Метод уравнений состояния примеры. Территория электротехнической информации WEBSOR. Составление уравнений состояния цепи

Уравнениями состояния электрической цепи называют любую систему дифференциальных уравнений, которая описывает состояние (режим) данной цепи. Например, система уравнений Кирхгофа является уравнениями состояния цепи, для которой она составлена.

В более узком смысле в математике уравнениями состояния называют систему дифференциальных уравнений 1-го порядка, разрешенных относительно производных (форма Коши). Система уравнений состояния в обобщенной форме имеет вид:

Та же система уравнений в матричной форме:

или в обобщённой матричной форме:

Система уравнений состояния формы Коши решается методом численного интегрирования (метод Эйлера или метод Рунге-Кутта) на ЭВМ по стандартной программе, которая должна быть в пакете стандартных программ. При отсутствии такой программы в пакете она легко может быть составлена по следующему алгоритму (метод Эйлера) для к-го шага:

Значения производных на к-ом шаге:

Значения переменных на к-ом шаге:

Для определения значений переменных и их производных на 1-м шаге ин¬тегрирова¬ния используются их значения на момент t=0, т.е. их начальные условия x1(0), x2(0)...xn(0).

Уравнения состояния формы Коши для заданной схемы могут быть получены из системы уравнений Кирхгофа путем их преобразования. Для этой цели: а) из системы уравнений Кирхгофа методом подстановки исключаются ""лишние"" переменные, имеющие зависимые начальные условия, и оставляют переменные iL(t) и uC(t), которые не изменяются скачком и имеют независи-мые начальные условия iL(0) и uC(0); б) оставшиеся уравнения решаются относительно производных и приводятся их к форме Коши.

В случае сложных схем уравнения состояния формы Коши могут быть составлены топологическими методами с использованием матриц соединений [A] и [B].

Последовательность расчета переходного процесса методом переменных состояния выглядит так:

1. Производится расчет схемы в установившемся режиме до коммутации и определяются независимые начальные условия iL(0) и uC(0).

2. Составляется система дифференциальных уравнений по законам Кирхгофа для схемы после коммутации.

3. Методом исключения ""лишних"" переменных система уравнений Кирхгофа преобразуется в систему уравнений Коши, составляются матрицы коэффициентов.

4. Выбирается расчетное время (продолжительность переходного процесса) и число шагов интегрирования N.

5. Решение задачи выполняется на ЭВМ по стандартной программе. Выходную функцию получают в виде графической диаграммы x=f(t)или в виде таблицы координат функций для заданных моментов времени.

Пример. Для схемы рис. 74.1 с заданными параметрами элементов (e(t)=Emsin(ωt+ψE), R, R1, R2, R3, L1, L2, C) выполнить расчет переходного процесса и определить функцию uab(t).


1. Выполняется расчет схемы в установившемся режиме переменного тока до коммутации и определяются начальные условия i1(0), i2(0), uC(0).

2. Составляется система дифференциальных уравнений по законам Кирхгофа:

3. Система уравнений Кирхгофа преобразуется в систему уравнений Коши.

Для этой цели из (1) выражаем

и делаем подстановку в (1) и (2), а из (4) делаем подстановку в (1). Тогда получим:


Введем обозначения.

Анализ и синтез систем управления во временной области основан на понятии состояния системы. Состояние системы-это совокупность таких переменных, знание которых, наряду со входными функциями и уравнениями, описывающими динамику системы, позволяет определить ее будущее состояние и выходную переменную. Для динамиче­ской системы ее состояние описывается набором переменных состояния [ЛГ[(?), X2(t) Х„(0]- Это такие переменные, которые определяют будущее поведение систе­мы, если известно ее текущее состояние и все внешние воздействия. Рассмотрим систему, изображенную на рис. 3.1, где^,^) иy2(t) есть выходные переменные, a ux(t) и u2(t)- вход­ные переменные. Для ЭТОЙ системы переменные (*[, х2,..., хп) имеют следующий смысл: если в момент времени t0 известны начальные значения [^(fo), x2(t0), ...,xn(tQ)] и входные сигналы щ(і) и u2(f) для t > t0, то этой информации достаточно, чтобы определить будущие значения всех переменных состояния и выходных переменных.

Переменные состояния описывают поведение системы в будущем, если извест­ны текущее состояние, внешние воздействия и уравнения динамики системы.

Общий вид динамической системы приведен на рис. 3.2.

Простым примером переменной состояния может служить положение выключателя электролампочки. Выключатель может быть в одном из двух положений - «включено» или «выключено», поэтому его состоянию соответствует одно из двух возможных значе­ний. Если мы знаем, в каком состоянии (положении) находится выключатель в момент времени t0, и если мы прикладываем к нему воздействие, то мы всегда можем определить будущее состояние элемента.

xx(t)=y(i) И x2(t) = -

Дифференциальное уравнение, описывающее поведение системы, обычно записывается в виде

Эти уравнения по сути описывают поведение системы в терминах скорости изменения каждой переменной состояния.

