Схема контроллера заряда аккумулятора от солнечной батареи. Разбор конкретной схемы. Как выбрать контроллер для солнечных батарей? Контроллер для солнечной батареи своими руками

Важным критерием выбора контроллера является стоимость контроллера. При возникновении вопроса, какой контроллер купить, дороже или дешевле, в случаях небольших солнечных электростанций возникает решение, купить контроллер проще и дешевле, а на разницу в цене купить еще одну две солнечные батареи.

Если вы хотите установить простую , то стоит выбрать недорогой, но качественный ШИМ контроллер, с запасом по мощности в 20-30%.

Если же вы очень критично относитесь к , вам важно все параметры станции, высокая эффективность, контроль параметров, возможности удаленного управления, а также переключение между электростанцией и электросетью, или автоматическое включение генератора, то стоит приобрести продвинутый, современный, MPPT контроллер, с множеством функций, встроенных защит, возможностью управления внешними устройствами и перераспределением нагрузок.

Выбор производителя

Не маловажным аспектом является выбор производителя контроллеров. При выборе производителя контроллеров следует учитывать следующие факторы:

1) Специализации производителя. Что выпускает данное предприятие. Специализируется ли оно на производстве компонентов автономных электростанций, или контроллер является дополнительно выпускаемым среди прочей разнообразной несерьезной электроники. Бывает еще, что профильное по электрическим и электронным приборам предприятие решило выпускать дополнительно контроллер заряда солнечных батарей, и хотя они имеют серьезный подход, хорошую компонентную базу, но часто их устройства могут быть непродуманными, иметь мало функций. Это связано с тем, что для выпуска контроллера не открывался специальный отдел, который бы занимался проработкой изделия, испытаниями, доработкой, сопровождением и поддержкой контроллера в эксплуатации. Скорее всего, предприятие приобрело патент на изготовление контроллера у сторонней фирмы для загрузки незадействованных мощностей. Причем данный контроллер будет устаревшим, прошлого поколения вряд ли кто будет продавать патент на совершенно новое технологичное перспективное устройство.

2) Страна производства. Если для вас важно, контроллеры можно выбрать по стране производства. Основное разделение идет на:

    Европейские. Наиболее качественные продуманные и дорогие.

    Американские. Аналогично европейским.

    Российские. Рынок наших контроллеров только развивается. Но уже есть достаточно продуманные контроллеры, способные составить конкуренцию европейским контроллерам. Одним из плюсов является возможность гарантийного ремонта или замены в небольшие сроки.

    Китайские. Такие контроллеры можно разделить на две категории:

1) От брендовых производителей, специализирующихся на выпуске именно компонентах солнечных электростанций.

2 ) Прочие китайские производители неизвестных марок. Такие контроллеры отличает невысокая цена, некачественное исполнение, отсутствие каких-либо инструкций, гарантий и поддержки производителя.

На этот раз я решил сделать автомат, который автоматически включает светодиодное освещение в садовой беседке. Поскольку поблизости нет розетки, а постоянное протягивание удлинителя достаточно утомительное занятие, я решил запитать светодиоды от аккумулятора с подзарядкой от солнечных элементов.

Ранее был описан очень похожий , который освещает стеклянную полку в шкафу. Используя этот драйвер, возникла бы проблема, поскольку для освещения беседки нам нужно больше света, чем для освещения стеклянной полки. Так же, применение более мощного источника света будет быстрее разряжать аккумулятор, который может выйти из строя в результате глубокой разрядки элементов в батарее.

Чтобы этого не допустить, я решил создать простой драйвер с защитой от слишком глубокого разряда батареи на основе . В свою очередь, солнечные элементы также служат в качестве датчика освещенности, что значительно упростило всю схему.

Печатная плата имеет размеры 40мм на 45мм. Кроме того, добавлены два монтажных отверстия. Все устройство питается от трех Ni-MH аккумуляторов (1,2В/1000мАч). Для зарядки используется солнечная батарея с номинальным напряжением 5 вольт и максимальным выходным током до 80 мА. Солнечная батарея заряжает аккумуляторы через выпрямительный диод D1. Схема не имеет защиты от перезаряда батареи из-за того, что в такой конфигурации перезарядка просто невозможна.

Полностью заряженный аккумулятор должен иметь напряжение около 4,2-4,35 В Солнечная батарея вырабатывает напряжение 5В, но происходит падение на выпрямительном диоде в районе 0,7 В, что дает нам напряжение 4,3 В. Транзистор Q1 отвечает за включение освещения в ночное время и отключение его днем. База этого транзистора подключена через резистор 2,2 кОм к положительному полюсу солнечной батареи.

