Осветительные приборы на основе светодиодов переменного тока находят свою нишу и, возможно, выйдут за ее пределы. Важные технические характеристики и параметры светодиодных ламп Светодиодные лампы постоянного или переменного тока

К дуговым лампам сверхвысокого давления (ЛСВД) относят лампы, работающие при давлении от 10 × 10 5 Па и выше. При высоких давлениях газа или пара металла при сильном сближении электродов сокращаются прикатодные и прианодные области разряда. Разряд концентрируется в узкой веретенообразной области между электродами, причем его яркость, особенно вблизи катода, достигает очень больших значений.

Такой дуговой разряд представляет собой незаменимый источник света для приборов проекторного и прожекторного типов, а также ряда специальных областей применения.

Использование в лампах паров ртути или инертного газа придает им ряд особенностей. Получение паров ртути при соответствующем давлении, как это видно из сделанного рассмотрения ртутных ламп высокого давления, в статье " ", достигается за счет дозировки ртути в колбе лампы. Разряд зажигается как ртутный низкого давления при температуре окружающей среды. Затем по мере разгорания и нагревания лампы давление возрастает. Рабочее давление определяется установившейся температурой колбы, при которой подводимая к лампе электрическая мощность становится равной мощности, рассеиваемой в окружающем пространстве излучением и теплоотдачей. Таким образом, первой особенностью ртутных ламп сверхвысокого давления является то, что они довольно легко зажигаются, но имеют сравнительно длительный период разгорания. При их погасании повторное зажигание может быть осуществлено, как правило, лишь после полного остывания. При наполнении ламп инертными газами разряд после зажигания практически мгновенно входит в установившийся режим. Зажигание разряда в газе при высоком давлении представляет определенные трудности и требует применения специальных зажигающих устройств. Однако после погасания лампа может быть зажжена вновь практически мгновенно.

Второй особенностью, отличающей ртутный разряд сверхвысокого давления с короткой дугой от соответствующих газовых, является его электрический режим. Вследствие большой разницы между градиентами потенциала в ртути и инертных газах при одинаковом давлении напряжение горения таких ламп существенно выше, чем с газовым наполнением, благодаря чему при равных мощностях ток последних значительно больше.

Третьим существенным различием является спектр излучения, который у ламп с газовым наполнением соответствует по спектральному составу дневному свету.

Отмеченные особенности привели к тому, что дуговые лампы часто используют для киносъемок и кинопроекции, в имитаторах солнечного излучения и других случаях, когда требуется правильная цветопередача.

Устройство ламп

Шаровая форма колбы ламп выбрана из условия обеспечения большой механической прочности при высоких давлениях и малых расстояниях между электродами (рисунок 1 и 2). Шаровая колба из кварцевого стекла имеет две диаметрально расположенные длинные цилиндрические ножки, в которых запаяны вводы, соединенные с электродами. Большая длина ножки необходима для удаления вывода от горячей колбы и предохранения его от окисления. В ртутных лампах некоторых типов имеется дополнительный электрод поджига в виде впаянной в колбу вольфрамовой проволоки.

Рисунок 1. Общий вид ртутно-кварцевых ламп сверхвысокого давления с короткой дугой различной мощности, Вт:
а - 50; б - 100; в - 250; г - 500; д - 1000

Рисунок 2. Общий вид ксеноновых шаровых ламп:
а - лампа постоянного тока мощностью 100 - 200 кВт; б - лампа переменного тока мощностью 1 кВт; в - лампа переменного тока мощностью 2 кВт; г - лампа постоянного тока мощностью 1 кВт

Конструкции электродов различны в зависимости от рода тока, который питает лампу. При работе на переменном токе, для которого предназначены ртутные лампы, оба электрода имеют одинаковую конструкцию (рисунок 3). Они отличаются от электродов трубчатых ламп той же мощности большей массивностью, обусловленной необходимостью снижения их температуры.

Рисунок 3. Электроды ртутных ламп переменного тока с короткой дугой:
а - для ламп мощностью до 1 кВт; б - для ламп мощностью до 10 кВт; в - сплошной электрод для мощных ламп; 1 - керн из торнированного вольфрама; 2 - покрывающая спираль из вольфрамовой проволоки; 3 - оксидная паста; 4 - газопоглотитель; 5 - основание из спеченного вольфрамового порошка с добавкой оксида тория; 6 - деталь из кованного вольфрама

При работе ламп на постоянном токе важное значение приобретает положение горения лампы, которое должно быть только вертикальным - анодом вверх для газовых ламп и предпочтительно анодом вниз - для ртутных ламп. Расположение анода внизу уменьшает устойчивость дуги, что важно, связано с противопотоком электронов, направленных вниз, и горячих газов, поднимающихся вверх. Верхнее положение анода вынуждает увеличивать его размеры, так как помимо его нагрева за счет большей мощности, рассеиваемой у анода, он дополнительно нагревается потоком горячих газов. У ртутных ламп анод располагают внизу в целях обеспечения более равномерного нагрева и соответственно сокращения времени разгорания.

Благодаря малому расстоянию между электродами ртутные шаровые лампы могут работать на переменном токе от сети напряжением 127 или 220 В. Рабочее давление паров ртути составляет в лампах мощностью 50 - 500 Вт соответственно (80 - 30) × 10 5 , а в лампах мощностью 1 - 3 кВт - (20 - 10) × 10 5 Па.