Другим примером системы, которую можно описать переменными состояния, яв­ляется ТЛС-цепь, изображенная на рис. 3.4.

Состояние системы характеризуется двумя переменными (Х[, х2) где хх есть напряжение на конденсаторе vc(/), и х2 - ток через ин­дуктивность //(/). Выбор этих переменных интуитивно понятен, т. к. общая энергия, за­пасенная в цепи, непосредственно зависит от них, как

E=(l/2)Z,/£ +(1/2)Cvc2. (3.5)

Таким образом, Х](/0) и x2(t0) несут информацию о полной начальной энергии в цепи и, сле­довательно, о состоянии системы в момент t = /0. Для описания пассивной ЛіС-цепи число необходимых переменных состояния равно числу независимых элементов, накапливаю­щих энергию. Используя закон Кирхгофа для токов, запишем дифференциальное уравне­ние первого порядка, определяющее скорость изменения напряжения на конденсаторе:

іс ~С - у - = u(t)~ і і (3.6)

Источник4^ тока

Рис. 3.4. RLC-цепь

Закон Кирхгофа для напряжений, примененный к правому контуру, дает уравнение, опре­деляющее скорость изменения тока через индуктивность:

L^=-Ri, + vc. (3.7)

Выход системы определяется линейным алгебраическим уравнением:

Уравнения (3.6) и (3.7) мы можем переписать в виде системы двух дифференциальных уравнений относительно переменных состояния хх и х2:

*L-lx --Х Г3 9Ї

Тогда выходной сигнал будет равен

^i(0 = v0(0 = R х2. (3.10)

Используя уравнения (3.8) и (3.9), а также начальные условия , мы сможем определить будущее поведение системы и ее выходную переменную.

Переменные состояния, описывающие систему, не являются единственными, и все­гда можно выбрать альтернативную комбинацию таких переменных. Например, для сис­темы второго порядка, такой как масса-пружина или RLC-цепь, в качестве переменных состояния можно выбрать любые две линейно независимые комбинации xx{t) и x2(t). Так, для RLC-цепи мы могли бы принять за переменные состояния два напряжения, vc(/) и v; (/), где vL - напряжение на индуктивности. Тогда новые переменные состояния, х, их"2, будут связаны со старыми переменными хх и х2 соотношениями:

х =vc =х, (3.11)

х* = Vj =vc - RiL =х, - Rx2. (3.12)

Уравнение (3.12) связывает напряжение на индуктивности со старыми переменными состояния vc и iL. В реальной системе всегда можно образовать несколько комбинаций пе­ременных состояния, которые определяют энергию, запасенную в системе, и, следовате­льно, адекватно описывают ее динамику. На практике в качестве переменных состояния часто выбирают такие физические переменные, которые легко могут быть измерены.

Альтернативный метод получения модели в переменных состояния основан на испо­льзовании графа связей. Такие графы могут быть построены для электрических, механи­ческих, гидравлических и тепловых элементов или систем, а также для комбинаций эле­ментов различных типов. Графы связей позволяют получить систему уравнений относи­

тельно переменных состояния.

Переменные состояния характеризуют динамику системы. Инженера в первую оче­редь интересуют физические системы, в которых переменными являются напряжения, токи, скорости, перемещения, давления, температуры и другие аналогичные физические величины. Однако понятие состояния применимо к анализу не только физических, но так­же биологических, социальных и экономических систем. Для этих систем понятие состоя­ния не ограничивается рамками представлений об энергии и подходит к переменным со­стояния в более широком смысле, трактуя их как переменные любой природы, описываю­щие будущее поведение системы.

Метод переменных состояния (называемый иначе методом пространства состояний) основывается на двух уравнениях, записываемых в матричной форме.

Структура первого уравнения определяется тем, что оно связывает матрицу первых производных по времени переменных состояния с матрицами самих переменных состояния и внешних воздействий и, в качестве которых рассматриваются э. д. с. и токи источников.

Второе уравнение по своей структуре является алгебраическим и связывает матрицу выходных величин у с матрицами переменных состояния и внешних воздействий и.

Определяя переменные состояния, отметим следующие их свойства

1. В качестве переменных состояния в электрических цепях следует выбирать токи в индуктивностях и напряжения на емкостях, причем не во всех индуктивностях и не на всех емкостях, а только для независимых, т. е. таких, которые определяют общий порядок системы дифференциальных уравнений цепи.

2. Дифференциальные уравнения цепи относительно переменных состояния записываются в канонической форме, т. е. представляются решенными относительно первых производных переменных состояния по времени.

