Что такое девиация частоты в чм. Частотная и фазовая модуляция. В этом видео рассказывается о частотной модуляции

3-11-2012, 22:21

Описание

Основы фотометрии

Основное свойство рецепторов сетчатки - световая чувствительность, т. е. способность, поглощая свет, инициировать первую ступень сложного зрительного процесса. Чувствительность фоторецепторов к свету чрезвычайно велика: рецептор способен генерировать импульс возбуждения при поглощении всего нескольких, быть может только двух, фотонов. Но вероятность того, что фотон будет поглощен светочувствительным веществом рецептора, в сильной степени зависит от энергии фотона, т. е. от частоты или длины волны излучения. Зависимость вероятности поглощения фотона от длины его волны лежит в основе световой фотометрии, обуславливая способ пересчета энергетических величин в световые, прежде всего мощности излучения Р (Вт) в световой поток Ф (лм). Первые фотометрические измерения, еще в XVIII в. проводились при достаточной освещенности, когда хорошо различаются цвета, т. е. когда работают колбочки. Поэтому основные фотометрические величины были установлены для дневного, колбочкового зрения. В основу была положена единица силы света - свеча. Сначала это была просто свеча типа восковой или стеариновой, потом старались обусловить материал и диаметр свечи, затем воспроизводили эталон в виде пламенной лампы с определенными конструкционными ее параметрами (свеча Гефнера). В двадцатом веке световые эталоны были созданы в виде ламп накаливании. Во второй половине нашего столетия в основу эталона силы света было положено излучение черного тела при температуре затвердевания платины. Сила света одного квадратного сантиметра черного тела при температуре 2042 К принята равной 60 свечам или по современной терминологии 60 канделам (60 кд). Устройство первичного светового эталона достаточно сложно.

В целях его лучшей сохранности и упрощения поверочных испытаний создают вторичные и рабочие световые эталоны . Их изготовляют из специально отобранных и отожженных ламп накаливания. Прямым сравнением с первичным эталоном определяют световые характеристики вторичных эталонов, по которым поверяют рабочие эталоны. В практике лабораторных фотометрических измерений пользуются образцовыми светоизмерительными лампами, которые время от времени сравнивают с рабочими эталонами, хранящимися в метрологических учреждениях. Схема сравнения с первичным эталоном изображена на рис. 19.

Рис. 19. Сравнение силы света лампы накаливании с эталоном

Кварцевый сосуд 2 засыпан окисью тория 1, в которую погружен тигель 4 с трубкой 5 из плавленой окиси тория. Тигель наполнен химически чистой платиной 3, поддерживаемой при температуре 2042 К. Излучение выходит из печи через смотровое окно 6 и с помощью призмы 7 и объектива 8 через диафрагму 9 направляется на пластинку 10, которая освещается с другой стороны вторичным эталоном в виде лампы накаливания 11. Свет, рассеянный обеими сторонами пластинки, направляется в фотометрический кубик 12. Смотря на него в окуляр, наблюдатель видит картину, изображенную на рис. 20.

Рис. 20. Распределение яркости, создаваемое фотометрическим кубиком

Поля, обозначенные буквой 3, освещены светом первичного эталона, а буквой Л - лампы накаливания. Передвигая лампу 11, наблюдатель на некотором расстоянии l между пластинкой 10 и лампой 11 добивается одинаковой яркости полей. Яркости обеих сторон пластинки пропорциональны их освещенностям, а так как материал и обработка обеих сторон пластинки одинаковы, коэффициенты пропорциональности между яркостью и освещенностью в обоих случаях равны. Поэтому можно написать уравнение

где Jэ и Jл - сила света первичного и вторичного эталонов; коэффициент а учитывает преобразование пучка света от первичного эталона объективом 8 и потери в призме 7 и объективе 5; ?с - коэффициент пропускания системы двух призм фотометра, сквозь которые свет проходит после рассеяния на пластинке 10.

Таким образом, можно найти силу вторичного эталона

Следует обратить внимание на то, что хотя здесь измеряется сила света, непосредственно в фотометре уравниваются яркости двух полей. Силу света получают уже путем расчета. Это обстоятельство характерно для всей визуальной фотометрии: глаз может сравнивать только яркости и при измерениях работает как нуль-прибор. Равенство яркостей в хороших условиях мы можем устанавливать с большой точностью, с погрешностью меньшей одного процента. Но попытки определить, во сколько раз одна яркость превосходит другую, приводят к очень большим ошибкам.

Положив в основу световых величин силу света и установив ее единицу - канделу , мы можем дальше строить всю систему фотометрических световых величин и единиц. Единица светового потока - люмен. Равномерный точечный источник с силой света 1 кд излучает в телесном угле 1 ср световой поток 1 лм. Между силой света J и потоком Ф источника в этом случае существует соотношение

Освещенность измеряется потоком, приходящимся на единицу площади:

Единица освещенности - люкс (лк), равный одному люмену, приходящемуся на квадратный метр, лм/м2.

Яркость светящейся поверхности в направлении нормали к ней измеряется отношением силы света этой поверхности к ее площади.

