Передача информации список литературы. Список использованной и рекомендуемой литературы. Что будем делать с полученным материалом

Уравнения Максвелла и волновое уравнение

Электромагнитные волны

В процессе распространения механической волны в упругой среде в колебательное движение вовлекаются частицы среды. Причиной этого процесса является наличие взаимодействия между молекулами.

Помимо упругих волн в природе существует волновой процесс иной природы. Речь идет об электромагнитных волнах, представляющих собой процесс распространения колебаний электромагнитного поля. По существу мы живем в мире ЭМВ. Их диапазон невероятно широк – это радиоволны, инфракрасное излучение, ультрафиолетовое, рентгеновское излучения, γ – лучи. Особое место в этом многообразии занимает видимая часть диапазона – свет. Именно с помощью этих волн мы получаем подавляющее количество информации об окружающем мире.

Что такое электромагнитная волна? Какова ее природа, механизм распространения, свойства? Существуют ли общие закономерности, характерные как для упругих, так и для электромагнитных волн?

Уравнения Максвелла и волновое уравнение

Электромагнитные волны интересны тем, что первоначально они были «открыты» Максвеллом на бумаге. Основываясь на предложенной им системе уравнений, Максвелл показал, что электрическое и магнитное поля могут существовать в отсутствие зарядов и токов, распространяясь в виде волны со скоростью 3∙10 8 м/с. Спустя почти 40 лет предсказанный Максвеллом материальный объект – ЭМВ – был обнаружен Герцем экспериментально.

Уравнения Максвелла являются постулатами электродинамики, сформулированными на основе анализа опытных фактов. Уравнения устанавливают связь между зарядами, токами и полями – электрическим и магнитным. Обратимся к двум уравнениям.

1. Циркуляция вектора напряженности электрического поля по произвольному замкнутому контуру l пропорциональна скорости изменения магнитного потока через поверхность, натянутую на контур (это закон электромагнитной индукции Фарадея):

(1)

Физический смысл этого уравнения – меняющееся магнитное поле порождает электрическое поле .

2. Циркуляция вектора напряженности магнитного поля по произвольному замкнутому контуру l пропорциональна скорости изменения потока вектора электрической индукции через поверхность, натянутую на контур:

Физический смысл этого уравнения – магнитное поле порождаетcя токами и меняющимся электрическим полем .

Даже без каких-либо математических преобразований этих уравнений понятно: если в какой-то точке меняется электрическое поле, то в соответствии с (2) возникает магнитное поле. Это магнитное поле, изменяясь, порождает в соответствие с (1) электрическое поле. Поля взаимно индуцируют друг друга, они уже не связаны с зарядами и токами!

Более того, процесс взаимного индуцирования полей будет распространяться в пространстве с конечной скоростью, то есть возникает электромагнитная волна. Для того, чтобы доказать факт существования в системе волнового процесса, в котором колеблется величина S, необходимо получить волновое уравнение

Рассмотрим однородный диэлектрик с диэлектрической проницаемостью ε и магнитной проницаемостью μ. Пусть в этой среде существуют магнитное поле . Для простоты будем полагать, что вектор напряженности магнитного поля располагается вдоль оси ОY и зависит только от координаты z и времени t: .

Записываем уравнения (1) и (2) с учетом связи между характеристиками полей в однородной изотропной среде: и :

Найдем поток вектора через прямоугольную площадку KLMN и циркуляцию вектора по прямоугольному контуру KLPQ (KL = dz, LP= KQ = b , LM = KN = a )

Очевидно, что поток вектора через площадку KLMN и циркуляция по контуру KLPQ отличны от нуля. Тогда циркуляция вектора по контуру KLMN и поток вектора через поверхность KLPQ тоже отличны от нуля. Такое возможно только при условии, что при изменении магнитного поля возникло электрическое поле , направленное вдоль оси ОX.

Вывод 1: При изменении магнитного поля возникает электрическое поле, напряженность которого перпендикулярна индукции магнитного поля .

