Что такое цветовая модель. Классификация и характеристика цветовых моделей. Цветовые модели и их виды

Цветовая модель RGB

Данный вид цветовой модели базируется на трех основных цветах, смешение которых в различных пропорциях дает все остальные. Причем данные используемые краски отражены в названии модели: красный (Red), зеленый (Green) и синий (Blue) – RGB.

Цветовая модель RGB складывается субтрактивно. Дело в том, что полное сочетание всех трех цветов в их "чистом" виде, дает в итоге белый. Сама же модель относится к аддитивным цветовым моделям, потому как цвета получаются добавлением к черному.

Кодировка цветовой модели RGB происходит по трем каналам, каждый из которых имеет диапазон возможных принимаемых значений, равный 256 (от 0 до 255). В итоге, не сложно посчитать, что данная компьютерная цветовая модель сможет смоделировать 256*3 = 16777216 различных оттенков.

Цветовая модель CMYK

Данная цветовая модель имеет в своем основании 4 базовых цвета, также аббревиатурно заложенных в название: голубой (Cyan), малиновый (Magenta), желтый (Yellow) и черный (blacК). Для черного выбрали последнюю букву, так как В была уже занята синим цветом в модели RGB.

Их смешение происходит аддитивно, но образование имеет субтрактивную основу: они получаются путем вычитания цветов из белого (например, пурпурный выходит вычитанием зеленого и т.п.). Именно поэтому субтрактивную цветовую модель иногда еще называют исключающей.

Цветовая модель CMYK является основной в полиграфии. Она часто применяется в цветных принтерах и плоттерах. При этом необходимо отметить, что цветовая модель CMYK по сравнению с RGB имеет меньшее количество получаемых оттенков. Это необходимо учитывать при конвертации.

Более подробно о данной цветовой модели в компьютерной графике мы расскажем на странице нашей статьи: "Цветовая модель CMYK".

Цветовая модель HSB (HSV)

Если рассматривать данную цветовую модель, то в первую очередь бросается в глаза ее сходство с RGB. Базовые цвета этих моделей совпадают. Зачем же тогда было создавать новую модель?

На самом деле цветовая модель HSB имеет совсем иную систему координат. В ее основе лежат такие параметры, как тон (Hue), насыщенность (Saturation) и яркость (Brightness/Value). В цветовой модели HSV множество получаемых цветов представляет собой шестиугольник, все шесть вершин которого являются пиком одного из основных цветов: красный, зеленый, синий (RGB), голубой, малиновый, желтый (CYM). Черный цвет выведен в качестве вершины конуса. Он регулируется таким параметром, как яркость.

Цветовая модель HSV более ориентирована на интуитивное понятие человека о цвете и тоне.

Цветовая модель HSL

Такая компьютерная цветовая модель по своей основе похожа на HSB (HSV). Но ее основными параметрами являются: тон (Hue), светлота (Lightness) и насыщенность (Brightness/Value). Если представить цветовую модель HSL в виде фигуры, то это будет двойной (отраженный) шестигранный конус. Его основанием, как и у HSB (HSV), служат базовые цвета, а вершинами: белый цвет, регулируемый насыщенностью, и черный, характеризуемый светлотой.

Таким образом, цветовая модель HSL является одним из наиболее ярких примеров интуитивных понятий тона, насыщенности и яркости (светлоты).

В основе этого цветового пространства лежит уже знакомое нам радужное кольцо RGB. Цвет управляется изменением таких параметров, как:

Hue - оттенок или тон;

Saturation - насыщенность цвета;

Brightness - яркость.

Параметр hue - это цвет. Определяется градусами от 0 до 360 исходя из цветов радужного кольца.

Параметр saturation - процент добавления к этому цвету белой краски имеет значение от 0% до 100%.

Параметр Brightness - процент добавления черной краски так же изменяется от 0% до 100%.

Принцип похож на одно из представлений света с точки зрения изобразительного искусства. Когда в уже имеющиеся цвета добавляют белую или черную краску.

Это самая простая для понимания цветовая модель, поэтому ее очень любят многие web-дизайнеры. Однако она имеет ряд недостатков:

Глаз человека воспринимает цвета радужного кольца, как цвета, имеющие различную яркость. Например, спектральный зелёный имеет большую яркость, чем спектральный синий. В цветовой модели HSB все цвета этого круга считаются обладающими яркостью в 100%, что, к сожалению, не соответствует действительности.

Так как в её основе лежит цветовая модель RGB, она, все же является аппаратно-зависимой.

Эта цветовая модель конвертируется для печати в CMYK и конвертируется в RGB для отображения на мониторе. Так что догадаться, каким у вас в конечном счете получится цвет бывает весьма проблематично.