Освещенный белый экран, обладающий равномерно-диффузным отражением с коэффициентом отражения р, приобретает яркость, которую можно подсчитать по формуле

Спектральная чувствительность

В быту мы оцениваем силу света источника по его мощности. Мы знаем, что стоваттная лампочка дает больше света, чем двадцатипятиваттная. Но оценка силы света по мощности возможна только для источников одного типа. Электроплитка с открытой спиралью тоже светит. Но каждый знает, что шестисотваттная плитка светит гораздо хуже, чем двадцатипятиваттная лампочка. Из-за низкой температуры плитки почти всю энергию она излучает в инфракрасной области и только немного - в длинноволновом диапазоне видимых лучей. И все же можно сказать, что световой поток источника пропорционален его мощности , но коэффициент пропорциональности зависит от спектрального состава излучения. Чтобы внести ясность в соотношение между световым потоком и мощностью, нужно обратиться сначала к монохроматическим излучениям, т. е. к излучениям, длины волн которых заключены в узком интервале d?. Тогда мы сможем написать формулу

где dФ - световой поток, приходящийся на узкую спектральную область d?; Р? - спектральная плотность мощности, т. е. dP/d?; Кm - максимальная спектральная световая эффективность, равная 683 лм/Вт; V(?) -относительная спектральная световая эффективность излучения для дневного зрения. Эту безразмерную величину часто называют устарелым, но лаконичным и удобным названием - относительная вндность. Эта величина характеризует чувствительность глаза к свету различных длин волн. Каждой длине волны? соответствует одно значение V(?). Наглядное представление о функции V(?) может дать такая процедура ее определения.

Рядом поставлены два белых экрана, площади которых равны. На первый экран посылают излучение мощностью 1 Вт с длиной волны?1 = 555 нм (желто-зеленый свет), а на второй - другое излучение, скажем зеленое, с длиной волны?2 = 500 нм. Если его мощность будет тоже 1 Вт, мы увидим, что второй экран много темнее первого. Чтобы уравнять яркости, мощность второго излучения придется увеличить до 3 Вт. Значит, чувствительность глаза к излучению?2 составляет одну треть чувствительности к излучению?1 Приняв чувствительность к?1 = 555 нм (она максимальна) за единицу, получим, что чувствительность к свету с длиной волны?2 = 500 нм равна 1/3 (точное значение V(?) =0,323). Таким же образом мы можем найти V(?) для всех других длин волн и получить зависимость К(Х) в виде таблицы или графика. Можно найти и значение коэффициента Кm. Мощность излучения, лежащего в узком интервале длин волн АХ, выразим в виде

а соответствующий световой поток будет

Послав этот поток на экран площадью Аа, обладающий свойствами, обеспечивающими выполнение равенства (31), получим его яркость, воспользовавшись формулами (29), (31) и (34):

Если теперь непосредственно измерить L, то в формуле (35) будут известны все величины, кроме Кm, откуда

В действительности определение V(?) и Кm - весьма сложная задача, во-первых, в силу необходимости производить гетерохромное фотометрирование, т. е. уравнивать по яркости поля разного цвета, а во вторых, из-за индивидуальных различий в спектральной чувствительности.

На основе анализа экспериментальных работ Международная комиссия по освещению утвердила значения относительной спектральной эффективности для стандартного фотометрического наблюдателя МКО. На базе этих значений построена основная система фотометрирования . На основе утвержденных МКО значений V(?) построена кривая, изображенная на рис. 21 (сплошная линия).

Рис. 21. График функции V (?)

Подведем некоторые итоги.

Свет, как всякий материальный объект, обладает массой и энергией. Поэтому фотометрию можно строить как учение об энергии света, кладя в основу мощность излучения . Такая фотометрия действительно существует, и ею рассматриваются чисто энергетические величины: энергетическая сила света, мощность или поток излучения, энергетическая освещенность, энергетическая яркость. Для измерений в области энергетической фотометрии лучше всего подходят неселективные приемники, прежде всего тепловые, обращающие в тепловую энергию излучения любой длины волны. Но для такой важной отрасли науки и практической деятельности, как светотехника, чисто энергетическая фотометрия неудобна. Для светотехника важно учитывать воздействие света на селективный приемник - глаз человека. Так, еще раньше энергетической фотометрии появилась ее частная отрасль - визуальная фотометрия с системой световых единиц - световой поток, освещенность, яркость.

Световой поток - это мощность излучения, оцениваемая по ее действию на глаз. Следует еще добавить - на глаз, адаптированный к высоким уровням яркости, когда приемником света служат колбочки (дневное зрение). Можно подумать, что в световые величины вводится элемент субъективности. Оценка по действию на глаз... На чей глаз? Однако после регламентации значений функции относительной видности субъективность исчезает.

Световой поток (а следовательно, и все другие световые величины) становится объективной физической величиной, определяемой формулой (32) и стандартизованными значениями V(?) и Кm. Чтобы от спектрального потока в интервале длин волн перейти к потоку Ф, следует проинтегрировать (32) в пределах от нуля до бесконечности.

Интеграл всегда сходится, так как вне сравнительно узкой области видимого спектра V(?) =0. Практически вполне достаточно брать интеграл в пределах от 380 до 760 нм.

Если бы фотометрия строилась не исторически, а логически, формулы ее можно было бы упростить. Первоначальная независимость визуальной фотометрии от энергетики вызвала необходимость введения коэффициента Кm, который позднее пришлось определять экспериментально. Можно было бы положить Кm = 1, это упростило бы соотношения между энергетическими и световыми величинами.