Когда солнечная батарея не вырабатывает электроэнергию, или она слишком маленькая, транзистор Q1 заперт. Тогда ток с вывода («REF») стабилитрона TL431 будет течь только через резистор R4, который создает делитель напряжения вместе с резисторами R2 и R3. Транзистор Q2 управляет нагрузкой в виде светодиодов. Чтобы схема работала правильно, мы не можем игнорировать резистор R5, задачей которого является подтягивание базы транзистора Q2 к плюсу источника питания.

По расчетам для имеющегося напряжения выходит, что резистор должен иметь сопротивление 100 Ом. С таким сопротивлением схема переключается очень быстро. Но проблема состоит в том, что этот резистор имеет достаточно маленькое значение, и через него течет очень большой ток. Общий ток потребления составляет около 23 мА! Я решил этот резистор заменить на резистор большего значения. В итоге я поставил резистор номиналом 1 кОм. Теперь отключение нагрузки не такое быстрое, но ток потребления сократился до 8mA.

Конечно, текущее значения 8 мА потребляется только тогда, когда солнечная батарея находится в темном месте — то есть, только в ночное время, когда горят светодиоды. И это такой же максимальный ток (8 мА), который поступает от батареи при напряжении 4,2 В. Напряжение отключения нагрузки я поставил на 2,9 В. Предельное напряжение для одной ячейки 0,9 В, что при подключении последовательно трех дает нам 2,7 В, и следовательно, у нас есть еще в запасе 0,2 В.

Схема после отключения нагрузки (т.е. при 2,9 В и ниже), потребляет только 50 мкА. Такой же ток будет, когда солнечная батарея заряжает аккумуляторы. Устройство очень отзывчиво на свет, но не на столько, чтобы уличное освещение мешало бы определить сумерки. С момента обнаружения заката до включения светодиодов на 100% проходит примерно 2 мин.

Удалив из системы транзистор Q1, резистор R1 и выпрямительный диод D1 получаем простую схему защиты аккумулятора от глубокого разряда. Подобная схема может использоваться для отключения Li-Ion или Li-Pol аккумулятора от зарядки. Ее можно использовать, например, в фонарике. Существует также возможность создания подобной защиты и на другие напряжения, для этого нужно рассчитать делитель напряжения. Формулы и пример расчета есть

Эффективное использование солнечной энергии возможно в комплексных системах, куда входят: контроллер заряда солнечных батарей, солнечные панели, аккумуляторы (АКБ) и инверторы.

  • ШИМ (PWM)
  • MPPT
  • Самостоятельное изготовление

Что такое контроллер заряда и каким он бывает?

Каждый из элементов приведенной схемы выполняет свою роль:

  • Солнечный модуль воспринимает световое излучение и преобразует его в постоянный электрический ток. Сам модуль состоит из множества полупроводников (фотоэлементов);
  • Аккумулятор (блок батарей) используется для накопления и раздачи энергии, поступающей с модулей;
  • Инвертор используется для преобразования постоянного тока в переменный с изменением выходных значений частоты и напряжения в сети.

Здесь может возникнуть закономерный вопрос: «а зачем тогда контроллер, ведь можно напрямую соединить солнечный модуль и блок аккумуляторов?». Если этого не сделать, то на клеммы АКБ будет постоянно поступать зарядный ток, что в свою очередь вызовет рост напряжения. Рано или поздно, в зависимости от типа аккумулятора, напряжение достигнет максимального значения в 14,4 В, после чего начнется процесс перезаряда батареи и выкипания электролита в ней.
А это прямой путь к сокращению срока службы АКБ. Можно контролировать этот процесс вручную, используя простой вольтметр, и отключать питание в нужный момент. Но в этом случае человек будет постоянно привязан к системе и назвать ее автономной уже будет нельзя.

Контроллер как раз и является тем звеном в цепи, которое должно за процессом заряжания и раздачи энергии с АКБ следить в автоматическом режиме. Кроме этого, он выполняет ряд других функций, перечень которых зависит от конкретной модели и типа:

  • Автоматическое соединение АКБ и модулей цепью зарядки;
  • Подбор оптимальных режимов накопления заряда;
  • Полный контроль процесса и, при необходимости, отключение или подключение потребителей;
  • Поддержка правильной полярности;
  • Защита от коротких замыканий, прекращения подачи энергии (обрыв);
  • Учет уровней заряда АКБ;
  • Контроль расхода энергии и т.д.