Лампы сверхвысокого давления с шаровой колбой чаще всего наполняют ксеноном из-за удобства его дозировки. Расстояние между электродами составляет у большинства ламп 3 - 6 мм. Давление ксенона в холодной лампе (1 - 5)× 10 5 Па для ламп мощностью от 50 Вт до 10 кВт. Такие давления делают лампы сверхвысокого давления взрывоопасными даже в нерабочем состоянии и требуют применения для их хранения специальных кожухов. Из-за сильной конвекции лампы могут работать только в вертикальном положении независимо от рода тока.

Излучение ламп

Высокие яркости ртутных шаровых ламп с короткой дугой получаются вследствие увеличения тока и стабилизации разряда у электродов, препятствующих расширению канала разряда. В зависимости от температуры рабочей части электродов и их конструкции можно получить различное распределение яркости. Когда температура электродов недостаточна для обеспечения тока дуги за счет термоэлектронной эмиссии, дуга стягивается у электродов в яркие светящиеся точки малых размеров и приобретает веретенообразную форму. Яркость вблизи электродов достигает 1000 Мкд/м² и более. Малые размеры этих областей приводят к тому, что их роль в общем потоке излучения ламп незначительна.

При стягивании разряда у электродов яркость растет с ростом давления и тока (мощности) и с уменьшением расстояния между электродами.

Если температура рабочей части электродов обеспечивает получение тока дуги за счет термоэлектронной эмиссии, то разряд как бы расползается по поверхности электродов. В этом случае яркость более равномерно распределяется вдоль разряда и по-прежнему возрастает с ростом тока и давления. Радиус канала разряда зависит от формы и конструкции рабочей части электродов и почти не зависит от расстояния между ними.

Световая отдача ламп возрастает с ростом их удельной мощности. При веретенообразной форме разряда световая отдача имеет максимум при определенном расстоянии между электродами.

Излучение ртутных шаровых ламп типа ДРШ имеет линейчатый спектр с сильно выраженным непрерывным фоном. Линии сильно расширены. Излучений с длинами волн короче 280 - 290 нм нет вообще, а благодаря фону доля красного излучения составляет 4 - 7 %.

Рисунок 4. Распределение яркости вдоль (1 ) и поперек (2 ) оси разряда ксеноновых ламп

Шнур разряда шаровых ксеноновых ламп постоянного тока при их работе в вертикальном положении анодом вверх имеет форму конуса, опирающегося своим острием на кончик катода и расширяющегося кверху. Около катода образуется маленькое катодное пятно очень высокой яркости. Распределение яркости в шнуре разряда остается одинаковым при изменении плотности тока разряда в весьма широких пределах, что дает возможность построить единые кривые распределения яркости вдоль и поперек разряда (рисунок 4). Яркость прямо пропорциональна мощности, приходящейся на единицу длины дугового разряда. Отношение светового потока и силы света в заданном направлении к длине дуги пропорционально отношению мощности к этой же длине.

Спектр излучения шаровых ксеноновых ламп сверхвысокого давления мало отличается от спектра излучения трубчатых ксеноновых ламп.

Мощные ксеноновые лампы имеют возрастающую вольт-амперную характеристику. Наклон характеристики растет с увеличением расстояния между электродами и давления. Анодно-катодное падение потенциала у ксеноновых ламп с короткой дугой составляет 9 - 10 В, причем на долю катода приходится 7 - 8 В.

Современные шаровые лампы сверхвысокого давления выпускают в различных конструктивных исполнениях, в том числе с разборными электродами и водяным охлаждением. Разработана конструкция специальной металлической разборной лампы-светильника типа ДКсРМ55000 и ряд других источников, применяемых в специальных установках.

А теперь давайте рассмотрим каждый из видов.

Лампа накаливания.

Лампа накаливания - это электрический источник света, который излучает световой поток в результате накала проводника из тугоплавкого металла (вольфрама).

Достоинства:

  • невысокая стоимость;
  • мгновенное зажигание при включении;
  • небольшие габаритные размеры;
  • широкий диапазон мощностей.

Недостатки:

  • большая яркость (негативно воздействует на зрение);
  • небольшой срок службы - до 1000 часов;
  • низкий КПД. (только десятая часть потребляемой лампой электрической энергии преобразуется в видимый световой поток) остальная энергия преобразуется в тепловую.

Технические характеристики

Лампы

накаливания

Срок службы источника света

1 000 часов

Световая эффективность

Выделение тепла при горении

Виброустойчивость

Устойчивость к перепадам

напряжения

Чувствительность к частым

включениям

Допустимая температура

окружающей среды

Перезажигание лампы

мгновенное

Пульсации излучения

мало заметные

Цветовая температура, К

Индекс цветопередачи

Специальная утилизация

не требуется

КПД светильника

Средняя стоимость

Люминесцентная лампа.

Люминесцентные лампы, называемые еще, лампами дневного света, представляют собой запаянную с обоих концов стеклянную трубку, изнутри покрытую тонким слоем люминофора.

Достоинства:

  • хорошая светоотдача и более высокий КПД (в сравнении с лампами накаливания);
  • разнообразие оттенков света;
  • рассеянный свет;
  • длительный срок службы (2?000 -20?000 часов в отличие от 1?000 у ламп накаливания), при соблюдении определенных условий.