Аналогична этой модели цветовая модель HLS (расшифровка: hue, lightness, saturation).

Иногда используются для коррекции света и цвета в изображении.

Цветовая модель LAB

Данная компьютерная цветовая модель является аппаратно-независимой. Это позволяет ей служить стандартом для оптимизации других моделей с целью получения предсказуемого цвета на различных устройствах (сканнер, принтер, монитор). Цветовая модель LAB является трехканальной. При этом, изменение цветов происходит по таким параметрам, как а – от зеленого к красному и b – от синего к желтому. Яркость цвета в данной цветовой модели отделена от параметров а и b. Это делает более удобным регулировку яркости, резкости и тона.

Цветовая модель LAB позволяет оптимизировать растровый файл под различные устройства и привести их визуализацию к одному цвету.

В данной статье мы рассказали вам об основных цветовых моделях в компьютерной графике, описали их особенности и возможности, выделили наиболее значимые характеристики и параметры. Теперь вы сможете попробовать самостоятельно "поиграть" с цветами и цветовыми моделями в любой графической программе. Удачных вам экспериментов и ярких свершений!

Аппаратно-зависимые и аппаратно-независимые цветовые модели

Цветовые модели CMYK и RGB являются аппаратно-зависимыми, то есть они зависят от способа передачи нам цвета. Они указывают конкретному устройству, как использовать соответствующие им красители, но не имеют сведений о восприятии конечного цвета человеком. В зависимости от настроек яркости, контрастности и резкости монитора компьютера, освещенности помещения, угла, под которым мы смотрим на монитор, цвет с одними и теми же параметрами RGB воспринимается нами по-разному. А восприятие человеком цвета в цветовой модели "CMYK" зависит от еще большего ряда условий, таких как свойства запечатываемого материала (например, глянцевая бумага впитывает меньше краски, чем матовая, соответственно цвета на ней получаются более яркие и насыщенные), особенности краски, влажности воздуха, при котором сохла бумага, характеристик печатного станка…

Чтобы передать человеку более достоверную информацию о цвете, к аппаратно-зависимым цветовым моделям прикрепляют так называемые цветовые профили. Каждый из такого профиля содержит информацию о конкретном способе передачи человеку цвета и регулирует конечный цвет с помощью добавления или изъятия из какого-либо составляющего первоначального цвета параметров. Например, для печати на глянцевой пленке используется цветовой профиль, убирающий 10% Cyan и добавляющий 5% Yellow к первоначальному цвету, из-за особенностей конкретной печатной машины, самой пленки и прочих условий. Однако даже прикрепленные профили не решают всех проблем передачи нам цвета.

Аппаратно-независимые цветовые модели не несут в себе сведений для передачи цвета человеку. Они математически описывают цвет, воспринимаемый человеком с нормальным цветным зрением.

Наверняка многие слышали о таких цветовых моделях как RGB и CMYK, но на самом деле таких схем не 2 и не 5, а больше.

Цветовые модели бывают разные и о них пойдет сегодня речь.

RGB - R ed G reen B lue, как известно, что почти любой цвет можно задать комбинацией трех цветов - красный+зеленый+синий.

Вот из википедии пример такой модельки:

Данная модель называется аддитивной, так как для указания любого из цветов, используется добавление одного из цветовых каналов к черному. Что прекрасно видно на рисунке

Принцип RGB основан на восприятии цвета сетчаткой глаза человека:

Как видно из рисунка и описания, если ни один из цветовых каналов не задан - изображение будет черным. Если же задать все цветовые каналы по-максимуму, то получится белый цвет.

В отличии от CMYK, RGB-модель охватывает гораздо большое число цветовых тонов и нашла свое широкое применение в телевизорах и мониторах. В телевизорах (ЭЛТ) как раз стоят 3 "пушки", которые бомбардируют пучки цвета на экран. В LCD экранах жидкие-кристаллы также состоят из RGB составляющих.

В компьютерах RGB модель так и задается в виде чисел от 0 до 255 для каждого цвета. Если брать html, то черный цвет будет #000000 , красный #FF0000 , зеленый #00FF00 , синий #0000FF , а белый как #FFFFFF . Серый цвет буде что-то вроде #d3d3d3 .

Те, кто знаком с полиграфией, знают, что там используется другая цветовая модель - CMYK. C - Cyan, M - magenta, Y - yellow, K - blacK (насчет K много споров, многие считают его производным от k ey plate - ключевая поверхность, кто-то от k ontur - контурная пленка, а кто-то от k obalt - темно-серый цвет). По-русски это Голубой, Пурпурный, Желтый и Черный цвета.