Для существующих гелиосистем необходимо собрать своими руками или выбрать один из трех существующих видов:

  1. On/Off;
  2. ШИМ (PWM);
  3. MPPT.

Это самый простой из существующих устройств, которое осуществляет отключение заряда при достижении определенного напряжения (14,4 В). Таким образом, происходит предотвращение перегрева устройства и последующего перезаряда. При этом невозможно обеспечить полный заряд АКБ, поскольку при достижении максимального тока происходит отключение, тогда как необходимо поддерживать процесс еще несколько часов. В результате, уровень заряда постоянно находится в пределах 60-70 %, что отражается на состоянии пластин и снижении срока службы батареи.

По сути, назвать этот модуль контроллером можно только с большой натяжкой – на практике они больше называются автоматами отключения и сегодня практически не используются.

ШИМ (PWM)

Решение проблемы неполного заряда может быть достигнуто, если выбрать управляющие блоки нового поколения, в которых используется принцип широтно-импульсной модуляции (ШИМ) подающего тока.

Принцип его работы базируется на снижении номинала заряжающего тока при достижении пикового напряжения. Это позволяет достичь уровня заряда 100 %, повысив при этом общую эффективность на 20-30 %. Некоторые из моделей позволяют корректировать напряжение поступающего тока в зависимости от температуры наружного воздуха. Они предотвращают перегрев батареи, повышают способность принятия заряда и осуществляют автономное регулирование процесса.

Примерная схема работы ШИМ выглядит следующим образом:

Для экономии на платежах за электроэнергию наши читатели советуют "Экономитель энергии Electricity Saving Box". Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

MPPT

Наиболее совершенным на сегодня типом регулирующего заряд солнечной батареи устройства, которые можно выбрать на рынке, является МРРТ. Он позволяет повысить эффективность выработки электроэнергии и ее количество на одном и том же блоке солнечных панелей. Принцип действия любого mppt модуля базируется на отслеживании так называемой «точки максимальной мощности».

Любой регулятор mppt постоянно контролирует параметры тока и напряжения, на основе которых микропроцессорный аналитический блок вычисляет их наиболее оптимальное соотношение для выработки полной мощности. Процессор, при выборе номиналов тока и напряжения, также учитывает стадию зарядного процесса.

При использовании mppt контроллеров становится возможным снятие большего напряжения с солнечных панелей, которое затем преображается в оптимальное для заряда АКБ (как правило, оно отличается от паспортного напряжения питания). Общая эффективность гелиосистемы в сравнении с ШИМ контроллерами увеличивается на 15-35%. При этом МРРТ технология позволяет работать даже при снижении освещенности панели на 40%.

Преимущества МРРТ модулей можно отобразить в виде следующей схемы:

Возможность создания высокого напряжения на выходе mppt контроллера позволяет использовать провода меньшего сечения и увеличить расстояние между самим блоком и солнечными панелями.

Гибридные виды для ветростанций

В Скандинавии, Германии, Испании, США ветрогенераторы покрывают приличную часть общих потребностей государства в электричестве. В них также находится место для такого узла, как контроллер заряда.

А в случае, если ЭС является комбинированной (на солнечных панелях и ветряках), используется так называемый гибридный модуль.

Он также может работать по принципу ШИМ или МРРТ. Главным отличием гибридного контроллера является использование несколько других вольтамперных характеристик. Происходит это потому, что ветрогенераторы имеют большие скачки выработки и потребления энергии, а батареи, в свою очередь, значительно перегружаются. Контроллер сбрасывает лишнюю энергию на сторону (например, на блок-тэны).

Самостоятельное изготовление

Если у человека имеются определенные познания в области электроники и электротехники, то можно попробовать собрать схему контроллера для солнечных панелей и ветрогенератора своими руками. Такой агрегат будет сильно уступать в функционале и эффективности промышленным серийным образцам, но в маломощных сетях его может быть вполне достаточно.

Кустарный регулирующий модуль должен отвечать основным условиям:

  • 1,2P ≤ I × U. В этом уравнении используются обозначения суммарной мощности всех источников (Р), выходного тока контроллера (I), напряжения в системе при полностью разряженных АКБ (U);
  • Максимальное входное напряжение контроллера должно отвечать суммарному напряжению батарей без нагрузки.