Недостатки:

  • химическая опасность (ЛЛ содержат ртуть в количестве от 10 мг до 1 г);
  • неравномерный, неприятный для глаз, иногда вызывающий искажения цвета, освещённых предметов (существуют лампы с люминофором спектра, близкого к сплошному, но имеющие меньшую светоотдачу);
  • Со временем люминофор срабатывается, что приводит к изменению спектра, уменьшению светоотдачи и как следствие понижению КПД ЛЛ;
  • мерцание лампы с удвоенной частотой питающей сети;
  • наличие дополнительного приспособления для пуска лампы — пускорегулирующего аппарата (громоздкий дроссель с ненадёжным стартером);
  • очень низкий коэффициент мощности ламп — такие лампы являются неудачной для электросети нагрузкой (проблема решается с применением вспомогательных устройств).

Технические

характеристики

Люминесцентные

лампы

Срок службы источника

8-12 000 часов

Световая эффективность

Выделение тепла при

Виброустойчивость

Положение горения

горизонтальное

Электромагнитный шум

Допустимая температура

окружающей среды

Перезажигание лампы

мгновенное

Пульсации излучения

Цветовая температура, К

Индекс цветопередачи

Специальная утилизация

требуется

КПД светильника

Средняя стоимость

Галогенные лампы.

Галогенная лампа - это лампа накаливания, в колбу которой закачан буферный газ: пары галогенов (брома или иода). Данная особенность повышает срок службы лампы до 2000—4000 часов, а так же позволяет повысить температуру спирали.

Достоинства:

  • выпускаются в богатом ассортименте;
  • позволяют лучше управлять световым пучком и направлять eгo c большей точностью;
  • компактны.

Недостатки:

  • сильный нагрев;
  • сравнительно недолговечны, примерно 2000-4000 часов;
  • нельзя дотрагиваться к поверхности стекла лампы пальцами (перегорает).

Технические

характеристики

Галогенные

лампы

накаливания

Срок службы

источника света

2 000 часов

Световая

эффективность

Выделение тепла

при горении

Виброустойчивость

Устойчивость

к перепадам напряжения

Чувствительность

к частым включениям

Допустимая температура

окружающей среды

Перезажигание лампы

мгновенное

Пульсации излучения

мало заметные

Цветовая температура, К

Индекс цветопередачи

Специальная утилизация

не требуется

КПД светильника

Средняя стоимость

Светодиодные лампы.

В светод-иодных лампах или светильниках (в обиходе — «ледовых», от аббревиатуры LED, Light Emitting Diode) в качестве источника света используются светодиоды, данный вид светильников применяются для промышленного, бытового и уличного освещения.

Достоинства:

  • самый большой срок службы среди всех ламп (от 10 000 до 100 000 часов);
  • низкое энергопотребление;
  • устойчивость к вибрации и механическим ударам;
  • безотказная работа при различных температурах от - 60 до +60?С;
  • светодиодные лампы изготавливаются на любое напряжение, нет необходимости установки дополнительных балластных резисторов;
  • обладает "чистым цветом", что важно в световом дизайне.

Недостатки:

  • самый главный недостаток - высокая цена;
  • ограничена сфера применения, в некоторых случаях лампы накаливания нельзя заменить светодиодными.

Технические

характеристики

Светодиодные

лампы

Срок службы источника

50 000 часов

Световая эффективность

80 - 100 Лм/Вт

Выделение тепла при

Виброустойчивость

Устойчивость к перепадам

напряжения

Чувствительность к частым

включениям

Допустимая температура

окружающей среды

Перезажигание лампы

мгновенное

Пульсации излучения

Цветовая температура, К

Индекс цветопередачи

Специальная утилизация

не требуется

КПД светильника

Средняя стоимость

Металлогалогенные лампы.

Металлогалогенные лампы (МГЛ / HMI) являются одним из видов газоразрядных ламп (ГРЛ) высокого давления. От других ГРЛ отличаются тем, что для коррекции спектральной характеристики дугового разряда в парах ртути, в горелку МГЛ дозируются специальные излучающие добавки (ИД), представляющие собой галогениды некоторых металлов.

Достоинства:

  • светоотдача в 10 раз больше, чем у ламп накаливания.
  • компактный источник света
  • надежная работа при низких температурах и различных условиях эксплуатации;
  • возможность применять лампы разной цветности.

Недостатки:

  • время разгорания 30-50 секунд, после отключения не включаются пока не остынут;
  • высокая стоимость.

Технические

характеристики

Металлогалогенные
лампы

Срок службы источника

10 000 часов

Световая эффективность

Звуковой шум

Положение горения

определенное

Устойчивость к перепадам

напряжения

Чувствительность к частым

включениям

Допустимая температура

окружающей среды

Перезажигание лампы

Пульсации излучения

мало заметные

Цветовая температура, К

Индекс цветопередачи

Специальная утилизация

требуется

КПД светильника

Средняя стоимость

Дуговые ртутные люминесцентные лампы.