Эффект Пуркинье

При значительном понижении уровня яркости, с наступлением ночи восприятие света переходит к палочкам, спектральная чувствительность которых сильно отличается от чувствительности колбочек. На связанное с таким различием явление более полутораста лет тому назад обратил внимание чешский ученый, доктор и профессор медицины Ян Пуркинье. Эффект Пуркинье заключается в том, что в сумерках предметы красного цвета становятся темнее синих, а зеленые становятся синеватыми, так как теряют желтую составляющую их цвета. Ночью, когда цвета уже совсем не различаются, алая роза кажется темнее василька.

Уже сам Пуркинье дал в общих чертах правильное объяснение открытому им явлению. Гельмгольц получил уже некоторые количественные результаты, характеризующие смещение максимума спектральной чувствительности в сторону более коротких волн при понижении яркости.

Хотя изучению явлений, связанных с эффектом Пуркинье, посвящено довольно много работ (хороший обзор их дан в книге А. А. Волькенштейна), долгое время казалось, что они представляют интерес только для физиологов. Считалось, что активная деятельность человека при малых яркостях составляет по времени примерно сотую часть всей работы человека. Однако Бертлинг справедливо заметил, что хотя чаще всего работает светлоадаптированный глаз, те более редкие случаи, когда приходится полагаться на ночное или сумеречное зрение, бывают наиболее критическими, так что ошибка в расчете освещения может иметь роковые последствия. В тридцатых годах нашего столетия возникли новые задачи освещения наружных пространств газосветными лампами, в связи с чем стала очевидной необходимость уточнения светотехнических расчетов в области малых освещенностей. В начале столетия к увеличению экономичности ламп накаливания был один основной путь - увеличение температуры нити ламп . Это было выгодно для светлоадаптированного глаза и тем более для темноадаптированного. Появление газосветных и люминесцентных ламп разорвало термодинамическую связь между температурой и спектром излучения. Получили распространение, например, натриевые лампы, отличающиеся большой световой отдачей. Однако, в силу эффекта Пуркинье это их преимущество теряет силу при освещенностях в доли люкса. Еще Бертлинг сравнил экономичность нескольких ламп при высокой и низкой освещенности, в частности натриевой и ртутной ламп, световая отдача которых при высокой освещенности составляла соответственно 51 и 33 лм/Вт. Оказалось, что при низкой освещенности натриевая лампа даст в 6 раз меньше света на ватт потребляемой мощности, чем ртутная

Изучению работы зрения при низких освещенностях и связанных с этим фотометрических и светотехнических вопросов посвятили свои работы многие ученые, как советские, так и зарубежные. Назовем имена хотя бы некоторых из них: С. О. Майзель, А. А. Гершуи, Н. И. Пинегин, В. Г. Самсонова, С. Г. Юров, А. А. Волькенштейн, Боума, Стайлс, Кроуфорд, Уолд.

В результате Международной комиссией но освещению была стандартизована относительная спектральная световая эффективность излучения для ночного зрения V"(?), кривая которой проведена на рис. 21 штриховой линией. Максимум V"(? приходится на длину волны 507 нм.

Международный светотехнический словарь рекомендует считать дневным (фотопическим) зрением работу глаза, адаптированного к уровням яркости по меньшей мере в несколько кд/м2, а ночным (скотопическим) - работу глаза, адаптированного к яркостям, меньшим нескольких сотых кд/м2.

Эквивалентная яркость

При фотопическом зрении работают только колбочки, при скотопическом - только палочки. Однако остается еще несколько порядков значений яркости, при которой в зрительном процессе участвуют и колбочки, и палочки. Это область сумеречного (мезопического) зрения . Пришлось исследовать функции видности и в промежуточной зоне. В табл. 4

Таблица 4. Относительная спектральная световая эффективность излучения V(?) в зависимости от яркости адаптации

приведены восемь функций видности в интервале яркости 10_5 кд/м2 -до 100 кд/м2.

После того как была обнаружена зависимость спектральной чувствительности от яркости, Л. А. Гершун предложил для ее учета кроме стандартной (фотопической) яркости ввести новую величину - эквивалентную яркость Lеq. Эта величина официально принята МКО, термин 45-10-085

Яркость, выраженную через световой поток, в определение которого входит функция V(?) [формула (36)], называют фотопической или стандартной . Эквивалентную яркость поверхности, освещенной излучением любого спектрального состава, условились измерять, визуально уравнивая ее с яркостью белой поверхности, освещенной излучением черного тела при температуре затвердевания платины (2042 К). Назовем такое излучение эталонным. Создаваемая эталонным излучением стандартная яркость при любых ее уровнях считается численно равной эквивалентной яркости. Для излучения любой иной цветовой температуры это равенство стандартной и эквивалентной яркостей нарушается при низких уровнях освещения, где вступает в силу эффект Пуркинье. Поясним сказанное примером.

Пусть одно поле фотометра - назовем его первым - освещено эталонным излучением, причем освещенность его можно изменять в любое число раз, сохраняя неизменным спектральный состав света. Осветим второе поле лампой накаливания с температурой нити 2800 К и установим на обоих полях фотометра яркость 100 кд/м2. Уменьшим теперь освещенность обоих полей в 100 000 раз. Стандартная яркость их станет 10-3 кд/м2. Но мы ясно увидим, что второе поле светлее первого. Чтобы сделать поля равиосветлыми, стандартную яркость первого поля придется увеличить примерно до 1,4 X 10-3 кд/м2. Это и будет эквивалентной яркостью второго поля, стандартная яркость которого равна 10_3 кд/м2. Разница объясняется тем. что излучение более высокой цветовой температуры, спектр которого сдвинут в сторону коротких волн, меньше проигрывает в светлоте при переходе к палочковому приемнику, максимум чувствительности которого сдвинут в ту же сторону.