Отметим, что только при выборе в качестве переменных состояния токов к в независимых индуктивностях и напряжений на независимых емкостях первое уравнение метода переменных состояния будет иметь указанную выше структуру.

Если в качестве переменных состояния выбрать токи в ветвях с емкостями или токи в ветвях с сопротивлениями, а также напряжения на индуктивностях или напряжения на сопротивлениях то первое уравнение метода переменных состояния также можно представить в канонической форме, т. е. решенным относительно первых производных по времени этих величин. Однако структура их правых частей не будет соответствовать данному выше определению, так как в них будет еще входить матрица первых производных от внешних воздействий

3. Число переменных состояния равно порядку системы дифференциальных уравнений исследуемой электрической цепи.

4. Выбор в качестве переменных состояния токов и напряжений удобен еще и потому, что именно эти величины согласно законам коммутации (§ 13-1) в момент коммутации не изменяются скачком, т. е. одинаковы для моментов времени

5. Переменные состояния потому так и называются, что в каждый момент времени задают энергетическое состояние электрической цепи, так как последнее определяется суммой выражений

6. Представление уравнений в канонической форме очень удобно при их решении на аналоговых вычислительных машинах и для программирования при их решении на цифровых вычислительных машинах. Поэтому такое представление имеет очень важное значение при решении этих уравнений с помощью средств современной вычислительной техники.

Покажем на примере цепи рис. 14-14, как составляются уравнения по методу переменных состояния.

Сначала получим систему дифференциальных уравнений, соответствующую первому матричному уравнению метода, а затем запишем ее в матричной форме. Алгоритм составления этих уравнений для любой электрической цепи следующий. Сначала записываются урэвнения по законам Кирхгофа или по методу контурных токов; затем выбираются переменные состояния и путем дифференцирования исходных уравнений и исключения других переменных получаются

чаются уравнения метода переменных состояния. Этот алгоритм очень напоминает применяемый в классическом методе расчета пере ходных процессов для получения одного результирующего дифференциального уравнения относительно одного из переменных

В частных случаях, когда в цепи нет емкостных контуров т. е. контуров, все ветви которых содержат емкости, и нет узлов с присоединенными ветвями, в каждой из которых включены индуктивности, может быть указан и другой алгоритм. Не останавливая на нем, отметим лишь, что он основан на замене емкостей источниками э. д. с., индуктивностей - источниками тока и применении метода наложения.

Для цепи рис. 14-14 по законам Кирхгофа

(14-36)

Определяя из первого уравнения, подставляя в третье, заменяя и представляя полученное дифференциальное уравнение в канонической форме относительно получаем:

Решая второе уравнение (14-36) относительно , заменяя согласно первому уравнению (14-36) и подставляя , получаем:

Складывая почленно (14-38) с умноженным на уравнением (14-37) и определяя из полученного результата , получаем:

Перепишем уравнения (14-39) и (14-37) в матричной форме:

(14-4°)

где для рассматриваемой цепи имеем:

(14-42а)

В общем случае первое уравнение метода переменных состояния в матричной форме запишется в виде

(14-43)

Матрицы А и В в линейных цепях зависят только от параметров цепи , т. е. являются постоянными величинами. При этом А - квадратная матрица порядка и называется основной матрицей цепи, матрица В - в общем случае прямоугольная, размера называется матрицей связи между входом цепи и переменными состояния, матрицы - матрицы столбцы или векторы переменных состояния (размера и внешних возмущений (размера )

В рассматриваемом примере матрица В получилась квадратной второго порядка, так как число переменных состояния равно числу внешних возмущении

Перейдем к составлению второго уравнения метода В качестве выходных можно выбрать любые из величин. Возьмем, например, в качестве выходных три величины

Значения их запишутся через переменные состояния и внешние возмущения непосредственно из уравнений (14 36)

(14-44)

или в матричнои форме

или сокращенно

(14-46)

где для рассматриваемой цепи

а в общем случае второе уравнение метода переменных состояния

Матрицы С и D зависят только от параметров цепи . В общем случае - это прямоугольные матрицы соответственно размеров , причем С называется матрицей связи переменных состояния с выходом цепи, матрицей непосредственной связи входа и выхода цепи (или системы).

Для ряда физических систем D является нулевой матрицей и второй член в (14-48) обращается в нуль, так как нет непосред. ственной связи между входом и выходом системы.

Если в качестве переменных состояния взять, например, ток i и напряжение и представить дифференциальные уравнения относительно них в канонической форме, то (опуская все промежуточные преобразования) первое из уравнений метода в матричной форме будет иметь вид:

Таким образом, действительно, первое уравнение метода переменных состояния будет в матричной форме иметь вид (14-43) только при выборе в качестве переменных состояния тока и напряжения

Переходя к решению матричного дифференциального уравнения (14-43), прежде всего отметим, что оно особенно упрощается, если квадратная основная матрица А порядка является диагональной. Тогда все линейных дифференциальных уравнений (14-43) развязаны, т. е. производные переменных состояния зависят каждая только от своей переменной состояния.