Лампы ДРЛ (Дуговые Ртутно Люминесцентные) имеют очень высокую световую отдачу (до 60 лм/Вт) и относятся к ртутным разрядным лампам высокого давления с исправленной цветностью. ДРЛ лампа состоит из кварцевой трубки (горелки), находящейся в стеклянной колбе, внутренняя поверхность которой покрыта тонким слоем люминофора, он в свою очередь преобразовывает ультрафиолетовое излучение, возникающее в следствии дугового разряда в трубке, в видимый свет, который может улавливать человеческий глаз.

Достоинства:

  • хорошая световая отдача (до 55 лм/Вт);
  • большой срок службы (10000 ч);
  • компактность;
  • неприхотливость к условиям окружающей среды (кроме сверхнизких температур).

Недостатки:

  • преобладание в спектре лучей сине-зеленой части, ведущее к плохой цветопередаче, что исключает применение ламп, когда объектами которые необходимо осветить, являются лица людей или окрашенные поверхности;
  • возможность работы только на переменном токе;
  • необходимость включения через балластный дроссель;
  • длительность разгорания при включении (около7 минут) и долгое начало повторного зажигания (около 10 мин).
  • пульсации светового потока, большие чем у люминесцентных ламп;
  • уменьшение светового потока к концу службы.

Технические

характеристики

Дуговые ртутные
люминесцентные лампы

Срок службы источника

до 10 000 часов

Световая эффективность

Положение горения

Звуковой шум

Электромагнитный шум

Чувствительность к частым

включениям

Допустимая температура

окружающей среды

Пульсации излучения

заметные

Цветовая температура, К

Индекс цветопередачи

Специальная утилизация

требуется

КПД светильника

Средняя стоимость

Энергосберегающие лампы.

Энергосберегающие лампы работают по тому же принципу, что и обычные люминесцентные лампы, с тем же принципом преобразования электрической энергии в световую. Зачастую термин «энергосберегающая лампа» обычно применяют к компактной люминесцентной лампе, которую можно поставить на место обычной лампы накаливания без всяких переделок.

Достоинства:

  • экономичны;
  • долгий срок службы;
  • низкая теплоотдача;
  • большая светоотдача;
  • выбор желаемого цвета.

Недостатки:

  • высокая цена;
  • экологически вредная.

Газоразрядные лампы.

Газоразрядная лампа - это источник света, излучающий энергию в видимом диапазоне. Свечение в лампе создается непосредственно или опосредованно от электрического разряда в газе, парах металла или в смеси пара и газа.

Достоинства:

  • высокий КПД;
  • длительный срок службы по сравнению с лампами накаливания;
  • экономичность;
  • высокая степень цветопередачи;
  • хорошая стабильность цвета;
  • хорошие характеристики светового потока в течение всего срока службы.

Недостатки:

  • высокая стоимость;
  • необходимость пускорегулирующей аппаратуры;
  • долгий выход на рабочий режим;
  • высокая чувствительность;
  • наличие токсичных компонентов и как следствие необходимость в инфраструктуре по сбору и утилизации;
  • невозможность работы на любом роде тока;
  • невозможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт);
  • наличие мерцания и гудения при работе на переменном токе промышленной частоты;
  • прерывистый спектр излучения;
  • непривычный в быту спектр.

Неоновые лампы.

Неоновая лампа - это газоразрядная лампа, состоит из баллона, заполненного разреженным инертным газом (неоном), и укрепленных внутри баллона двух дисковых или цилиндрических электродов. В отличие от люминесцентных ламп неоновые значительно долговечнее, так как не имеют внутри нитей накаливания, создающих электронную эмиссию.

Достоинства:

  • броский световой эффект;
  • высокий срок службы (от 80000 часов);
  • возможность изготовления ламп различных форм;
  • не нагреваются, следовательно - пожаробезопасны;
  • возможность широкого выбора любого нужного оттенка белого свечения;
  • возможность управления яркостью газосветной лампы;
  • бесшумность работы.

Недостатки:

  • содержат вредные вещества;
  • требуют высокого напряжения в сети, необходимость высоковольтного трансформатора;
  • хрупкость;
  • высокая стоимость.

Ксеноновые лампы.

Ксеноновая лампа - это источник света, представляющий собой устройство состоящее из колбы с газом (ксеноном) в котором светится электрическая дуга, которая возникает вследствие подачи напряжения на электроды лампы. Ксеноновая лампа дает яркий белый свет, близкий по спектру к дневному. Ксеноновые лампы обеспечивают интенсивный свет, яркость которого в 3 раза выше света чем у галогеновых ламп.

Достоинства:

  • интенсивный яркий свет;
  • надежность и высокий срок службы (3000 часов);
  • высокая экономичность;
  • малый нагрев.

Недостатки:

  • высокая стоимость;
  • необходимость применения «блока розжига»;

Натриевые лампы.

Натриевые лампы высокого давления (ДНаТ) имеют самую высокую светоотдачу среди всех известных газоразрядных ламп (100 - 130 лм/Вт), но плохую цветопередачу (Ra = 20-30), и характеризуются минимальным снижением светового потока при длительном сроке службы.

  • со временем лампы теряют яркость, тускнеют и неравномерно освещают дорогу
  • ослепление встречных водителей и пешеходов.

Инфракрасные лампы.