Так же, как и в RGB, используется задание цвета путем указания процентного содержания одного из цветовых каналов.

Причем г+п+ж = черный цвет, но эстетам полиграфии этого мало. Они имеют дело с различным оборудованием и с различным материалом, на котором печатается изображение. Для полиграфии важно насколько изображение итоговое копирует оригинал. Ведь при использовании RGB модели, печать на черном и на белом фоне (а также, например, на кремовом) - будет отличаться. А вот CMYK модель позволяет нивелировать (свести к минимуму) подобные косяки. Причем для конкретного оборудования и конкретного материала рекомендуется создавать свою схему CMYK, что приводит к расходам на настройщика. Прям пианино, а не принтер =)

В разных странах свои стандарты CMYK также. В Америке одни, в Европе другие и тд.

Черный цвет (а в CMYK-принтера, например, лазерных цветных, 4 картриджа), который задается смешиванием 100%-но насыщенных г+п+ж приводит также к излишнему намоканию бумаги (поверхности), что приводит к ее деформации от влаги. Поэтому и стоит отдельный картридж. Ну и отдельный черный цвет дешевле других (поэтому и в обычных принтерах есть цветной отдельный и отдельный черный картридж).

Раз мы уже говорили выше о восприятии глазом RGB-модели, то для CMYK она такая же:

Если очень близко друг к друг разместить 3 (или 4, в случае с CMYK) разноцветных точки, то сетчатка сольет их в одну точку с определенным цветом. Вот для примера увеличенное изображение курсора мышки на БЕЛОМ фоне обычного LCD монитора:

Макросьемка курсора на белом фоне для TN+film матрице монитора:

Точно также и для остальных цветовых моделей. Глаз сам дорисовывает цвет.

CIE XYZ - линейная трехкомпонентная цветовая модель, основана на изучении человеческого глаза организацией CIE (Commission Internationale de l"Eclairage ). Ученые создали модель стандартного человеческого глаза и уже на ее основе цветовую модель. Грубо говоря, CIE XYZ это то, как видет трехкомпонентное изображение стандарный человек .

Из википедии:

Как известно, цветовое зрение человека обусловлено наличием трёх видов световосприимчивых рецепторов на сетчатке глаза, максимумы спектральной чувствительности которых локализованы в области 420, 534 и 564 нм, что соответствует синему, зелёному и жёлтому (хотя в литературе обычно пишут «красному») цветам. Они являются базовыми, все остальные тона воспринимаются как их смешение в определённой пропорции. Например, чтобы получить жёлтый спектральный цвет, совсем необязательно воспроизводить его точную длину волны 570—590 нм, достаточно создать такой спектр излучения, который возбуждает рецепторы глаза сходным образом. Это явление называется .

Комитет CIE провёл множество экспериментов с огромным количеством людей, предлагая им сравнивать различные цвета, а затем с помощью совокупных данных этих экспериментов построил так называемые функции соответствия цветов (color-matching functions) и универсальное цветовое пространство (universal color space), в котором был представлен диапазон видимых цветов, характерный для среднестатистического человека.

Функции соответствия цветов — это значения каждой первичной составляющей света — красной, зелёной и синей, которые должны присутствовать, чтобы человек со средним зрением мог воспринимать все цвета видимого спектра. Этим трём первичным составляющим были поставлены в соответствие координаты X, Y и Z.

YUV - линейная трехкомпонентная цветовая модель, в основе которой стоит яркость и две цветоразностных компоненты. Подобную модель мы уже рассматривали в .

Кратко модель можно описать так:

Для любого пикселя (если речь идет о компьютерном изображении) создается слой яркости (в оттенках серого), а также 2 слоя, необходимых для восстановления оригинала. Модель использовалась для перехода от ч/б ТВ к цветному, так как старые телевизоры могли использовать лишь один слой, а новые цветные все 3 компонента. Думаю технология аналогичная используется и в окрашивании старых советских кино в цвет.

Модель YUV:

HSV (Hue, Saturation, Value — тон, насыщенность, значение) или HSB (Hue, Saturation, Brightness — оттенок, насыщенность, яркость) - цветовая модель, тоже трехкомпанентная.

Как видно из рисунка, данные модели представляются в трехмерном формате (цилиндр и конус). Из-за трехмерности не совсем удобно их использовать в качестве цветовой модели внутри ПО и изображений, но зато в качестве визуализации они подходят очень кстати.

Думаю подобные палитры в графических редакторах видели многие из вас:

Для выбора цвета из палитры, действительно, такой формат представления удобен и часто используется в прикладном ПО.