Рассмотрим сначала решение линейного неоднородного матричного дифференциального уравнения (14-43) операторным методом Для этого преобразуем его по Лапласу:

причем матрица-столбец начальных значений переменных состояния, т. е.

(14-53)

которые в момент коммутации не изменяются скачком, заданы и равны их значениям в момент

Перепишем (14-51):

где - единичная матрица порядка .

Для получения матрицы изображений переменных состояния умножим слева обе части (14-54) на обратную матрицу

Переходя обратно к оригиналам при помощи обратного преобразования Лапласа, получаем:

Из операторного метода известно, что

По аналогии, записывая обратное преобразование Лапласа в матричной форме, будем иметь:

где - переходная матрица состояния системы, называемая иначе фундаментальной.

Таким образом, находим оригинал первого слагаемого правой части (14-56)

Обратная матрица определяется делением присоединенной или взаимной матрицы на определитель основной матрицы:

где уравнение

(14-61)

представляет собой характеристическое уравнение исследуемой цепи.

Оригинал второго слагаемого правой части (14-56) находится при помощи теоремы свертки в матричной форме

если положить

Тогда на основании (14-62)-(14-64)

и общее решение дифференциального неоднородного матричного уравнения (14-43) на основании (14-56), (14-59) и (14-65) будет иметь вид:

(14-66)

Первое слагаемое правой части (14-66) представляет собой значения переменных состояния или реакцию цепи при нулевом входе, т. е. Иначе говоря, оно представляет первую составляющую свободных процессов в цепи обусловленную ненулевыми начальными значениями переменных состояния цепи, и поэтому является решением уравнения . Второе слагаемое представляет собой составляющую реакции цепи при т. е. при нулевом состоянии цепи.

Нулевым состоянием цепи назовем такое ее состояние, когда начальные значения всех переменных состояния равны нулю. Иначе говоря, второе слагаемое (14-66) представляет собой сумму при принужденной реакции цепи возникающей под влиянием внешних воздействий и второй составляющей свободных процессов

Равенство (14-66) означает, что реакция цепи равна сумме реакций при нулевом входе и нулевом состоянии.

На основании (14-48) и (14-66) для выходных величин имеем.

Если состояние цепи задано не в момент , а в момент , то равенства (14-66) и (14-67) обобщаются:

(14-68)

Пример 14-5. Для разветвленной цепи второго порядка составлены уравнения состояния

при ненулевых начальных условиях и при единственном имеющем вней источнике э. д. с.

Найти переменные состояния .

Решение. Перепишем уравнения состояния в матричной форме

Найдем сначала первые свободные составляющие переменных состояния при нулевом входе Для этого составим матрицу

Для нахождения присоединенной или взаимной матрицы заменим в предыдущей матрице каждый элемент его алгебраическим дополнением Получим матрицу

Транспонируем ее, найдя присоединенную или взаимную матрицу:

Найдем определитель матрицы

На основании (14-60) обратная матрица будет равна:

Подвергнем ее обратному преобразованию Лапласа с учетом того, что для этого нужно подвергнуть обратному преобразованию Лапласа каждый ее элемент. На основании (14-73) получим переходную матрицу состояния цепи

Например,

Для переходной матрицы состояния системы получим:

Для первых свободных составляющих переменных состояния будем иметь

Суммируя полученные результаты, находим искомые значения переменных состояния:

Так как решение уравнения (14-43) было получено выше и дано формулой (14-66), то для проверки правильности решения (14-66) и вычисления с его помощью матрицы переменных состояния можно сначала непосредственной подстановкой (14-66) в (14-43) убедиться, что последнее при этом обращается в тождество. Для этого нужно только сначала вычислить дифференцируя (14-66). При этом получаем:

Теперь нетрудно непосредственно убедиться, что (14-66) действительно является решенпем матричного дифференциального уравненения

Отметим, что переходная матрица состояния системы ем позволяет найти в пространстве состояний, т. е. в пространстве, число измерений которого равно числу компонент вектора переменных состояния перемещение, начинающееся из некоторого начального положения (при или при ) причем вектор содержит значительную информацию, так как одновременно описывает все переменные состояния, т. е. функции времени .

Уравнениями состояния можно назвать любую систему уравнений, определяющих режим цепи. В более узком смысле - это система дифференциальных уравнений первого порядка, разрешенная относительно производных.

Методом переменных состояния назовем анализ цепи, основанный на решении уравнений состояния (первого порядка), записанных в форме Коши. Таким образом, метод переменных состояния - один из методов расчета прежде всего переходных процессов. Далее предполагается, что цепь имеет только независимые источники и не содержит индуктивных сечений и емкостных контуров. В противном случае составление уравнений становится намного сложнее.