Лампа инфракрасная - это прибор, по принципу действия напоминает лампу накаливания. Колба инфракрасной лампы (обычно красного, реже - синего стекла) участвует в формировании спектра излучения, и увеличивает общий КПД лампы. Проходя через цветное стекло, оставшаяся в излучении доля видимого света «окрашивается» в инфракрасные цвета.

Инфракрасные лампы подразделяются на:

  • медицинские инфракрасные лампы;
  • инфракрасные лампы для обогрева;
  • инфракрасные лампы для сушки;

Керосиновые лампы.

Керосиновая лампа - это светильник, который работает на основе сгорания керосина - продукта переработки нефти. Принцип действия лампы прост, в ёмкость заливается керосин, в эту же емкость опускается фитиль. Другой конец фитиля зажимается поднимающим устройством в горелке, которая устроена таким образом, чтобы воздух проникал снизу.

Кварцевая лампа.

Кварцевая лампа - это ртутная газоразрядная лампа, имеет колбу из кварцевого стекла, предназначена для получения ультрафиолетового излучения. Применяют подобные лампы для обеззараживания различных помещений, предметов, продуктов питания.

Ультрафиолетовые лампы.

Ультрафиолетовая лампа работает по тому же принципу, что и обычная люминесцентная лампа: ультрафиолетовое излучение образуется в колбе вследствие взаимодействия паров ртути и электромагнитных разрядов. Газоразрядная трубка изготавливается из специального кварцевого или увиолевого стекол, имеющих способность пропускать УФ-лучи.

Снижение розничных цен на светодиодные лампы привело к резкому росту их продаж. Однако ситуация с выбором качественного товара для многих по-прежнему остаётся тупиковой. Если купить лампочку накаливания было просто, с появлением КЛЛ задача не значительно усложнилась за счет более широкого ассортимента и оттенков излучаемого света. Параметры светодиодных ламп имеют значительно больше пунктов, чем у лампочек предыдущих поколений.

Но не стоит пугаться. Чтобы купить хорошую светодиодную лампу, углублённых познаний товара не понадобится. Достаточно один раз разобраться с основными параметрами, чтобы потом легко ориентироваться среди чисел, указанных на упаковке. Так что же нужно знать покупателю о светодиодных лампах, и на какие технические характеристики обратить внимание перед покупкой?

Основные характеристики

Следуя пословице: «Встречают по одёжке…» достаточно взять в руки коробку с лампочкой, чтобы ознакомиться с её основными техническими характеристиками. Обратить внимание следует не на крупные яркие цифры, а на напечатанное мелким шрифтом описание из 10 и более позиций.

Световой поток

Во времена, когда лампа накаливания была источником света №1, понятие светового потока мало кого интересовало. Яркость свечения определялась номинальной мощностью лампочки. С появлением светодиодов мощность потребления источников света снизилась в разы, а КПД вырос. За счет этого появилась экономия, о которой так часто напоминают рекламные ролики.

Световой поток (Ф, лм или lm) – величина, которая указывает на количество световой энергии, отдаваемой осветительным прибором. Опираясь на значение светового потока можно легко подобрать замену существующей лампочке со спиралью. Для этого можно воспользоваться нижеприведенной таблицей соответствия. Наравне со световым потоком часто можно встретить понятие «световая отдача». Её определяют как отношение светового потока к потребляемой мощности и измеряют в лм/Вт. Данная характеристика более полно отражает эффективность источника излучения. Например, светодиодная лампа нейтрального света мощностью 10 Вт излучает световой поток примерно в 900-950 лм. Значит, её светоотдача будет равна 90-95 лм/Вт. Это примерно в 7,5 раз больше, чем у аналога со спиралью в 75 Вт с таким же световым потоком.

Бывает, что после замены лампы накаливания на светодиодную её яркость оказывается ниже заявленной. Первая причина такого явления – установка дешёвых китайских светодиодов. Вторая – заниженная мощность потребления. Эти обе причины говорят о товаре низкого качества.

Также величина светового потока зависит от цветовой температуры. В случае со светодиодами принято указывать световой поток для нейтрального света (4500°K). Чем выше цветовая температура, тем больше световой поток и наоборот. Разница в светоотдаче между однотипными светодиодными лампами теплого (2700°K) и холодного (5300°K) свечения может достигать 20%.

Мощность

Мощность потребления светодиодной лампы (P, Вт) – вторая по важности техническая характеристика, которая показывает на то, сколько электроэнергии потребляет светодиодная лампа за 1 час. Суммарное энергопотребление складывается из мощности светодиодов и мощности драйвера. Наиболее востребованы в наше время led осветительные приборы мощностью 5-13 Вт, что соответствует 40-100 ваттным лампам с нитью накала.

Качественные драйвера импульсного типа потребляют не более 10% энергии от общей мощности.

В качестве рекламы производители часто пользуются понятием «Эквивалентная мощность», которая выражается в надписи на упаковке наподобие 10 Вт=75 Вт. Это означает, что светодиодную лампу в 10 Вт можно вкрутить вместо обычной «груши» в 75 Вт, не потеряв при этом в яркости. Разнице в 7-8 раз можно верить. Но если на коробке красуется надпись вроде 6 Вт=60 Вт, то зачастую это не более чем рекламный трюк, рассчитанный на рядового покупателя. Это не значит, что изделие плохого качества, но реальная светоотдача будет, скорее всего, совпадать с лампой накаливания не в 60, а гораздо меньше.