Фотометр для измерения эквивалентных яркостей должен иметь большое поле зрения (не меньше 25°) и большой выходной зрачок (не меньше 7,5 мм в диаметре). Поля сравнения лучше делать концентрическими: внутреннее 14°, внешнее до 25-30°. Измерения проводят при установившемся состоянии адаптации.

Система эквивалентных яркостей находит применение в научных исследованиях функций зрения при малоярких цветных полях и в практической светотехнике, например при установлении весьма низких норм цветного (красного) освещения в цехах, производящих или обрабатывающих светочувствительные материалы.

Методы вычисления эквивалентной яркости приведены в книге Волькенштейна. Если источник света можно достаточно точно характеризовать цветовой температурой Тц, применима приближенная формула, предложенная Кинни

Пороговая яркость

Абсолютная световая чувствительность глаза характеризуется пороговой яркостью Ln. Чем меньше Ln, тем больше световая чувствительность Sc.

Чему же равна пороговая яркость ? Несмотря на многочисленные исследования, ответить на этот вопрос не так легко. Во-первых, из-за того, что Ln сильно зависит от условий наблюдения, например от площади тестового поля. Во-вторых, из-за того, что четкие представления об эквивалентной яркости вошли в фотометрию сравнительно недавно и при использовании литературных данных не всегда известно, какую яркость имел в виду автор. А если и ясно, что речь идет о стандартной яркости, редко имеется достаточно данных, чтобы пересчитать ее в эквивалентную. Однако порядок величины L, указать можно. Кнппп для поля диаметром 2°, излучающего свет с длиной волны?. = 555 нм. получил Leq = 5,1 10-6 кд/м2 (стандартная яркость L = 2,1 X 10-6 кд/м2). По данным Луриа для темноадаптированного глаза при больших размерах тестового пятна (от 8 до 100° в диаметре) пороговое значение эквивалентной яркости Leq лежит в пределах от 0,3 10_6 до 0,7 10_6 кд/м2.

Можно согласиться с В. В. Мешковым и принять, что пороговая яркость равна одной миллионной кд/м2. Часто фон с яркостью L = 10_6 кд/м2 считают совершенно темным, полагая, что дальнейшее уменьшение яркости не влияет на функции зрения: даже яркость, на порядок большая, т. е. 10-5 кд/м2, обеспечивает скотопическое зрение, которому соответствует функция V(?).

При определении пороговой яркости в глаз входит довольно большой световой поток соответственно большой площади тестового поля. Уменьшение поля приводит к уменьшению воспринимаемого потока. Поэтому минимальный световой поток, еще способный вызывать ощущение света, следует определять по наблюдению точечных источников. Если же требуется определить минимальную порцию световой энергии, воспринимаемой зрением, нужно ограничить длительность воздействия света на сетчатку, т. е. наблюдать короткие вспышки точечного источника.

Какой источник считается точечным ? Типичный точечный источник - звезда. Диаметры звезд измеряются малыми долями секунды. Однако вследствие дифракции и аберраций на сетчатке звезда изображается пятном с диаметром, не меньшим одной угловой минуты. Поэтому точечным можно считать любой источник, угловой диаметр которого не превышает минуты.

Пока мы имеем дело с протяженными источниками, для глаза важна их яркость, которая в конечном счете определяет освещенность изображения источника на сетчатке Е". В самом деле, пусть источник имеет форму квадрата, сторона которого равна у. Глаз наблюдателя находится на нормали к плоскости квадрата, на расстоянии l от него. Силу света источника в направлении нормали найдем по формуле

где L - яркость в направлении нормали. Тогда освещенность Е на роговице глаза будет

а поток, достигший сетчатки

где?r - коэффициент пропускания глазных сред; d - диаметр зрачка глаза.

Поток Ф осветит на сетчатке площадь?" (площадь изображения источника), которая равна у"2. А так как у" по формуле (12) равен -?f, то

Освещенность на сетчатке получим, разделив Ф" на?" и приняв во внимание, что угловой размер объекта? = y/l:

Видим, что в формулу Е" не входит расстояние до светящейся поверхности. Объект (самосветящийся или получивший яркость L в результате рассеяния света других источников) кажется нам одинаково ярким на расстоянии и 2, и 5, и 20 м. Яркость протяженного объекта не зависит от его углового размера?.

Но положение меняется, если? становится меньше одной минуты. Здесь теряет смысл формула (42), ?" делается практически постоянной величиной и освещенность изображения точечного источника оказывается пропорциональной потоку Ф, который в свою очередь пропорционален освещенности Е на поверхности зрачка наблюдателя [формула (40)]. Подставив в формулу (40), в числитель силу света J по формуле (39), получим

Освещенность Е, создаваемая точечным источником на зрачке наблюдателя, называется блеском источника . Именно блеск, изменяясь обратно пропорционально квадрату расстояния от источника, определяет видимость звезды. Минимальная освещенность на зрачке, при которой мы еще видим источник, называется пороговым блеском. Будем обозначать пороговый блеск для периферического зрения Еn, а для центрального Eц.