С учетом сказанного система уравнений перепишется

После преобразований получаем:

Используем формулу Стокса , согласно которой циркуляция вектора по замкнутому контуру L равна потоку ротора этого вектора через поверхность, опирающуюся на этот контур. Тогда:

Пусть S произвольная неизменная во времени поверхность, ограниченная контуром L. Тогда система уравнений (1.2.7) перепишется так:

Поскольку контур интегрирования в полученных интегралах произволен, равенство нулю интегралов возможно только при равенстве нулю подынтегральных выражений. Тогда:

Уравнения (1.3.2) и есть уравнения Максвелла.

В большей части курса мы будем рассматривать поля, изменяющиеся во времени по гармоническому закону:

Для которых принята комплексная форма записи:

Где комплексная амплитуда. При комплексной форме записи гармонических полей производная по времени заменяется умножением на .

Тогда уравнения Максвелла (1.3.2) для полей, изменяющихся по гармоническому закону, принимают вид:

Найдем решение уравнений Масквелла для простейшего случая распространения электромагнитной волны в вакууме.

В вакууме , . Поэтому для вакуума уравнения Максвелла (1.3.4) принимают вид:

Исключим Из (1.3.5). Для этого применим операцию Rot К обеим частям первого уравнения: . Теперь подставим значение из второго уравнения. В результате получим:

Используем известное соотношение векторной алгебры

Вспомним, что в соответствии с теоремой Гаусса-Остроградского

И учтем, что в вакууме свободных зарядов нет (т. е. ). Подставим (1.3.8) и (1.3.7) в (1.3.6). В результате получаем:

Полученное уравнение носит название Волновое уравнение . Аналогичным образом можно получить волновое уравнение относительно вектора магнитного поля .

Наиболее наглядным решением волнового уравнения является сферическая волна, распространяющаяся вокруг точечного излучателя. Чтобы получить решение для сферической волны, нужно представить оператор Лапласа в уравнении (1.3.9) в сферической системе координат, что приведет к достаточно громоздким математическим выражениям. С целью упрощения математических процедур мы рассмотрим решение волнового уравнения для плоской волны, являющейся функцией одной координаты.

Рис.1.3.1. показана схема расположения силовых линий сферической электромагнитной волны. Рисунок иллюстрирует тот факт, что на больших расстояниях от излучателя электромагнитное поле можно рассматривать как плоскую волну, распространяющуюся вдоль направления, перпендикулярного плоскости постоянной фазы, причем характеристики волны зависят только от одной координаты вдоль направления распространения. Несмотря на то, что в общем случае волна имеет сферическую симметрию, в ограниченной области, обозначенной квадратом, можно говорить о плоской волне, характеристики которой зависят только от одной координаты.

Примем во внимание, что одномерный оператор Лапласа имеет следующий вид:

И получим одномерное волновое уравнение для плоской волны:

Рис.1.3.1. Схема силовых линий напряженности электрического и магнитного полей сферической электромагнитной волны.

Любое дифференциальное уравнение приобретает физический смысл, если заданы граничные условия для его решения. Решение уравнения (1.3.11) получается в виде двух волн, распространяющихся вдоль положительного и отрицательного направлений оси z. Примем в качестве граничных условий утверждение, что в рассматриваемой среде плоская волна может распространяться только в одном направлении. Итак, мы имеем решение уравнения (1.3.11) для плоской волны, распространяющейся вдоль положительного направления оси z:

Фаза волны:

Где K — волновое число (в общем случае волновой вектор).

Фиксированная ориентация вектора напряженности поля вдоль заданной координатной оси носит название Поляризации волны . Соотношение (1.3.12) задает поляризацию напряженности электрического поля вдоль оси Х .

На рис.1.3.2. показано положение плоскости постоянной фазы для двух моментов времени.

Рис.1.3.2. Движение плоскости постоянной фазы.

Для плоскости постоянной фазы (φ = const), которая движется вдоль оси z, ее производная по времени равна нулю:

В соответствии с (1.1.26) получаем:

Где - скорость движения поверхности неизменной фазы или Фазовая скорость.

Подставив (1.3.12) в (1.3.11) получим

И, сократив , получим Дисперсионное уравнение для плоской волны в свободном пространстве :

Или (1.3.16)

Разные знаки в выражении для K соответствуют волнам, распространяющимся вдоль оси Z в разных направлениях. В соответствии с (1.3.14):

В свободном пространстве , где C — скорость света.