Наиболее простая схема подобного модуля будет иметь следующий вид:

Устройство, собранное своими руками, работает с такими характеристики:

  • Зарядное напряжение – 13,8 В (может меняться в зависимости от номинала тока);
  • Напряжение отключения – 11 В (настраивается);
  • Напряжение включения – 12,5 В;
  • Падение напряжения на ключах – 20 мВ при значении тока 0,5А.

Контроллеры заряда ШИМ или МРРТ типа являются одной из неотъемлемых частей любой гелиосистемы или гибридной системы на солнечных и ветрогенераторах. Они обеспечивают нормальный режим заряда аккумуляторных батарей, повышают эффективность и предотвращают их преждевременный износ, к тому же могут быть вполне собраны своими руками.

Основной сложностью использования солнечной энергии в быту является ее накопление. вырабатывает электричество только в период воздействия света, но пользоваться электрикой приходится и вечером и ночью. Напрямую подключать солнечные батареи к аккумуляторам нельзя – сломается и то и другое. Используются специальные устройства – контроллеры солнечных батарей, которые можно собрать своими руками или приобрести готовые.

Виды контроллеров

Существует три типа контроллеров для солнечных батарей, отличающиеся своей функциональностью и ценой соответственно.

Какой выбирать

Как видно из описаний, первый вариант (ON/OFF контроллер) – совсем не подходит для длительного использования. Т.е. если он у вас имеется, то его можно поставить для тестирования работы системы, но затем заменить на ШИМ (PWM) контроллер или MTTP.

Последний – предпочтительнее. Технология MTTP предусматривает КПД контроллера солнечных батарей на уровне 93-97%, тогда как ШИМ дает только 65-70%. Если учитывать стоимость солнечных панелей, то покупка более дорогого контроллера оправдывается эффективностью их использования.

Стоимость

Система электроснабжения от солнечных батарей собирается, прежде всего, для экономии средств, поэтому цена на отдельные детали – очень важный момент. Предлагаемые варианты прошли испытание временем и являются оптимальным по сочетанию цена/качество:

  • Solar controller 20a ссылка на алиэкспресс (откроется в новом окне) – стоимость 20,75$ - простое управление, яркий ЖК дисплей, понятный интерфейс. Отлично справляется с задачей по заряду АКБ. Технология ШИМ (PWM). Имеется возможность подключения через USB к компьютеру для настройки.
  • MPPT Tracer 2210RN Solar Charge Controller Regulator ссылка на алиэкспресс (в новом окне), цена 75$ – MTTP контроллер на 20А – качественный и надежный, сертифицированный, распознает день/ночь. Высокий КПД – 97%

Видео, контроллер своими руками

Контроллер для солнечных батарей можно собрать своими руками, однако это тоже требует определенных вложений. Так, на сборку простенького ШИМ контроллера вам придется потратить 10$ на детали и 2-3 часа работы с паяльником. При стоимости готового изделия 20$ - такая перспектива уже не кажется раумной. Собрать качественный MPPT - контроллер в домашних условиях - вообще занятие невозможное, нужно и оборудование и соответствующий софт. Ролик будет полезен тем, кто любит и умеет пользоваться паяльником.

Дополнения к видео: схема контроллера, расположение деталей на печатной плате:

Схема контроллера солнечной батареи LAY печатной платы Расположение деталей на плате

Комментарии:

Похожие записи

Ветряк для частного дома - игрушка или реальная альтернатива Бестопливный генератор - способ заработать на безграмотности

Схема контроллера заряда аккумулятора от солнечной батареи строится на базе чипа, который является ключевым элементом всего устройства в целом. Чип – основная часть контроллера, а сам контроллер – это ключевой элемент гелиосистемы. Данное устройство отслеживает работу всего устройства в целом, а также руководит зарядкой аккумулятора от солнечных батарей.

При максимальном заряде аккумулятора, контроллер будет регулировать подачу тока на него, уменьшая ее до необходимой величины компенсации саморазряда устройства. Если же аккумулятор полностью разряжается, то контроллер будет отключать любую входящую нагрузку на устройство.

Необходимость этого устройства можно свести к следующим пунктам:

  1. Зарядка аккумулятора многостадийная;
  2. Регулировка включения/отключения аккумулятора при заряде/разряде устройства;
  3. Подключение аккумулятора при максимальном заряде;
  4. Подключение зарядки от фотоэлементов в автоматическом режиме.