Для линейной цепи с постоянными сосредоточенными параметрами ток каждой ветви, напряжение между выбранными выводами, заряд на обкладках конденсатора и т. д. всегда можно найти как решение составленного для этого тока, напряжения, заряда и т. д. дифференциального уравнения (например, исключением других токов и напряжений из системы уравнений Кирхгофа):

Введением переменных это уравнение сводится к эквивалентной системе дифференциальных уравнений первого порядка:

Здесь переменными, которые называются переменными состояния, служат переменная х и ее производные.

Как известно, переходный процесс в любой цепи, кроме ее параметров (значений r, L, С, М) и действующих источников , определяется независимыми начальными (t = 0) условиями - токами в индуктивных элементах и напряжениями на емкостных элементах , которые должны быть известны или рассчитаны. Через них выражаются искомые величины во время переходного процесса. Они же определяют энергетическое состояние цепи. Поэтому в качестве переменных состояния целесообразно выбирать токи и напряжения . Действующие источники можно назвать входными величинами , искомые величины - выходными . Для цепи с n независимыми токами и напряжениями должны быть заданы еще n независимых начальных условий.

Сокращенно дифференциальные уравнения состояния запишем в матричной форме так:

или короче

где X матрица-столбец (размера n x 1) переменных состояния (вектор переменных состояния); F - матрица-столбец (размера m x 1) ЭДС и токов источников (внешних возмущений); А - квадратная матрица порядка n (основная); В - матрица размера п х m (матрица связи). Элементы этих матриц определяются топологией и параметрами цепи.

Для выходных величин (если определяются не токи в индуктивных и напряжения на емкостных элементах) в матричной форме система алгебраических уравнений имеет вид

или короче

где W - матрица-столбец (размера l x 1); M - матрица связи (размера l x n); N - матрица связи (размера l x m).

Элементы матриц зависят от топологии и параметров цепи. Для уравнений состояния разработаны и машинные алгоритмы формирования на основе топологии и значений параметров.

Уравнения в матричной форме (14.91) можно составить, например, с применением метода наложения. Для получения зависимостей между производными переменных состояния, т. е. и переменными состояния , а также ЭДС и токами источников, действующими в цепи, будем считать, что переменные состояния заданы. Рассматриваемую цепь, например на рис. 14.41, а, заменим после коммутации эквивалентной (рис. 14.41,6), у которой каждый заданный ток представлен источником тока , а каждое заданное напряжение - источником напряжения (ЭДС) . Применив метод наложения (положительные направления выбраны), запишем напряжения и токи (сначала учитываем действие источников затем и далее источников, действующих в цепи):


Так как , то

Конечно, уравнения (14.93) можно получить и из уравнений Кирхгофа исключением токов и напряжений ре-зистивных элементов. Однако совместное решение уравнений Кирхгофа с увеличением числа ветвей цепи становится все более громоздким.

Уравнения состояния можно формировать и сразу в матричной форме.

Если источников тока и ЭДС нет, т. е. F = 0, то уравнения (14.91) упрощаются

и характеризуют свободные процессы в цепи. Решение запишем в виде

где X (0) - матрица-столбец начальных значений переменных состояния; - матричная экспоненциальная функция.

Подставив (14.94) в (14.91в), убедимся, что получается тождество.

При решение уравнения (14.91) представим в виде

где Ф(t) - некоторая матричная функция цепи. После дифференцирования (14.95) получим

Сравним (14.96) с (14.91а)

и, умножив на , после интегрирования найдем, что

где q - переменная интегрирования, или

Подставим это выражение в (14.95):

В частности, при t = 0 имеем

Следовательно, решение для переменных состояния записывается в виде

(реакция цепи равна сумме реакций при нулевом входе и при нулевом начальном состоянии).

Это решение можно получить и применив операторный метод расчета переходных процессов, рассматриваемый в разделе .

Выходные величины можно найти по (14.92).

Если состояние цепи задано не при t = 0, а при , то в (14.97) первое слагаемое записывается так: , а нижний предел интеграла не 0, а t.

Главная трудность расчета заключается в вычислении матричной экспоненциальной функции. Один из путей такой: сначала находим собственные значения l матрицы А, т. е. корни уравнения

где 1 - единичная матрица порядка n, которые определяются из уравнения

где - элементы матрицы А.

Собственные значения совпадают с корнями характеристического уравнения цепи.

Матричная экспонента, аргумент которой - матрица Аt, имеющая порядок n, представима конечным числом n слагаемых. Если собственные значения различны, то

где - функции времени; и т. д.

Наконец, определив из (14.100), по (14.99) находим и затем X (t) по (14.97).

Пример 14.6. Определить ток в цепи на рис. 14.42 после коммутации при .