Таким образом, из уравнений Максвелла следует, что скорость света в свободном пространстве определяется диэлектрической и магнитной проницаемостями вакуума:

Диэлектрическая и магнитная проницаемость вакуума – это характеристики пространства, связанные со статическими полями. Первая из них характеризует только диэлектрические свойства среды. А вторая – только магнитные свойства. Результат решения уравнений Масквелла, представленный формулой (1.3.18), связывает воедино электростатику, магнитостатику и динамический процесс распространения света.

Действительно, диэлектрическую проницаемость можно получить экспериментально путем измерения силы взаимодействия двух известных зарядов Q1 и Q2 расположенных на расстоянии R друг от друга:

(закон Кулона).

.

Магнитную проницаемость можно получить, измерив силу взаимодействия двух проводников длиной и с током и соответственно, расположенных на расстоянии R друг от друга:

(закон Био-Савара-Лапласа)

Таким образом, из статического эксперимента можно получить численное значение .

Следовательно, уравнения Максвелла позволяют выразить скорость света через характеристики, полученные с помощью статических измерений.

Уравнения Максвелла связывают воедино электрическое поле, магнитное поле и электромагнитные волны (свет). Создание концепции электромагнитного поля и формулировка уравнений, его описывающих, послужили одной из важнейших отправных точек физики XX века.

Современные системы сбора и обработки информации содержат обычно несколько взаимодействующих между собой устройств (контроллеры, микро-ЭВМ и др.), которые разнесены на десятки, сотни, иногда даже на тысячи метров.

Это обстоятельство выдвигает проблему передачи информации по каналам связи. Эти каналы связи должны работать в промышленной среде, которая может характеризоваться высоким уровнем помех, запыленностью, химической агрессивностью, большими колебаниями температуры, вибрациями. В зависимости от назначения к каналам связи могут предъявляться требования высокого быстродействия и высокой достоверности передаваемых сигналов.

Канал связи состоит из оконечной аппаратуры и линии передачи, то есть среды, по которой распространяется сигнал. В функции оконечной аппаратуры входит согласование сигналов на выходе передатчика и сигналов, распространяющихся по линии передачи, а также сигналов на выходе из линии передачи и на входе приемника.

Эти функции обычно разделяют на два уровня:

Управления линией;

Управления каналом.

К задачам управления линией относят формирование на передающей стороне сигнала, непосредственно направляемого в линию, преобразование на приемной стороне поступившего из линии сигнала в сигнал, воспринимаемый аппаратурой информационного канала, синхронизацию сигналов и контроль их достоверности.

Линия передачи вместе с узлами оконечной аппаратуры образует физический канал .

Для связи с АЦП и ЦАП, с одной стороны, датчиками и исполнительными механизмами - с другой, используют аналоговые физические каналы.

Для передачи сообщений узлам обработки данных используют дискретные физические каналы , передающие сигналы кодом.

Импульсы, используемые для передачи цифровой информации по физическому каналу, занимают определенный спектр частот. Этот спектр совпадает с полосой эффективно пропускаемых линией частот только в том случае, когда полоса частот, занимаемая сигналом в линии, начинается с нулевой частоты, то есть, когда передача осуществляется видеоимпульсами. Если же спектр сигнала не совпадает с рабочим диапазоном канала связи, его преобразуют с помощью модуляции.

Использование для передачи сигнала той части полосы частот, которую пропускает физический канал, позволяет уплотнить его по частоте. То есть несколько абонентов могут пользоваться одним физическим каналом одновременно.

Чаще всего используется стандартный телефонный канал. Он размещается в полосе частот от 300 до 3400 Гц. Международный консультативный комитет по телеграфии и телефонии (МККТТ) рекомендует шесть вариантов деления этого диапазона: максимум на 26, 13, 8, 6, 2 или 1 канал (рис. 3.1).

На рисунке 3.1 штриховкой выделены полосы сигналов телефонного вызова, контроля частоты синхронизации.

В системах связи и телемеханики обычно используется частотное разделение (уплотнение) каналов. В локальных сетях АСУ ТП (децентрализованные системы) к частотному уплотнению в последнее время не прибегают. Данные передаются последовательно, по битам, физический канал используется для обмена данными между различными абонентами в режиме разделения времени.




Top