Литературные данные хотя и не вполне совпадают, но не расходятся по порядку величины. На основе иx анализа мы даем округленные значения порогового блеска в полной темноте, т. е. при яркости фона L = 10-6 кд/м2 или меньшей, при бинокулярном наблюдении: En = 2*10-9 лк; Eц = 2*10-8 лк.

Поскольку колбочки концентрируются в центральной части сетчатки, а палочки преобладают на периферии, Eц можно считать порогом колбочковой чувствительности , а Еn - палочковой. Случается, что человек, заметив далекий огонь периферическим зрением, поворачивает к нему глаза и теряет его. Астрономы даже говорят, что для того чтобы видеть слабую звезду, не надо на нее смотреть.

Квантовый порог чувствительности

Определим теперь минимальную световую энергию, которая может обусловить зрительное восприятие. Световая энергия Qv при ее постоянстве во времени выражается произведением светового потока Ф и времени его действия т:

Пороговое значение световой энергии получим по формуле

где Фn - пороговый поток, входящий в глаз при блеске En; ? - время инерции зрения, т. е. время, в течение которого глаз суммирует воздействие света. При темновой адаптации? = 0,2 с.

Для вычисления Фn положим, что диаметр зрачка d = 0,8 см = 8-10-3м, и умножим Еn на площадь зрачка?d2/4. Получим Фn = 10-13 лм и QVn = 2-10-14 лм*с. Тем же путем получим пороговый поток и пороговую световую энергию для центрального зрения: Фц = 10-12 лм и Qvц = 2-10-18 лм*с. Примерно такие же значения Qvn и Qvц мы получим, если будем исходить из данных работы, в которых непосредственно определялось произведение Ец? или Еn? при малых т.

Оценим энергию Qn и Qц, входящую в зрачок при пороговом восприятии соответственно периферическим и центральным зрением. Для перехода от световой величины Qv к энергетической Q умножим обе части формулы (33) на? и, учитывая, что??Ф = ?QV, а??Р = ?Q, получим

Будем производить вычисление для монохроматического света с длиной волны?, соответствующей максимуму спектральной эффективности, т. е. для периферии? = 507 нм, а для центрального зрения? = 555 нм. Тогда V(?) = 1 и мы сможем написать Q = Qv/Km. Отсюда Qn = 1,5*10-17Дж = 1,5-10-10 эрг; Qц = 1,5*10-16 Дж = 1,5*10-9 эрг.

Энергия фотона q = hc/?, где h - постоянная Планка, а с - скорость света. Разделив Qn и Qц на соответствующие значения q, получим числа фотонов, входящих в зрачок при пороговом восприятии света периферическим и центральным зрением, nп = 39 и nц = 424.

Пропускание глазных сред зависит от длины волны: для? = 507 нм тг = 0,б1; для? = 565 нм?r = 0,57. Значит, число фотонов, доходящих до сетчатки, n"п = 20; n"ц = 242. Только часть дошедших до сетчатки фотонов поглощается молекулами светочувствительного вещества, вызывая их возбуждение. Назовем такое поглощение активным поглощением и введем величину a1 - коэффициент активного поглощения монохроматического света, соответствующего максимуму спектральной световой эффективности. По данным Вавилова при темновой адаптации a1 = 0,22. Хехт дает несколько меньшее число, Роуз считает, что а, лежит в пределах от 0,1 до 0,2, т. е. a1n"п = 2/4. Итак, чтобы наблюдатель заметил световую вспышку, палочки его сетчатки должны активно поглотить от двух до четырех фотонов. Для колбочек а1 раз в десять меньше, чем для палочек. Но число активно поглощенных фотонов на пороге восприятия и для колбочек, по-видимому, лежит в тех же пределах.

Статья из книги: .

Световая чувствительность является основой всех форм зрительного ощущения и восприятия. Эта функция является чрезвычайно изменчивой (лабильной) и ее изменения определяются многими причинами. Основным фактором, от которого зависит уровень абсолютной световой чувствительности, являются световые условия, в которых находится человек, или, точнее, величина яркости фона.

На световую чувствительность глаза также влияют такие факторы как:

  • распределение палочек и колбочек. Из за их неравномерного распределения периферия светоощущение периферических отделов сетчатки значительно выше, чем центральных.
  • концентрация светочувствительных зрительных веществ (зрительного пурпура) в палочках.
  • состояние нервных элементов зрительного аппарата, т.е. периферических и центральных нервных клеток и нервных волокон.
  • площадь зрачка,- при одинаковых яркости и угловых размерах испытательных полей световой поток, попадающий на сетчатку, будет меньшим при меньшей площади и большим при большей площади зрачка.

Для определения уровня световой чувствительности и ее изменений в процессе адаптации могут быть использованы многие приемы, начиная от простого наблюдения за поведением больного, до исследования с помощью специальных приборов - адаптометров и адаптопериметров.

При исследовании светоощущения определяют способность сетчатки воспринимать минимальное световое раздражение - порог светоощущения и способность улавливать наименьшую разницу в интенсивности освещения, что называется порогом различения.

Порог раздражения сильно зависит от предварительного освещения глаза. Так, если пробыть некоторое время в темном помещении и затем выйти на яркий свет, то наступит как бы ослепление. Спустя некоторое время пребывания на свету глаз уже спокойно его переносит. И наоборот, если пробыть некоторое время на свету, а затем войти в сильно затемненное помещение, то первое время предметы совершенно неразличимы и лишь постепенно глаз привыкает к пониженному освещению.

