нет нужных знаний и навыков.

Как работать?

Итак, допустим, что вопрос с микроконтроллером решился. Далее будет считаться, что он был приобретён или же куплен самостоятельно. Что ещё нужно, чтобы освоить AVR-программирование? Для этой цели нужна среда разработки (в качестве базиса подойдёт и обычный блокнот, но рекомендую остановиться на Notepad++). Хотя существуют и другие программы для программирования AVR, приведённое обеспечение сможет справиться со всеми требованиями. Также необходим программатор. Его можно приобрести в ближайшем магазине, заказать по интернету или собрать самостоятельно. Не помешает и печатная плата. Она не обязательна, но её использование позволяет сэкономить свои нервы и время. Также покупается/создаётся самостоятельно. И последнее - это источник питания. Для AVR необходимо обеспечить поступление напряжения на 5В.

Где и как учиться?

Создавать шедевры с нуля не получиться. Здесь необходимы знания, опыт и практика. Но где их взять? Существует несколько путей. Первоначально можно самостоятельно выискивать нужную информацию в мировой сети. Можно записать на курсы программирования (дистанционные или очные) для получения базовых навыков работы. Каждый подход имеет свои преимущества. Так, дистанционные курсы программирования будут более дешевыми, а может и бесплатными. Но если что-то не будет получаться, то при очных занятиях опытный разработчик сможет быстрее найти причину проблемы. Также не лишним будет ознакомиться с литературой, что находится в свободном доступе. Конечно, на одних книгах выехать не получится, но получить базовые знания про устройство, программирование на "СИ", "Ассемблере" и о других рабочих моментах можно.

Порты ввода/вывода

Это чрезвычайно важная тема. Без понимания того, как работают порты ввода/вывода, не представляется возможным внутрисхемное программирование AVR вообще. Ведь взаимодействие микроконтроллера с внешними устройствами осуществляется именно при их посредничестве. На первый взгляд новичка может показаться, что порт - это довольно запутанный механизм. Чтобы избежать такого впечатления, не будем детально рассматривать схему его работы, а только получим общее представление об этом. Рассмотрим программную реализацию. В качестве примера устройства был выбран микроконтроллер AtMega8 - один из самых популярных из всего семейства AVR. Порт ввода/вывода представляет собой три регистра, которые отвечают за его работу. На физическом уровне они реализовываются как ножки. Каждой из них соответствует определённый бит в управляющем реестре. Каждая ножка может работать как для ввода информации, так и для её вывода. Например, на неё можно повесить функцию зажигания светодиода или обработку нажатия кнопки. Кстати, три регистра, о которых говорилось, это: PORTx, PINx и DDRx. Каждый из них является восьмиразрядным (не забываем, что мы рассматриваем AtMega8). То есть один бит занимается определённой ножкой.

Работа регистров

Наиболее весомым в плане ориентации является управляющий DDRx. Он также является восьмиразрядным. Значения для него могут быть записаны 0 или 1. Как меняется работа контроллера при использовании нулей и единицы? Если в определённом бите выставить 0, то соответствующая ему ножка будет переключена в режим входа. И с неё можно будет считывать данные, что идут с внешних устройств. Если установить 1, то микроконтроллер сможет управлять чем-то (например, дать приказ транзистору пропустить напряжение и зажечь светодиод). Вторым по важности является PORTx. Он занимается управлением состояния ножки. Давайте рассмотрим пример. Допустим, у нас есть порт вывода. Если мы устанавливаем логическую единицу в PORTx, то посылается сигнал от микроконтроллера управляющему устройству начать работу. Например, зажечь светодиод. При установлении нуля он будет гаситься. То есть работать с управляющим регистром DDRx постоянно, нет надобности. И напоследок давайте о PINx. Этот регистр отвечает за отображение состояния ножки контроллера, когда она настроена на состояние ввода. Следует отметить, что PINx может работать исключительно в режиме чтения. Записать в него ничего не получится. Но вот прочитать текущее состояние ножки - это без проблем.

Работа с аналогами

AVR не являются единственными микроконтроллерами. Этот рынок поделен между несколькими крупными производителями, а также между многочисленными китайскими имитирующими устройствами и самоделками. Во многом они подобны. К примеру, программирование PIC/AVR сильно не отличается. И если есть понимание чего-то одного, то понять всё остальное будет легко. Но начинать путь рекомендуем всё же с AVR благодаря его грамотной структуре, дружелюбности к разработчику и наличию большого количества вспомогательных материалов, из-за чего процесс разработки можно значительно ускорить.

Техника безопасности

Когда будет вестись программирование микроконтроллеров AVR на "СИ" или на "Ассемблере", то необходимо работать очень осторожно. Дело в том, что выставив определённую комбинацию регистров и изменив внутренние настройки, можно спокойно заблокировать микроконтроллер. Особенно это касается фьюзов. Если нет уверенности в правильности своих действий, то лучше отказаться от их использования. Это же относится и к программаторам. Если покупать заводскую аппаратуру, то она будет прошивать микроконтроллеры без проблем. При сборке своими руками может возникнуть печальная ситуация, при которой программатор заблокирует устройство. Это может произойти как из-за ошибки в программном коде, так и через неполадки в нём самом. Кстати, об ещё одном (на этот раз позитивном) моменте, который ранее вскользь упоминался, но так и не был раскрыт полностью. Сейчас практически все современные микроконтроллеры обладают функцией внутрисхемного программирования. Что это значит? Допустим, что устройство было запаяно на плате. И чтобы сменить его прошивку, сейчас не нужно его выпаивать, ведь такое вмешательство может повредить сам микроконтроллер. Достаточно подключиться к соответствующим выводам и перепрограммировать его при их посредстве.

Какую модель выбрать?

В рамках статьи была рассмотрена AtMega8. Это довольно посредственный за своими характеристиками микроконтроллер, которого, тем не менее, хватает для большинства поделок. Если есть желание создать что-то масштабное, то можно брать уже своеобразных монстров вроде Atmega128. Но они рассчитаны на более опытных разработчиков. Поэтому, если нет достаточного количества опыта, то лучше начинать с небольших и простых устройств. К тому же они и значительно дешевле. Согласитесь, одно дело случайно заблокировать микроконтроллер за сто рублей, а совсем иное - за полтысячи. Лучше набить себе руку и разобраться в различных аспектах функционирования, чтобы в последующем не терять значительные суммы. Первоначально можно начать с AtMega8, а потом уже ориентироваться по своим потребностям.

Заключение

Вот и была рассмотрена тема программирования AVR в самых общих чертах. Конечно, ещё о многом можно рассказывать. Так, к примеру, не было рассмотрено маркирование микроконтроллеров. А оно может о многом сказать. Так, в основном микроконтроллеры работают на напряжении в 5В. Тогда как наличие, к примеру, буквы L может сказать о том, что для работы устройства достаточно только 2,7 В. Как видите, порой знания о маркировке могут сыграть очень важную роль в плане корректной и долговечной работы устройств. Время функционирования микроконтроллеров - это тоже интересная тема. Каждое устройство рассчитано на определённый период. Так, некоторые могут отработать тысячу часов. Другие же имеют гарантийный запас в 10 000!




Top