Напряжение и частота питания

Напряжение питания (U, В) принято указывать на коробке в виде диапазона, в пределах которого производитель гарантирует нормальную работу изделия. Например, параметр 176–264В свидетельствует о том, что лампочка уверенно справится с любыми перепадами сетевого напряжения без существенной потери яркости.

Как правило, светодиодная лампа со встроенным токовым драйвером имеет широкий диапазон входных напряжений.

Если источник питания не содержит качественного стабилизатора, то перепады напряжения в сети питания будут сильно сказываться на светоотдаче и влиять на качество освещения. В России наибольшее распространение имеют led-лампы с питанием от сети переменного тока 230В частотой 50/60 Гц и от сети постоянного тока 12В.

Тип цоколя

Размер цоколя необходимо знать для того, чтобы подобрать лампочку в соответствии с существующим патроном в светильнике. Основная масса светодиодных ламп выпускается под резьбовой цоколь Е14 и Е27, которые являются стандартом для настенных, настольных и потолочных светильников советского образца. Не редкость светодиодные лампы с цоколем GU4, GU5.3, которые пришли на смену галогенным лампочкам, установленным в точечных светильниках и китайских люстрах с пультом дистанционного управления.

Цветовая температура

(TC, °K) указывает на оттенок излучаемого света. Применительно к светодиодным лампам белого свечения всю шкалу условно делят на три части: с тёплым, нейтральным и холодным светом. При выборе следует учесть, что тёплые тона (2700-3500°K) успокаивают и располагают к уюту, а холодные (от 5300°K) бодрят и возбуждают нервную систему.
В связи с этим для дома рекомендуется использовать тёплого свечения, а на кухне, в ванной и для работы – нейтрального. Светильники на светодиодах с TC≥5300°K пригодны только для выполнения специфической работы и в качестве аварийного освещения.

Угол рассеивания

По углу рассеивания можно судить о распространении светового потока в пространстве. Данный показатель зависит от конструкции рассеивателя и расположения светодиодов. Нормой для современных ламп широкого применения является значение ≥210°. Для эффективной работы с мелкими деталями лучше купить лампу с углом рассеивания 120° и установить её в настольный светильник.

Возможность диммирования

Возможность диммирования (управление яркостью освещения) светодиодной лампы подразумевает её корректную работу от светорегулятора (диммера). Диммируемые лампы стоят дороже, так как их электронный блок имеет более сложное устройство. Обычная led-лампочка при подключении к регулятору света не станет работать или будет моргать.

Коэффициент пульсации

(Кп) не всегда приводится в перечне характеристик, несмотря на то, что имеет первостепенное значение и оказывает влияние на здоровье. Необходимость в измерении данного параметра возникла ввиду наличия в лампе электронного блока и высокого отклика светодиодов. Низкокачественные источники питания не способны идеально сгладить пульсации выходного сигнала, в результате чего светодиоды начинают мерцать с некоторой частотой.

Коэффициент пульсации светодиодных ламп с питанием от сети стабильного постоянного тока равен нулю.

Наиболее качественными принято считать светодиодные лампы с Кп ниже 20%. В моделях с драйвером тока коэффициент пульсаций не превышает 1%. Определить данный параметр на практике несложно с помощью осциллографа. Для этого нужно измерить амплитуду переменной составляющей сигнала на светодиодах и разделить её на напряжение, измеренное на выходе блока питания.

По частоте переменного сигнала в нагрузке можно определить тип применённого драйвера.

Диапазон рабочих температур

Следует внимательно отнестись к данной характеристике, если предполагается эксплуатировать светодиодную лампочку в нестандартных условиях: на улице, в производственных цехах. Некоторые модели способны корректно работать только в узком диапазоне температур.

Индекс цветопередачи

С помощью индекса цветопередачи (CRI или Ra) можно оценить, насколько естественным виден цвет предметов, освещённых светодиодной лампой. Хорошим считается Ra≥70.

Степень защиты от влаги и пыли

Этот параметр выражается в виде обозначения IPXX, где ХХ – две цифры, указывающие на степень защиты от твёрдых предметов и воды. Его можно не обнаружить в перечне характеристик, если лампа предназначена исключительно для использования внутри помещений.

Дополнительные параметры

Срок службы изделия

Срок службы – весьма абстрактная характеристика светодиодной лампы. Дело в том, что под сроком службы производитель понимает общее время работы светодиодов, а не лампы. При этом наработка на отказ остальных деталей схемы остаётся под большим сомнением. Кроме того, на время работы влияет качество сборки корпуса и пайки радиоэлементов. К тому же не один производитель, в связи с долгим сроком службы, не проводит полноценных тестов по деградации светодиодов в лампе. Так что заявленные 30 тыс. часов и более – это теоретический показатель, а не реальный параметр.

Тип колбы

Несмотря на то что тип колбы для многих не является критичным техническим параметром, во многих моделях его указывают в первой строчке. Обычно тип и маркировка колбы выражается в цифробуквенном коде.

Масса

Весом изделия редко кто интересуется в момент покупки, но для некоторых облегчённых светильников он имеет значение.