RYB - модель на основе 3х компонентов - Красного, Желтого и Синего цветов. Раньше считалась правильной, но не все цвета можно такой моделью задать, особенно оттенки зеленого. Основана на палитре художников, которые смешивают краски для получения нужного цвета, но художники используют не 3 цвета, а большее количество, поэтому модель не используется сейчас уже.

Lab — аббревиатура названия двух разных (хотя и похожих) . Более известным и распространенным является CIELAB (точнее, CIE 1976 L*a*b*), другим — Hunter Lab (точнее, Hunter L, a, b). Таким образом, Lab — это неформальная аббревиатура, не определяющая цветовое пространство однозначно. Чаще всего, говоря о пространстве Lab, подразумевают CIELAB.

При разработке Lab преследовалась цель создания цветового пространства, изменения цвета в котором будет более линейным с точки зрения человеческого восприятия (по сравнению с ), то есть с тем, чтобы одинаковое изменение значений координат цвета в разных областях цветового пространства производило одинаковое ощущение изменения цвета. Таким образом математически корректировалась бы нелинейность восприятия цвета человеком. Оба цветовых пространства рассчитываются относительно определенного значения . Если значение точки белого дополнительно не указывается, подразумевается, что значения Lab рассчитаны для стандартного осветителя D50. (c) Wikipedia

Для простых смертных, RGB и CMYK это то, как мы будем кодировать цвета для машин, причем не учитывая итог (CMYK учитывает итог путем калибровки инструмента и цветовой модели). А вот LAB обеспечивает отображение именно того цвета, который увидит человек. Часто используется как промежуточная цветовая модель при переводе из одной модели к другой.

NCS (Natural Color System , естественная система цвета) — цветовая модель, предложенная Скандинавским институтом цвета (Skandinaviska Färginstitutet AB), Стокгольм, Швеция. Она основана на системе противоположных цветов и нашла широкое применение в промышленности для описания цвета продукции.

За основу взяты 6 цветов: Белый, черный, голубой, желтый, зеленый и красный.

Остальные цвета получаются путем задания темноты, насыщенности и двух основных цветов.

Вроде (беру из головы):

Оранжевый: 5% темноты, 80% насыщенности, 50% желтого, 50% красного.

Ну и в таком духе.

Цветовая модель Пантон , система PMS (Pantone Matching System) — стандартизованная система подбора цвета, разработанная американской фирмой Pantone Inc в середине XX века. Использует цифровую идентификацию цветов изображения для полиграфии печати как смесевыми, так и красками. Эталонные пронумерованные цвета напечатаны в специальной книге, страницы которой веерообразно раскладываются.

Существуют и другие цветовые модели, я отобрал наиболее приглянувшиеся и интересные. Для наших простых нужд хватает RGB, YUV, LAB моделей, для полиграфии добавляются еще CMYK и другие.

Вообще довольно интересно было узнать о том, как вроде бы простой цвет задают совершенно разными моделями.

Зачем нужны разные цветовые модели и почему один и тот же цвет может выглядеть по-разному

Предоставляя услуги дизайна как в области веб, так и в сфере полиграфии, мы нередко сталкиваемся с вопросом Клиента: почему одни и те же фирменные цвета в дизайн-макете сайта и в дизайн-макете полиграфической продукции выглядят по-разному? Ответ на этот вопрос заключается в различиях цветовых моделей: цифровой и полиграфической.

Цвет компьютерного экрана изменяется от черного (отсутствие цвета) до белого (максимальная яркость всех составляющих цвета: красного, зеленого и синего). На бумаге, напротив, отсутствию цвета соответствует белый, а смешению максимального количества красок - темно-бурый, который воспринимается как черный.

Поэтому при подготовке к печати изображение должно быть переведено из аддитивной ("складывающей") модели цветов RGB в субтрактивную ("вычитающую") модель CMYK . Модель CMYK использует противоположные исходным цвета - противоположный красному голубой, противоположный зеленому пурпурный и противоположный синему желтый.

Цифровая цветовая модель RGB

Что такое RGB?

Аббревиатура RGB означает названия трех цветов, использующихся для вывода на экран цветного изображения: Red (красный), Green (зеленый), Blue (синий).

Как формируется цвет RGB?

Цвет на экране монитора формируется при объединении лучей трех основных цветов - красного, зеленого и синего. Если интенсивность каждого из них достигает 100%, то получается белый цвет. Отсутствие всех трех цветов дает черный цвет.

Таким образом, любой цвет, который мы видим на экране, можно описать тремя числами, обозначающими яркость красной, зеленой и синей цветовых составляющих в цифровом диапазоне от 0 до 255. Графические программы позволяют комбинировать требуемый RGB-цвет из 256 оттенков красного, 256 оттенков зеленого и 256 оттенков синего. Итого получается 256 х 256 х 256 = 16,7 миллионов цветов.