Контроллер заряда аккумулятора для солнечных устройств важен тем, что выполнение всех его функций в исправном режиме сильно увеличивает срок службы встроенного аккумулятора.

Как работает контроллер зарядки аккумулятора

В отсутствие солнечных лучей на фотоэлементах конструкции он находится в спящем режиме. После появления лучей на элементах контроллер все еще находится в спящем режиме. Он включается лишь в том случае, если накопленная энергия от солнца достигает 10 В напряжения в электрическом эквиваленте.

Как только напряжение достигнет такого показателя, устройство включится и через диод Шоттки начнет подавать ток к аккумулятору. Процесс зарядки аккумулятора в таком режиме будет продолжаться до тех пор, пока напряжение, получаемое контроллером, не достигнет 14 В. Если это произойдет, то в схеме контроллера для солнечной батареи 35 ватт или любого другого будут происходить некоторые изменения. Усилитель откроет доступ к транзистору MOSFET, а два других, более слабых, будут закрыты.

Таким образом, заряд аккумулятора прекратится. Как только напряжение упадет, схема вернется в начальное положение и зарядка продолжится. Время, отведенное на выполнение этой операции контроллеру около 3 секунд.

Типы

Данный тип устройств считается наиболее простым и дешевым. Его единственная и главная задача – это отключение подачи заряда на аккумулятор при достижении максимального напряжения для предотвращения перегрева.

Однако данный тип имеет определенный недостаток, который заключается в слишком раннем отключении. После достижения максимального тока необходимо еще пару часов поддерживать процесс заряда, а этот контроллер сразу его отключит.

В результате зарядка аккумулятора будет в районе 70% от максимальной. Это негативно отражается на аккумуляторе.

PWM

Данный тип является усовершенствованным On/Off. Модернизация заключается в том, что в него встроена система широтно-импульсной модуляции (ШИМ). Эта функция позволила контроллеру при достижении максимального напряжения не отключать подачу тока, а уменьшать его силу.

Из-за этого появилась возможность практически стопроцентной зарядки устройства.

Данный типаж считается наиболее продвинутым в настоящее время. Суть его работы строится на том, что он способен определить точное значение максимального напряжения для данного аккумулятора. Он непрерывно следит за током и напряжением в системе. Из-за постоянного получения этих параметров процессор способен поддерживать наиболее оптимальные значения тока и напряжения, что позволяет создать максимальную мощность.

Если сравнивать контроллер МРРТ и PWN, то эффективность первого выше примерно на 20-35%.

Параметры выбора

Критериев выбора всего два:

  1. Первый и очень важный момент – это входящее напряжение. Максимум данного показателя должен быть выше примерно на 20% от напряжения холостого хода солнечной батареи.
  2. Вторым критерием является номинальный ток. Если выбирается типаж PWN, то его номинальный ток должен быть выше, чем ток короткого замыкания у батареи примерно на 10%. Если выбирается МРРТ, то его основная характеристика – это мощность. Этот параметр должен быть больше, чем напряжение всей системы, умноженной на номинальный ток системы. Для расчетов берется напряжение при разряженных аккумуляторах.

Как сделать своими руками

Если нет возможности приобрести уже готовый продукт, то его можно создать своими руками. Но если разобраться в том, как работает контроллер заряда солнечной батареи довольно просто, то вот создать его будет уже сложнее. При создании стоит понимать, что такой прибор будет хуже аналога, произведенного на заводе.

Это простейшая схема контроллера солнечной батареи, которую создать будет проще всего. Приведенный пример пригоден для создания контроллера для зарядки свинцово-кислотного аккумулятора с напряжением в 12 В и подключением маломощной солнечной батареей.

Если заменить номинальные показатели на некоторых ключевых элементах, то можно применять эту схему и для более мощных систем с аккумуляторами. Суть работы такого самодельного контроллера будет заключаться в том, что при напряжении ниже, чем 11 В нагрузка будет выключена, а при 12,5 В будет подана на аккумулятор.

Стоит сказать о том, что в простой схеме используется полевой транзистор, вместо защитного диода. Однако если есть некоторые знания в электрических схемах, можно создать контроллер более продвинутый.

Данная схема считается продвинутой, так как ее создание намного сложнее. Но контроллер с таким устройством вполне способен на стабильную работу не только с подключением к солнечной батарее, а еще и к ветрогенератору.

Видео

Как правильно подключить контроллер, вы узнаете из нашего видео.




Top