Габариты

Сколько производителей – столько и корпусов, отличающихся внешним видом и габаритами. Например, светодиодные лампы мощностью 10 Вт от разных изготовителей могут отличаться в длину и ширину более чем на 1 см. Выбирая новую led лампу для освещения, не стоит забывать о том, что она должна поместиться в уже имеющийся светильник.

Рынок светодиодной продукции продолжает динамично развиваться, вследствие чего характеристики ламп изменяются и совершенствуются. Надеемся, что в ближайшее время применительно к светодиодным лампам будут выработаны стандарты качества, которые упростят покупателю задачу с выбором. Пока же собственные знания – это главная опора при выборе и покупке.

Читайте так же

На первый взгляд кажется, что светодиодная лампа – это обычный источник света. Чтобы она работала, ее достаточно вкрутить в патрон и готово. На самом деле это не так. Такие лампы имеют сложное устройство и бывают разных видов. Чтобы они бесперебойно работали, надо знать их технические характеристики и по ним подбирать подходящую модель.

Светодиодные лампы классифицируются по нескольким признакам, указывающим на их технические характеристики. В частности – это ее назначение, конструкция и тип цоколя. Чтобы иметь лучшее представление о разновидностях, давайте рассмотрим каждый признак отдельно.

Назначение

По назначению светодиодные лампы можно разделить на следующие виды:

  • для освещения жилой постройки. Часто дома используется с цоколем E27, E14;
  • модели, используемые в дизайнерской подсветке;
  • для обустройства наружной освещенности. Это может быть подсветка архитектурных строений или элементов ландшафтного дизайна;
  • для освещенности участка во взрывоопасной среде;
  • модели уличного освещения;
  • много светодиодных ламп используется в прожекторах. Они применяются для освещенности промышленных территорий и зданий.

Конструкция

По типу конструкции светодиодные лампы разделяют на следующие виды:

  • модели общего назначения используются для освещенности офисных и жилых помещений;
  • светодиодная лампа с направленным потоком света устанавливается в прожекторах. Их используют для подсветки элементов архитектурных строений и освещения ландшафта;
  • заменить люминесцентные источники света призваны линейные модели. Эти светодиодные лампы изготовлены в форме трубки и подходят по типу цоколя, что дает возможность быстро заменить один источник света на другой.

Цоколь

У светодиодных ламп, в зависимости от их назначения, существуют разные типы цоколей. В основном встречаются такие разновидности:

  1. Стандартные цоколи с буквенным обозначением «Е» указывают на резьбовой тип. Цифры обозначают диаметр цоколя, например, Е27. Резьбовой цоколь светодиодных ламп идентичен цоколю традиционных источников света с нитью накала. Это легко позволяет их заменять дома в люстрах, настольных моделях, а также в приборах уличного освещения, установленных на столбах. В использовании дома распространены лампы со стандартным цоколем, имеющим обозначение Е27 или Е14. Другое название у Е14 – миньон. Уличное освещение с опор требует использование более мощных светодиодных ламп. Большой размер колбы естественно имеет больший цоколь – Е40.
  2. Разъем GU10 состоит из 2 штырьков с утолщением на концах. Конструкция цоколя идентична разъемам стартеров, используемых в старых источниках дневного света (газоразрядных). Светодиодная лампа с таким цоколем имеет поворотный тип крепления в патроне. Буквенное обозначение разъема указывает, что G – штырьковый тип, U – наличие утолщения концов. Цифра обозначает расстояние между штырьками. В данном случае – это 10 мм. Штырьковый цоколь отличается электробезопасностью и простотой установки. Лампа со штырьковым разъемом в основном предназначена для потолочных светильников с рефлектором.
  3. Аналогичный разъем GU5.3 имеет тот же штырьковый тип с расстоянием между элементами 5,3 мм. Этот тип разъема для светодиодных ламп запустили в производство с увеличением спроса на галогенные источники света с таким же разъемом, устанавливаемые в потолочных приборах освещения. Модели с таким цоколем подходят для точечного освещения, устанавливаемого в подвесные потолки. Цоколь легко вставляется в патрон и является таким же электробезопасным.
  4. У линейных светодиодных изделий в форме трубы установлен цоколь G13. Это тот же штырьковый тип с расстоянием между элементами 13 мм. Такие модели трубчатой формы применяют для замены люминесцентных источников света. Их используют для улучшения освещенности больших площадей, а также устанавливают в помещениях с высокими потолками большой протяженности.
  5. Цоколь GX53 имеет расстояние между штыревыми элементами 53 мм. Лампы с таким разъемом применяют в накладных и встраиваемых светильниках для мебели и потолка.

Таблица типов цоколей

Излучаемый свет

Свет, который излучает светодиодная лампа, также относится к признакам классификации изделия и указывает его технические характеристики.

Световой поток

Одним из важных параметров, который определяет технические характеристики источника света, является световой поток, то есть мощность его излучения и эффективность. Единицей измерения потока света служит люмен. Второй параметр – эффективность, определяет отношение мощности первого параметра к потребляемой мощности источника света Лм/Вт. В принципе, этот показатель отражает экономичность.

Чтобы сравнить светимость светодиодов с обычной нитью накала надо учесть, что источник света мощностью, например, 40 Вт создает световой поток около 400 Лм. Существуют таблицы для сравнения светового потока разных источников света. Из них можно выяснить, что у светодиодных ламп световой поток в десять раз мощнее, чем у обычного источника света.