Где используются изображения в режиме RGB?

Изображения в RGB используются для показа на экране монитора. При создании цветов, предназначенных для просмотра в браузерах, как основа используется та же цветовая модель RGB.

Полиграфическая цветовая модель CMYK

Что такое CMYK?

Система CMYK создана и используется для типографической печати. Аббревиатура CMYK означает названия основных красок, использующихся для четырехцветной печати: голубой (Сyan), пурпурный (Мagenta) и желтый (Yellow). Буквой К обозначают черную краску (BlacK), позволяющую добиться насыщенного черного цвета при печати. Используется последняя, а не первая буква слова, чтобы не путать Black и Blue.

Как формируется цвет CMYK?

Каждое из чисел, определяющее цвет в CMYK, представляет собой процент краски данного цвета, составляющей цветовую комбинацию. Например, для получения тёмно-оранжевого цвета следует смешать 30 % голубой краски, 45 % пурпурной краски, 80 % жёлтой краски и 5 % чёрной. Это можно обозначить следующим образом: (30/45/80/5).

Где используются изображения в режиме CMYK?

Область применения цветовой модели CMYK - полноцветная печать. Именно с этой моделью работает большинство устройств печати. Из-за несоответствия цветовых моделей часто возникает ситуация, когда цвет, который нужно напечатать, не может быть воспроизведен с помощью модели CMYK (например, золотой или серебряный).

В этом случае применяются краски Pantone (готовые смешанные краски множества цветов и оттенков), их также называют плашечными (поскольку эти краски не смешиваются при печати, а являются кроющими).

Все файлы, предназначенные для вывода в типографии, должны быть конвертированы в CMYK. Этот процесс называется цветоделением. RGB охватывает больший цветовой диапазон, чем CMYK, и это необходимо учитывать при создании изображений, которые впоследствии планируется печатать на принтере или в типографии.

При просмотре CMYK-изображения на экране монитора одни и те же цвета могут восприниматься немного иначе, чем при просмотре RGB-изображения. В модели CMYK невозможно отобразить очень яркие цвета модели RGB, модель RGB, в свою очередь, не способна передать темные густые оттенки модели CMYK, поскольку природа цвета разная.

Отображение цвета на экране монитора часто меняется и зависит от особенностей освещения, температуры монитора и цвета окружающих предметов. Кроме того, многие цвета, видимые в реальной жизни, не могут быть выведены при печати, не все цвета, отображаемые на экране, могут быть напечатаны, а некоторые цвета печати не видны на экране монитора.

Так, подготавливая логотип компании для публикации на сайте, мы используем RGB-модель. Подготавливая тот же логотип для печати в типографии (например, на визитках или фирменных бланках), мы используем CMYK-модель, и цвета этой модели на экране визуально могут немного отличаться от тех, которые мы видим в RGB. Не стоит этого опасаться: ведь на бумаге цвета логотипа будут максимально соответствовать тем цветам, которые мы видим на экране.

Под цветовой моделью (пространством) понимают математическое описание разнообразной цветовой гаммы (спектра), проще говоря, каждому определенному цвету присваивается цифровой разряд. Практически все модели реализованы на использовании трех цветов (красный, зеленый, синий) из этого следует, каждый основной цвет имеет свое числовое описание, все остальные цвета результат цифровой генерации основных.

Все цветовые модели различны по типу, где у каждого есть своя сфера применения: RGB; HSB; Lab; CMY; CMYK; YIQ; YCC. Далее все перечисленные выше модели делятся на группы по их устройству работы, так RGB - результат сложения цветов (аддитивный класс), CMY и CMYK противоположен первому и воплощается через вычитание цветов (субтрактивный класс), основываются на восприятии Lab, HSB, YIQ, YCC (перцепционный класс).

Базирование RGB состоит из красного, зеленого и синего, где при смешивании каждой пары основных цветов получаются дополнительные: желтый, голубой и пурпурный, при комбинации основных и дополнительных, можно добиться практически любого цветового оттенка.

Прямое предназначение этой модели - отображение видимого цветового диапазона на вашем мониторе. По умолчанию экран работает именно в этом режиме, который новичкам менять вообщем-то и не следует.

Каждой цветовой модели присущ свой цветовой охват, т.е. количественный объем цветов, который может различить человеческий глаз и отобразить устройство, допустим принтер.

Серьезная проблема RGB не большой цветовой охват и аппаратная зависимость (не совсем аналогичный показ цветов на разных в основном ЭЛТ-мониторах).