При воздействии на глаз сильного света быстрее разрушаются зрительные вещества и, несмотря на их перманентное восстановление, чувствительность глаза к свету понижается. В темноте распад зрительных веществ не происходит так быстро, как на свету, и, следовательно, в темноте повышается чувствительность глаза к свету. Кроме того, при действии на сетчатку яркого света из пигментного эпителия пигмент перемещается к нейроэпителию и как бы прикрывает его, что в свою очередь снижает его чувствительность к свету. Процесс приспособления глаза к различным условиям освещения называется адаптацией.

При адаптации к свету чувствительность глаза к световому раздражителю понижается.

Понижение темновой адаптации является симптомом некоторых глазных (глаукома, сидероз, пигментная дистрофия сетчатки) и общих (болезни печени, авитаминоз А) заболеваний. Для изучения световой чувствительности и всего хода адаптации служат адаптометры.

Диагностика

При исследовании световой чувствительности производится определение световых порогов. Световые пороги могут определяться либо в относительных световых единицах (например, делениях фотоклина, площади диафрагмы, через которую проходит свет), либо в абсолютных световых единицах, которые находятся в пропорциональных отношениях к энергетическим единицам.

При определении световых порогов в абсолютных световых единицах, что всего чаще осуществляется в современных адаптометрах, пользуются единицами, кратными стильбу: нитами (нт), апостильбами (асб), пикостильбами и др. Световая чувствительность тем выше, чем ниже световые пороги (минимальные величины светового раздражителя, которые воспринимаются). Поэтому световая чувствительность представляет собой величину, обратную абсолютному световому порогу.

Исследование изменений световой чувствительности в ходе световой адаптации в клинической практике не применяется из-за большой скорости этого процесса. Обычно исследуют ход темновой адаптации.

Для того чтобы исследовать чувствительность определенного места сетчатки, необходимо по возможности исключить непроизвольные и произвольные движения глаз, особенно легко возникающие при погружении в темноту. Для этого в большинстве исследований применяют так называемую фиксационную точку. В качестве фиксационной точки чаще всего употребляют светящийся объект малых размеров (1-2′), снабженный красным фильтром. Точечный источник красного света малой яркости при фиксации его не вызывает разложения зрительного пурпура.

В условиях темновой адаптации самая высокая световая чувствительность отмечается при раздражении областей сетчатки, расположенных между 12 и 18° от центральной ямки. Поэтому исследование световой чувствительности производят чаще всего при проецировании испытательного поля именно в эту область сетчатки. Исследование чувствительности только в одной области не дает полного представления о световой чувствительности, особенно при некоторых глазных заболеваниях (пигментная дегенерация сетчатки, глаукома). Поэтому сейчас в клинике довольно часто применяют периметрическую адаптометрию, при которой световая чувствительность исследуется в разных отделах поля зрения ("квантитативная периметрия", по Гармсу, 1957).

Для врачебной экспертизы широко применяют адаптометр, созданный проф. C.B. Кравковым и проф. H.A. Вишневским. Он позволяет ориентировочно определить состояние сумеречного (ночного) зрения при массовых обследованиях за 3-5 мин. Действие прибора основано на перемещении относительной яркости цветов в условиях дневного и пониженного освещения (феномен Пуркинье).

При сумеречном зрении происходит перемещение максимума яркости в спектре от красной части спектра к сине-фиолетовой. В основе феномена Пуркинье лежит то обстоятельство, что колбочки сетчатой оболочки, функционирующие при дневном зрении, перестают функционировать при ослаблении освещения, уступая ведущее место аппарату палочек сетчатой оболочки, более чувствительному к зелено-синим лучам, которые и кажутся в этом случае относительно более яркими, чем желто-оранжевые.

Адаптометр Кравкова-Вишневского представляет собой темную камеру, внутри которой расположена таблица из зеленого, голубого, желтого и красного квадратов, освещаемая светом различной, постепенно усиливающейся яркости. Основной объект наблюдения - голубой квадрат; желтый квадрат служит для контроля.

О светоощущении можно судить по времени, которое нужно обследуемому для того, чтобы он начал различать цветные квадраты таблицы. В начале исследования при адаптации к свету обследуемый не различает цветов и квадраты кажутся ему серыми различной светлости. По мере наступления темновой адаптации первым различается желтый квадрат, затем - голубой. Красный и зеленый квадраты в этих условиях совсем неразличимы.

Время, прошедшее от момента включения ламп до момента, когда обследуемый увидел более светлый квадрат на месте зеленого, отмечается по секундомеру. При нормальном цветовом зрении и нормальной темновой адаптации - это время колеблется между 15-й и 60-й секундами.

Темновую адаптацию можно проверить и без адаптометра, используя таблицу Кравкова-Пуркинье . Кусок картона размером 20x20 см оклеивают черной бумагой. По углам, отступя на 3-4 см от края, наклеивают 4 квадратика размером 3x3 см из голубой, желтой, красной и зеленой бумаги.

Цветные квадраты показывают пациенту в затемненной комнате на расстоянии 40-50 см от глаза. В норме сначала квадраты неразличимы. Через 30-40 с становится различимым контур желтого квадрата, а затем - голубого. Понижение темновой адаптации называется гемералопией . При гемералопии видят лишь один желтый квадрат.