Решение. Выбираем положительные направления токов в индуктивных элементах, т. е. переменных состояния, и тока . Независимые начальные условия: . Дифференциальные уравнения цепи

Исключив ток , получим уравнения относительно производных переменных состояния:

т. е. согласно (14.91)

и матрица-столбец начальных значений

Вычислим собственные значения; по (14.98)

откуда . Если приравнять нулю главный определитель уравнений с переменными состояния, то получим те же значения .

Находим коэффициенты ак по (14.100), т. е. из системы уравнений

Значения тока вычисленные в моменты секунд для интервала времени 0 - 0,1 с, в конце которого ток отличается от установившегося менее чем на 1,5%, приведены в табл. 14.1. При вычислениях цифры записывались с 8 разрядами, а во всех приведенных в примере формулах и в табл. 14.1 указаны с округлением.

Таблица 14.1

Если среди n собственных значений матрицы А есть q кратных , то для n - q разных корней составляется система (14.100), а для q кратных уравнения получаются после вычисления первых q - 1 производных по от обеих частей уравнения с корнем , т. е.

Множественная регрессия не является результатом преобразования уравнения:

-
;

-
.

Линеаризация подразумевает процедуру …

- приведения уравнения множественной регрессии к парной;

+ приведения нелинейного уравнения к линейному виду;

- приведения линейного уравнения к нелинейному виду;

- приведения нелинейного уравнения относительно параметров к уравнению, линейному относительно результата.

Остатки не изменяются;

Уменьшается количество наблюдений

В стандартизованном уравнении множественной регрессии переменными являются:

Исходные переменные;

Стандартизованные параметры;

Средние значения исходных переменных;

Стандартизованные переменные.

Одним из методов присвоения числовых значений фиктивным переменным является. . .

+– ранжирование;

Выравнивание числовых значений по возрастанию;

Выравнивание числовых значений по убыванию;

Нахождение среднего значения.

В матрице парных коэффициентов корреляции отображены значения парных коэффициентов линейной корреляции между. . . .

Переменными;

Параметрами;

Параметрами и переменными;

Переменными и случайными факторами.

Метод оценки параметров моделей с гетероскедастичными остатками называется ____________ методом наименьших квадратов:

Обычным;

Косвенным;

Обобщенным;

Минимальным.

Дано уравнение регрессии . Определите спецификацию модели.

Полиномиальное уравнение парной регрессии;

Линейное уравнение простой регрессии;

Полиномиальное уравнение множественной регрессии;

Линейное уравнение множественной регрессии.

В стандартизованном уравнении свободный член ….

Равен 1;

Равен коэффициенту множественной детерминации;

Равен коэффициенту множественной корреляции;

Отсутствует.

В качестве фиктивных переменных в модель множественной регрессии включаются факторы,

Имеющие вероятностные значения;

Имеющие количественные значения;

Не имеющие качественных значений;

Не имеющие количественных значений.

Факторы эконометрической модели являются коллинеарными, если коэффициент …

Корреляции между ними по модулю больше 0,7;

Детерминации между ними по модулю больше 0,7;

Детерминации между ними по модулю меньше 0,7;

Обобщенный метод наименьших квадратов отличается от обычного МНК тем, что при применении ОМНК …

Преобразуются исходные уровни переменных;

Остатки не изменяются;

Остатки приравниваются к нулю;

Уменьшается количество наблюдений.

Объем выборки определяется …

Числовыми значением переменных, отбираемых в выборку;

Объемом генеральной совокупности;

Числом параметров при независимых переменных;

Числом результативных переменных.

11. Множественная регрессия не является результатом преобразования уравнения:

+-
;

-
;

-
.

Исходные значения фиктивных переменных предполагают значения …

Качественные;

Количественно измеримые;

Одинаковые;

Значения.

Обобщенный метод наименьших квадратов подразумевает …

Преобразование переменных;

Переход от множественной регрессии к парной;

Линеаризацию уравнения регрессии;

Двухэтапное применение метода наименьших квадратов.

Линейное уравнение множественной регрессии имеет вид . Определите какой из факторовили:

+- , так как 3,7>2,5;

Оказывают одинаковое влияние;

- , так как 2,5>-3,7;

По этому уравнению нельзя ответить на поставленный вопрос, так как коэффициенты регрессии несравнимы между собой.

Включение фактора в модель целесообразно, если коэффициент регрессии при этом факторе является …

Нулевым;

Незначимым;

Существенным;

Несущественным.

Что преобразуется при применении обобщенного метода наименьших квадратов?

Стандартизованные коэффициенты регрессии;

Дисперсия результативного признака;

Исходные уровни переменных;

Дисперсия факторного признака.

Проводится исследование зависимости выработки работника предприятия от ряда факторов. Примером фиктивной переменной в данной модели будет являться ______ работника.

Возраст;

Уровень образования;

Заработная плата.