Существуют три подвида описываемой нами модели: sRGB имеет самый маленький цветовой охват и потому походит для тех, кто работает с web-графикой. Подойдет и для печати, правда на струйниках, для профессионального качества печати она не пригодна. Adobe RGB 1998 - получен из телестандартов, самый оптимальный вид при работе с графическими пакетами.

Последний Wide-Gamut RGB обладает самым огромным охватом и может быть применен к 48-разрядным работам. Монитор компьютера имеет другой принцип показа цветов, и по сему модель RGB (с ее 3 видами), честно сказать, для печати почти не пригодна.

А вот цветовые модели CMY и CMYK как раз призваны подготовить изображение и вывести его на печать. Использование CMY (голубой, пурпурный, желтый) оправдано лишь теоретически для черно-белых принтеров, где картридж возможно заменить на цветной.

Добавление черной краски позволило сделать модель CMYK (голубой, пурпурный, желтый, черный) полностью функциональной (но не совершенной) в цветной печати. Так же улучшилось качество вывода диапазона серых оттенков. Как и RGB, CMYK остается аппаратно зависимой, с недостаточным высоким цветовым диапазоном моделью.

При всех своих недостатках вполне достойно отображает необходимый для печати спектр, но вместе с тем может нести в себе неадекватную цветопередачу на выводе, поэтому некоторые изображения лучше изначально редактировать в ней. И еще, качество, получаемое при печати, напрямую зависит от качества бумаги!

В профессиональной полиграфии CMYK почти не используют, там применяют ее различные модификации, о которых мы упоминать не будем, достаточно сказать, что эти системы (Pantone, Trumatch и д.р.) интегрированы в серьезные графические программы. Это так, попутно, теперь давайте дальше.

С последней цветовой моделью HSB и ей подобными все просто, они основаны на элементарном восприятии яркости, тона и насыщенности, и потому аппаратно независимы, используя основной цветовой ввод RGB, прекрасно подходит для создания тонких спектральных эффектов.

Каждая рассмотренная модель имеет свой цветовой охват, а значит при некоторых видах печати, цветовая информация не может быть совершенно точно отображена на мониторе. Так же не калиброванный дисплей или уже старый не достаточно полно определяют цвета.

Вследствие этого не всегда будет правильным решением выбирать необходимый цвет на мониторе. Для правильного подбора цветов существуют специальные системы соответствия. Такие системы включают в себя эталонные наборы цветов (атласы), необходимые программы и устройства для калибровки вывода, а также т.н. палитры.

В каждый профессиональный графический редактор интегрированы заказные (электронные) таблицы цветов. Все они ориентированы на разные способы представления ваших работ, кстати, в Adobe они называются - каталог, в Corel - именно палитры. Думаю, нет большой необходимости заострять ваше внимание на знакомстве с каждой из них, тем более, что предназначены они в основном для дизайнеров и верстальщиков, сотрудничающих с полиграфическим производством.

Да еще некоторые развитые в этой области пользователи используют их при создании своих авторских работ и web - дизайна. В полиграфии используют многослойную, плашечную и комбинированную (Spot colors) способы печати. Именно многослойный способ основан на применении триадных красителей, это к тому, что все цветовые модели в графических пакетах работают с триадными цветами.

Если цветовая модель - это программное описание, то цветовой режим - это, так сказать, воплощение в жизнь, реализация. Первый режим однобитовой черно-белой графики (Black and White (1-bit)) или bitmap, самый простой из всех существующих. Для его отображения нужно всего по одному биту памяти на каждый белый и черный пиксел. Применим он только к черно-белым изображениям, а также в некоторых случаях вывода полноцветной картинки в черно-белую печать. У Black and White есть еще семь разновидностей, все они отличаются друг от друга различным программным представлением все той же однобитовой графики. Следующий режим Градации серого (Grayscale (8-bit)) представляет собой модернизированную версию предыдущего режима за счет увеличения цветового разрешения для каждого пиксела до 8-бит и поддержки до 256 оттенков серого цвета. Новые версии программ поддерживают и 16-битовую разрядность, для любителей творить в этом, по-своему интересном режиме. Изображение в Дуплексном (Duotone (8-bit)) цветовом режиме - это черно-белое изображение, улучшенное с помощью дополнительных цветов (от одного до четырех). Дуплексный цветовой режим состоит из 256 оттенков одной (тоновое), двух (двухтоновое), трех (трехтоновое) или четырех (четырехтоновое) красок.