Световые пороги
А - световые пороги - арифметический ряд,
В - световые пороги - геометрический ряд (логарифмы),
Б - световая чув-ть - арифметический ряд,
Г - световая чув-ть - геометрический ряд (логарифмы),
Везде по оси ординат отложены величины порогов или чувствительности, а по оси абсцисс - время в минутах.

Если установлено понижение сумеречного зрения, темновую адаптацию необходимо проверить на более точных адаптометрах, например на адаптометре Белостоцкого .

Прибор определяет кривую нарастания световой чувствительности глаза во время длительного (60 мин) пребывания в темноте и исследует раздельно световую чувствительность центра и периферии сетчатой оболочки в короткое (3-4 мин) время, а также определяет чувствительность адаптированного к темноте глаза к ярком свет.

Перед началом исследования темновой адаптации необходимо получить максимальную световую адаптацию Для этого обследуемый в течение 20 мин смотрит на равномерно и ярко освещенный экран. Затем пациента помещают в полную темноту (под ширму адаптометра) и определяют световую чувствительность глаз.

Через интервалы 5 мин больному предлагают смотреть на слабо освещенный экран. По мере того как световая чувствительность нарастает, восприятие яркости постепенно снижается. С помощью диафрагмы можно достигнуть постепенного и равномерного уменьшения освещения примерно в 80 млн раз по сравнению с освещением при открытой диафрагме. Исследование проводят в течение 1 ч.

Световая чувствительность глаза быстро возрастает в темноте и через 40-45 мин достигает максимума, возрастая в 50 000-100 000 раз, а иногда и более по сравнению с чувствительностью глаза на свету. Особенно быстро темновая адаптация нарастает в первые 20 мин.

Изменения световой чувствительности в виде кривых стали применять после работ Нагеля (Nagel, 1907) и Пипера (Piper, 1903), т. е. уже почти 60 лет. Сначала для этого применяли арифметический ряд. Но такой способ изображения оказался неудобным потому, что колебания чувствительности при темновой и световой адаптации могут достигать нескольких десятков и даже сотен тысяч раз, что технически неудобно показать на графике.

Поскольку нарастание порогов световой чувствительности обладает огромным размахом, также удобнее представлять нарастание световой чувствительности в логарифмах чисел, обозначающих световую чувствительность. По оси абсцисс откладывают время пребывания в темноте в минутах, а по оси ординат - пороги световой чувствительности, выраженные в логарифмах.

Световая чувствительность и ход адаптации - исключительно тонкие функции, они зависят от возраста, питания, настроения, различных побочных раздражителей.

Расстройства темновой адаптации

Для того чтобы судить о патологических изменениях световой чувствительности, нужно представлять, каковы ее величины для здорового, нормального глаза. В глазной клинике наибольшее распространение получило исследование световой чувствительности в ходе темновой адаптации. Поэтому необходимо знать, каков уровень световой чувствительности в начале темновой адаптации и на разных ее этапах, а также ее максимальный уровень по окончании темновой адаптации.

Этот вопрос, на первый взгляд довольно простой, при ближайшем знакомстве с ним оказывается не таким очевидным. Абсолютная световая чувствительность зависит от чрезвычайно большого количества разнообразных условий и поэтому является очень лабильной функцией. Например, Н. П. Рипак (1953) исследовал 110 здоровых лиц прибором АДМ и нашел, что максимальный уровень абсолютной световой чувствительности через 60 минут темновой адаптации варьирует в пределах от 130,000 относительных единиц до 1,400,000 единиц световой чувствительности. На этом основании, статистически обработав материал, Н. П. Рипак установил понятие зоны нормы абсолютной световой чувствительности. Эти показатели нужно считать действительными только для аппарата данной системы и для данных условий исследования. При работе с аппаратами других конструкций нужно всегда предварительно установить свои собственные нормативы световой чувствительности, хотя это и не является легкой задачей.

В том случае, если заболевание глаза одностороннее, то второй клинически здоровый глаз является хорошим контролем для больного глаза. Поэтому всегда рекомендуется производить исследование каждого глаза в отдельности. Нужно также помнить, что пороги при определении абсолютной световой чувствительности несколько ниже, если исследование будет производиться бинокулярно, а не монокулярно. Это происходит вследствие бинокулярной суммации раздражителей.

Расстройства темновой адаптации могут проявляться в виде повышения порога раздражения , т.е. светочувствительность даже при длительном пребывании в темноте остается пониженной и не достигает нормальной величины, или в виде замедления адаптации , когда светочувствительность нарастает позднее, чем в норме, но постепенно доходит до нормальной или почти нормальной величины.

Чаще встречается комбинация указанных видов расстройств. И тот и другой вид нарушения указывает на понижение световой чувствительности.

Расстройство темновой адаптации резко снижает способность ориентироваться в пространстве при пониженном освещении.

Гемералопия возможна при некоторых заболеваниях сетчатки (пигментная дистрофия, ретиниты, хориоретиниты, отслойка сетчатки) и зрительного нерва (атрофия, застойный диск), при высоких степенях близорукости.

В этих случаях гемералопия вызвана необратимыми анатомическими дефектами в зрительно-нервном аппарате - разрушением окончаний палочек и колбочек. Понижение темновой адаптации - один из ранних признаков глаукомы. Это наблюдается и при заболеваниях печени, чаще при циррозе. В печени содержится много витамина А, ее заболевание вызывает авитаминоз А, в результате снижается тем новая адаптация.