Переход от точечного оценивания к интервальному возможен, если оценки являются:

Эффективными и несостоятельными;

Неэффективными и состоятельными;

Эффективными и несмещенными;

Состоятельными и смещенными.

Матрица парных коэффициентов корреляции строится для выявления коллинеарных и мультиколлинеарных …

Параметров;

Случайных факторов;

Существенных факторов;

Результатов.

На основании преобразования переменных при помощи обобщенного метода наименьших квадратов получаем новое уравнение регрессии, которое представляет собой:

Взвешенную регрессию, в которой переменные взяты с весами
;

;

Нелинейную регрессию, в которой переменные взяты с весами
;

Взвешенную регрессию, в которой переменные взяты с весами .

Если расчетное значение критерия Фишера меньше табличного значения, то гипотеза о статистической незначимости уравнения …

Отвергается;

Незначима;

Принимается;

Несущественна.

Если факторы входят в модель как произведение, то модель называется:

Суммарной;

Производной;

Аддитивной;

Мультипликативной.

Уравнение регрессии, которое связывает результирующий признак с одним из факторов при зафиксированных на среднем уровне значении других переменных, называется:

Множественным;

Существенным;

Частным;

Несущественным.

Относительно количества факторов, включенных в уравнение регрессии, различают …

Линейную и нелинейную регрессии;

Непосредственную и косвенную регрессии;

Простую и множественную регрессию;

Множественную и многофакторную регрессию.

Требованием к уравнениям регрессии, параметры которых можно найти при помощи МНК является:

Равенство нулю значений факторного признака4

Нелинейность параметров;

Равенство нулю средних значений результативной переменной;

Линейность параметров.

Метод наименьших квадратов не применим для …

Линейных уравнений парной регрессии;

Полиномиальных уравнений множественной регрессии;

Уравнений, нелинейных по оцениваемым параметрам;

Линейных уравнений множественной регрессии.

При включении фиктивных переменных в модель им присваиваются …

Нулевые значения;

Числовые метки;

Одинаковые значения;

Качественные метки.

Если между экономическими показателями существует нелинейная связь, то …

Нецелесообразно использовать спецификацию нелинейного уравнения регрессии;

Целесообразно использовать спецификацию нелинейного уравнения регрессии;

Целесообразно использовать спецификацию линейного уравнение парной регрессии;

Необходимо включить в модель другие факторы и использовать линейное уравнение множественной регрессии.

Результатом линеаризации полиномиальных уравнений является …

Нелинейные уравнения парной регрессии;

Линейные уравнения парной регрессии;

Нелинейные уравнения множественной регрессии;

Линейные уравнения множественной регрессии.

В стандартизованном уравнении множественной регрессии
0,3;
-2,1. Определите, какой из факторовилиоказывает более сильное влияние на:

+- , так как 2,1>0,3;

По этому уравнению нельзя ответить на поставленный вопрос, так как неизвестны значения «чистых» коэффициентов регрессии;

- , так как 0,3>-2,1;

По этому уравнению нельзя ответить на поставленный вопрос, так как стандартизированные коэффициенты несравнимы между собой.

Факторные переменные уравнения множественной регрессии, преобразованные из качественных в количественные называются …

Аномальными;

Множественными;

Парными;

Фиктивными.

Оценки параметров линейного уравнения множественной регрессии можно найти при помощи метода:

Средних квадратов;

Наибольших квадратов;

Нормальных квадратов;

Наименьших квадратов.

Основным требованием к факторам, включаемым в модель множественной регрессии, является:

Отсутствие взаимосвязи между результатом и фактором;

Отсутствие взаимосвязи между факторами;

Отсутствие линейной взаимосвязи между факторами;

Наличие тесной взаимосвязи между факторами.

Фиктивные переменные включаются в уравнение множественной регрессии для учета действия на результат признаков …

Качественного характера;

Количественного характера;

Несущественного характера;

Случайного характера.

Из пары коллинеарных факторов в эконометрическую модель включается тот фактор,

Который при достаточно тесной связи с результатом имеет наибольшую связь с другими факторами;

Который при отсутствии связи с результатом имеет максимальную связь с другими факторами;

Который при отсутствии связи с результатом имеет наименьшую связь с другими факторами;

Который при достаточно тесной связи с результатом имеет меньшую связь с другими факторами.

Гетероскедастичность подразумевает …

Постоянство дисперсии остатков независимо от значения фактора;

Зависимость математического ожидания остатков от значения фактора;

Зависимость дисперсии остатков от значения фактора;

Независимость математического ожидания остатков от значения фактора.

Величина остаточной дисперсии при включении существенного фактора в модель:

Не изменится;

Будет увеличиваться;

Будет равно нулю;

Будет уменьшаться.

Если спецификация модели отображает нелинейную форму зависимости между экономическими показателями, то нелинейно уравнение …

Регрессии;

Детерминации;

Корреляции;

Аппроксимации.