Этот режим лучше использовать для того, чтобы придать цветность черно-белым изображениям, а так же создавать всякие эффекты с помощью различных параметров кривых тонирования. 24-разрядный режим естественного цвета RGB Color (24-bit) предназначен для обработки полноцветных (цветных) изображений с использованием 16,7 млн. цветов, и даже может использовать разрешение в 48-бит. RGB - модель работает с цветовыми и альфа-каналами, а также может поддерживать слои (объекты). Палитра (Paletted) или Индексированные цвета (Indexed Color) - это упрощенный аналог RGB Color, и потому большого реализма в ваших “трудах”, практикуя в этой модели, не ждите. Он просто не способен передать все цветовые и тоновые нюансы, но и у него существует своя ниша в графике. У этой модели есть подвиды.

Про режим CMYK Color говорить особо нечего, он полностью ориентирован только на печать. Цветовой режим Lab - это 24-разрядный цветовой режим, в котором все цвета состоят из трех каналов: яркость (L*- Luminosity), зеленый/пурпурный (a*- green/magenta), синий/желтый (b*- blue/yellow). В режим Lab можно преобразовать только полутоновые, RGB и CMYK- изображения.

Внутренняя модель пригодиться для печати на Postscript Level 2 принтерах, обработки PhotoCD, а также для работы с яркостью, резкостью без искажений других цветовых тонов, ну и ряда других нужных уже состоявшимся дизайнерам, вещей. И последний цветовой режим Многоканальный (Multichannel) нужен для отображения нескольких цветовых каналов, где каждый канал несет в себе 256 оттенков серого. Годится для преобразования рисунков на черно-белом принтере, работать можно только с изображением, имеющим больше одного канала. Режимы NTSC RGB и PAL RGB нужны, чтобы преобразовывать картинки в видеоформат.

В этой статье рассказывается о цветовых моделях, используемых программе Adobe Photoshop.

Мир, окружающий нас, полон всевозможных цветов и цветовых оттенков. С физической точки зрения цвет — это набор определённых длин волн, отражённых от предмета или пропущенных сквозь прозрачный предмет. Однако сейчас нас интересует вопрос не о том, что такое цвет, какова его физическая природа, а то, как вообще на практике можно получить тот или иной цвет. С развитием многих отраслей производства, в том числе, полиграфии, компьютерных технологий, появилась необходимость объективных способов описания и обработки цвета.

Цвета в природе редко являются простыми. Большинство цветов получаются смешением каких-либо других. Например, сочетание красного и синего даёт пурпурный цвет, синего и зелёного — голубой. Таким образом, путём смешения из небольшого количества простых цветов, можно получить множество (и при чём довольно большое) сложных (составных). Поэтому для описания цвета вводится понятие цветовой модели — как способа представления большого количества цветов посредством разложения его на простые составляющие.

Цветовой круг

Одной из таких моделей — является цветовой круг, о котором уже неоднократно упоминалось ранее. Он представлен на рисунке и называется большим кругом Освальда .

Наряду с кругом Освальда есть еще и круг Гете , в котором основные цвета расположены в углах равностороннего треугольника, а дополнительные — в углах перевернутого треугольника. Схема такого круга представлена ниже. Друг напротив друга расположены контрастные цвета.

Цветовой охват

Перед тем как перейти к рассмотрению цветовых моделей в отдельности, рассмотрим сначала понятие цветового охвата, который даст нам представление о том, насколько та или иная цветовая модель хорошо представляет цвета. Цветовым охватом называется максимальный диапазон цветов, который способно воспроизвести или зафиксировать устройство, или человеческий глаз.

Определённым цветовым охватом обладают электронно-лучевая трубка монитора или телевизора, цветовые модели, полиграфические краски и, конечно же, глаз человека. На рисунке 3 схематически показано сравнение цветовых охватов человеческого глаза, монитора и печатающей машины. Цветовой охват монитора примерно соответствует модели RGB в различных вариациях, печатающей машины — CMYK.

Итак, цвет в компьютерных технологиях, в типографии, во многих других отраслях производства, связанных с обработкой изображения, представляется в виде комбинации небольшого количества трёх составных. Такое представление называется цветовой моделью. Различные виды моделей имеют различные цветовые охваты. В этом и заключается их основные преимущества или недостатки. Отражённый и поглощаемый цвет описывается по-разному. Существует довольно большое количество цветовых моделей, но мы остановимся лишь на тех, которые наиболее часто используются в графических пакетах.