Кроме того, при циррозе печени в пигментном эпителии откладывается холестерин, что препятствует нормальной выработке зрительных пигментов.

Гемералопия как функциональное нарушение сетчатки может возникнуть при нарушениях питания, общем гиповитаминозе с преимущественным дефицитом витамина А. Витамин А, как известно, необходим для выработки зрительного пурпура. Довольно часто гемералопия сочетается с появлением на конъюнктиве глазного яблока ксеротических бляшек рядом с роговицей на уровне ее горизонтального меридиана в виде суховатых участков эпителия.

Такая гемералопия обратима и проходит довольно быстро, если в пищу вводить содержащие витамин А продукты, свежие овощи, фрукты, печень и т.д.

Совершенно исключительное значение в жизни человека имеет орган зрения, позволяющий четко и полно знать обо всех предметах, окружающих организм. Через мы получаем 90 % всей поступающей в мозг информации. Не случайно так огромна роль зрения в нашем труде.

Глаз часто уподобляют фотоаппарату. Действительно, здесь есть немалое внешнее сходство. Глаз также состоит, во-первых, из объектива, т. е. серии преломляющих линз, которые собирают световые лучи в одну точку и позволяют поместить изображение огромных предметов на небольших участках сетчатки. Во-вторых, глаз снабжен собственно светочувствительной - специальными веществами, способными химически изменяться под действием света и тем самым посылать сигналы в мозг. Вещества эти помещаются в особым образом устроенных сетчатки, называемых по их форме палочками и колбочками. Колбочки расположены лишь в центре сетчатки и обусловливают цветное зрение. Световые колебания разной частоты, т. е. разной длины волны, по-разному влияют на вещества колбочек, отчего и происходит восприятие различных цветов. Палочки рассеяны по всей сетчатке и чувствительны только к белому свету, но зато в гораздо большей степени, чем колбочки к отдельным цветам спектра. Поэтому в сумерках, когда восприятие цветов уже отсутствует, мы все еще различаем очертания предметов, но лишь, так сказать, в черно-белом изображении. Все они кажутся одинаково серыми. Веществом, распадающимся в палочках под действием света и тем посылающим сигналы в мозг, является так называемый зрительный пурпур, . Его составной частью природа сделала витамин А. Поэтому-то ночное зрение и страдает без данного витамина. Распадаясь на свету, родопсин в темноте восстанавливается. Чем больше его имеется в восстановленном состоянии, тем глаз чувствительнее к свету. Поэтому, побыв в темноте некоторое время, мы благодаря восстановлению значительной части родопсина начинаем различать предметы, ранее абсолютно неразличимые. Подобное приспособление глаза к условиям освещенности также относится к явлениям адаптации. После часа пребывания в темноте адаптация повышает светочувствительность глаза в 200 тысяч раз. А часто ли мы задумываемся об этом чудесном свойстве своего глаза! Добавим еще, что электрический сигнал, возникающий при распаде родопсина в палочках, соединенные с ними нервные клетки сетчатки усиливают в миллион раз, только тогда получается энергия, способная Дать нервный импульс, который устремляется в мозг.

Если взять кролика и, продержав его 3-4 часа в темноте (чтобы восстановить весь зрительный пурпур), показать ему на миг освещенный предмет, а затем, вновь в темноте, удалить глаз и подействовать на него квасцами, приостанавливающими дальнейший распад родопсина, можно на такой сетчатке увидеть изображение показанного предмета. Там, где подействовал свет и пурпур распался, сетчатка будет бледной, в остальных местах - розовой. Понятно, что если кролик успеет посмотреть на несколько предметов, опыт не удастся.

Вернемся теперь к первому отделу глаза - линзам, собирающим световые лучи в узкий пучок с фокусом на сетчатке. Главной линзой является хрусталик. Когда мы смотрим на далекий предмет, от которого идут почти параллельные лучи, хрусталик становится более плоским. От ближнего предмета идут расходящиеся лучи, которые надо преломить в большей степени, чтобы дать фокус в той же точке. Поэтому при рассматривании близкого предмета хрусталик становится более выпуклым. Эти изменения хрусталика называются аккомодацией. Ими управляют высшие отделы мозга. У некоторых людей хрусталик преломляет слишком сильно и фокус возникает не на сетчатке, а перед ней. Когда дело касается близких предметов, которые и требуют сильного преломления идущих от них лучей, это не мешает зрению. Далекие же предметы кажутся расплывчатыми, ибо их изображение на сетчатке оказывается не в фокусе. Такие люди получили название близоруких. Они уменьшают излишнюю выпуклость своего хрусталика за счет двояковогнутых линз - очков.

Существует и обратное состояние. Дело в том, что с возрастом хрусталик теряет способность аккомодировать, т. е. становится при необходимости более выпуклым. Для близоруких, у которых он и без того является слишком выпуклым, это не имеет значения: они остаются близорукими всю жизнь. При нормальном же зрении с возрастом понижается способность видеть вблизи мелкие предметы. В таких случаях говорят о дальнозоркости и исправляют ее очками с двояковыпуклыми линзами. Понятно, что вдаль эти люди видят не лучше, чем. в молодости, но, во всяком случае, ненамного хуже. Лишь в этом смысле их можно назвать дальнозоркими.




Top