Исследуется зависимость, которая характеризуется линейным уравнением множественной регрессии. Для уравнения рассчитано значение тесноты связи результативной переменной с набором факторов. В качестве этого показателя был использован множественный коэффициент …

Корреляции;

Эластичности;

Регрессии;

Детерминации.

Строится модель зависимости спроса от ряда факторов. Фиктивной переменной в данном уравнении множественной регрессии не является _________потребителя.

Семейное положение;

Уровень образования;

Для существенного параметра расчетное значение критерия Стьюдента …

Больше табличного значения критерия;

Равно нулю;

Не больше табличного значения критерия Стьюдента;

Меньше табличного значения критерия.

Систему МНК, построенную для оценки параметров линейного уравнения множественной регрессии можно решить …

Методом скользящего среднего;

Методом определителей;

Методом первых разностей;

Симплекс-методом.

Показатель, характеризующий на сколько сигм изменится в среднем результат при изменении соответствующего фактора на одну сигму, при неизменном уровне других факторов, называется ____________коэффициентом регрессии

Стандартизованным;

Нормализованным;

Выровненным;

Центрированным.

Мультиколлинеарность факторов эконометрической модели подразумевает …

Наличие нелинейной зависимости между двумя факторами;

Наличие линейной зависимости между более чем двумя факторами;

Отсутствие зависимости между факторами;

Наличие линейной зависимости между двумя факторами.

Обобщенный метод наименьших квадратов не используется для моделей с _______ остатками.

Автокоррелированными и гетероскедастичными;

Гомоскедастичными;

Гетероскедастичными;

Автокоррелированными.

Методом присвоения числовых значений фиктивным переменным не является:

Ранжирование;

Присвоение цифровых меток;

Нахождения среднего значения;

Присвоение количественных значений.

Нормально распределенных остатков;

Гомоскедастичных остатков;

Автокорреляции остатков;

Автокорреляции результативного признака.

Отбор факторов в модель множественной регрессии при помощи метода включения основан на сравнении значений …

Общей дисперсии до и после включения фактора в модель;

Остаточной дисперсии до и после включения случайных факторов в модель;

Дисперсии до и после включения результата в модель;

Остаточной дисперсии до и после включения фактора модель.

Обобщенный метод наименьших квадратов используется для корректировки …

Параметров нелинейного уравнения регрессии;

Точности определения коэффициента множественной корреляции;

Автокорреляции между независимыми переменными;

Гетероскедастичности остатков в уравнении регрессии.

После применения обобщенного метода наименьших квадратов удается избежать_________ остатков

Гетероскедастичности;

Нормального распределения;

Равенства нулю суммы;

Случайного характера.

Фиктивные переменные включаются в уравнения ____________регрессии

Случайной;

Парной;

Косвенной;

Множественной.

Взаимодействие факторов эконометрической модели означает, что …

Влияние факторов на результирующий признак зависит от значений другого неколлинеарного им фактора;

Влияние факторов на результирующий признак усиливается, начиная с определенного уровня значений факторов;

Факторы дублируют влияние друг друга на результат;

Влияние одного из факторов на результирующий признак не зависит от значений другого фактора.

Тема Множественная регрессия (Задачи)

Уравнение регрессии, построенное по 15 наблюдениям, имеет вид:

Пропущенные значения, а также доверительный интервал для

с вероятностью 0,99 равны:

Уравнение регрессии, построенное по 20 наблюдениям, имеет вид:

с вероятностью 0,9 равны:

Уравнение регрессии, построенное по 16 наблюдениям, имеет вид:

Пропущенные значения, а также доверительный интервал для с вероятностью 0,99 равны:

Уравнение регрессии в стандартизированном виде имеет вид:

Частные коэффициенты эластичности равны:

Стандартизованное уравнение регрессии имеет вид:

Частные коэффициенты эластичности равны:

Стандартизованное уравнение регрессии имеет вид:

Частные коэффициенты эластичности равны:

Стандартизованное уравнение регрессии имеет вид:

Частные коэффициенты эластичности равны:

Стандартизованное уравнение регрессии имеет вид:

Частные коэффициенты эластичности равны:

По 18 наблюдениям получены следующие данные:

;
;
;
;

равны:

По 17 наблюдениям получены следующие данные:

;
;
;
;

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

По 22 наблюдениям получены следующие данные:

;
;
;
;

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

По 25 наблюдениям получены следующие данные:

;
;
;
;

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

По 24 наблюдениям получены следующие данные:

;
;
;
;

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

По 28 наблюдениям получены следующие данные:

;
;
;
;

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

По 26 наблюдениям получены следующие данные:

;
;
;
;

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

В уравнении регрессии:

Восстановить пропущенные характеристики; построить доверительный интервал для с вероятностью 0,95, еслиn=12




Top