Цветовая модель RGB

Это одна из наиболее распространенных и часто используемых моделей. Она применяется в приборах, излучающих свет, таких, например, как мониторы, проекторы, телевизоры. Данная цветовая модель базируется на трех основных цветах: Red — красном, Green — зеленом и Blue — синем. Каждая из вышеперечисленных составляющих может варьироваться в пределах от 0 до 255, образовывая разные цвета и обеспечивая, таким образом, доступ ко всем 16 миллионам. При работе с графическим редактором Adobe Photoshop можно выбирать цвет, полагаясь не только на тот, что мы видим, но при необходимости, указывать и цифровое значение, тем самым иногда, особенно при цветокоррекции, контролируя процесс работы.

Данная цветовая модель является аддитивной, то есть при увеличении яркости отдельных составляющих будет увеличиваться и яркость результирующего цвета: если смешать все три цвета с максимальной интенсивностью, то результатом будет белый цвет; напротив, при отсутствии всех цветов получается черный.

Важно знать : числовые значения каналов в фотошоп означают яркость данного цвета. То есть, чем больше число, тем светлее выглядит канал. Чтобы лучше понять этот фундаментальный принцип, поэкспериментируйте с диалоговым окном выбора цвета, вводя в него разные значения одного канала при нулевых других.

Достоинствами данного режима является то, что он позволяет работать с 16 миллионами цветов при 8 битах на канал (224 цветов), а недостаток состоит в том, что при выводе изображения на печать часть из этих цветов теряется, в основном самые яркие и насыщенные, также возникает проблема с синими цветами.

Цветовая модель RGB считается самой легкой для освоения. Подавляющее большинство уроков для начинающих и пользователей среднего уровня написаны именно для нее. Но высокий уровень владения программой фотошоп предполагает знание основ и умение работать и в других цветовых моделях.

Цветовая модель CMYK

Гораздо ближе к цветовому охвату напечатанного изображения стоит цветовая модель CMYK.

В отличии от предыдущей цветовой модели RGB, данная модель использует так называемый субтрактивный синтез цветов. Она использует параметры отраженного света. То есть, если цвет объекта, к примеру, голубой (Cyan), это означает, что из белого цвета он поглощает красный цвет, иначе говоря, он вычитается из белого. Если цвет объекта пурпурный (Magenta), значит он поглощает зеленый цвет. И наконец, если цвет объекта желтый (Yellow), значит он поглощает голубой цвет. Если объект поглощает все цвета, мы видим его как черный. В модели CMYK черный цвет назван скелетным или ключевым (Key). Аббревиатура CMYK образована первыми буквами субтрактивных цветов.

Важно знать : каналы цветовой модели CMYK в программе фотошоп обозначают количество краски определенного цвета. То есть, чем выше числовое значение канала, тем он темнее. Это кардинальное отличие данной модели от предыдущей. Кроме того, раз CMYK содержит 4 канала, то появляется возможность более тонкой, даже ювелирной, цветокоррекции. Именно поэтому пользователи-профессионалы предпочитают выполнять цветокоррекцию в данной цветовой модели.

Подготовка изображения для печати в типографии или на принтере также требует знания и умения работать в CMYK, так как печатающие машины, в том числе и принтеры, создают изображения именно по такому принципу.

Недостатком СMYK является более узкий цветовой охват, поэтому часть цветов при преобразовании из другой цветовой модели безвозвратно теряется.

Цветовая модель Lab

Если с предыдущими цветовыми моделями сложностей обычно не возникает, то с моделью Lab ситуация совершенно иная. Понять взаимодействие цветовых каналов в ней немного сложнее. Дело в том, что в пространстве Lab цвет отделен от контраста. В одном канале L (яркость) содержится информация о деталях изображения и яркостном контрасте. Это практически черно-белая версия изображения. Канал а охватывает палитру от пурпурного цвета (127) до зеленого (-128). Канал b охватывает палитру от желтого цвета (127) до синего (-128). Нулевые значения a и b соответствуют нейтральным тонам, то есть всем оттенкам серого.

Lab называют также аппаратно-независимой моделью. Фактически, вся работа программы фотошоп основана именно на алгоритмах этой цветовой модели (хотя большинство об этом и не подозревает). Цветовой охват Lab соответствует всем видимым нами цветам, поэтому почти половина из них не воспроизводится при печати, а пятая часть не воспроизводится монитором.

Освоить работу в Lab непросто, но владение даже несколькими приемами работы в этом пространстве позволяет выполнять такую коррекцию, которую либо невозможно произвести в других моделях, либо результат, полученный в Lab за несколько секунд, достигается с большими затратами усилий и времени.

В заключении хочу добавить, что какое бы цветовое пространство вы не выбрали для работы, это само по себе ничего не значит. Чтобы добиться хорошего результата, нужно четко знать принципы образования цветов каждой модели, и, разумеется, основы работы со всеми инструментами программы фотошоп.

Желаю творческих успехов!
Евгений Карташов




Top