Покупая для дома лампу, надо изучать маркировку. Добросовестные производители указывают светоотдачу или мощность светового потока. Но, чаще всего, в маркировке встречаются сравнительные характеристики светодиодного источника света по отношению к аналогу с нитью накала. Особенно такие обозначения больше всего присутствуют на упаковке китайских изделий. Вообще, такую маркировку тоже можно считать верной, хотя она больше несет рекламный характер.

Надо подытожить, что со временем светодиоды вырабатывают свой ресурс, уменьшая мощность светового потока. Это указывает на их недостатки, хотя вечного ничего нет.

Светодиодные лампы отличаются от традиционных источников света с нитью накала цветопередачей. Нить накала создает один цвет теплого оттенка – желтый. Светодиоды способны излучать свет широкого диапазона цветовой гаммы, который определяется шкалой температуры цвета.

За основу при построении шкалы взят цвет раскаленного металла. Единицей измерения служат градусы Кельвина. Например, желтый цвет раскаленного металла имеет температуру 2700 о К. Температура дневного освещения колеблется в пределах от 4500 до 6000 о К. Хотя белый свет у нижней границы имеет желтоватый оттенок. Все цвета с температурой выше 6500 о К относятся к холодному свету с голубым оттенком. Выбирая для помещения светодиодный источник света, на такие характеристики надо обращать особое внимание. Кроме того, что при освещенности помещения в разном цвете показывается внутренний вид его убранства, некоторые оттенки могут негативно влиять на зрение человека. Усталость глаз подчеркивает недостатки LED освещения, но это легко исправить правильным подбором цветопередачи.

Светораспределение

Если обычные источники света создают максимум освещенности пространства вокруг себя, то светодиоды имеют направление светового потока в одну сторону. Они излучают свет впереди себя. Такое светораспределение подойдет для ночника или другого прибора освещения, от которого требуется направленный пучок света.

Чтобы светодиоды производили равномерную освещенность пространства, их комплектуют рассеивателем. Также равномерного распределения света добиваются путем установки светодиодов на плоскости под разными углами. Все эти методы позволяют создать равномерное распределение света на определенную площадь. Например, светодиодные лампы могут иметь распространение светового потока под углом 60 или 120 о.

Цветопередача

Существует индекс цветопередачи, обозначаемый Ra. Показатель отвечает за естественность цвета предмета, попадающего в поле освещенности определенного источника света. Эталоном индекса является солнечный свет, приравниваемый к показателю 100. Светодиодные лампы имеют индекс 80-90 Ra. Для сравнения, обычная лампа накаливания обладает показателем не менее 90 Ra. Принято считать, что индекс, превышающий 80 Ra, является высоким.

Регулируемые лампы

Светодиодные лампы, так же как и источники света с нитью накала, поддаются регулировке яркости свечения. Управляет свечением светодиодов регулирующий прибор – диммер. Это указывает на достоинства светодиодных ламп, в отличие от их экономных собратьев – люминесцентных источников света. С помощью регулятора можно добиться освещенности помещения, наиболее благоприятного для зрения.

Работа регулятора заключается в формировании импульсов. От их частоты зависит яркость свечения светодиода. Но не все светодиодные лампы являются диммируемыми. Ограничить регулировку может встроенный в лампу драйвер для светодиода, работающий на определенной частоте. Выбирая источник света для дома, надо тщательно прочитать технические характеристики изделия, где на упаковке будет указано, является ли светодиодная лампа диммируемой.

Мощность и рабочее напряжение ламп

Читая технические характеристики на упаковке изделия, многие в первую очередь обращают внимание на такие показатели, как потребляемая мощность и рабочее напряжение. Другими словами, человек желает узнать, какой ток необходим лампе для нормальной ее работы и сколько при этом она израсходует электроэнергии.

Показатель потребляемой мощности играет важную роль в расчете общего потребления освещения дома или улицы. Светодиодные лампы производят разной мощности, в зависимости от их назначения. Например, для дома достаточно будет приобрести изделия мощностью от 3 до 20 Вт. Для обустройства уличного освещения понадобятся более мощные лампы, например, около 25 Вт. Но главное то, что по потребляемой мощности определить яркость свечения не удастся.

Данные для замены ламп накаливания на светодиодные

Другим важным показателем является рабочее напряжение. Источник тока бывает постоянный или переменный. Светодиодам требуется постоянное напряжение 12 V. За их работу отвечает драйвер, который преобразует напряжение сети до необходимых норм. С их помощью светодиодные лампы могут работать от переменного тока напряжением 220 V. Существуют модели, работающие от постоянного и переменного тока напряжением 12–24V. Эти показатели надо учитывать при выборе ламп. Иначе изделие с несоответствующими показателями при подключении к сети откажется работать или просто перегорит.

Маркировка LED ламп

Если взять упаковку любого изделия, то на ней есть маркировка, отражающая все его технические данные. Она схожа с маркировкой экономок и включает следующие параметры:


Правильно подобранный по всем параметрам светодиодный источник света при соблюдении всех требований завода-изготовителя гарантированно прослужит долгие годы. Сейчас основные недостатки изделий заключаются только в высокой стоимости, но со временем они станут доступны всем потребителям.

Лампа накаливания источник света с излучателем в виде проволоки (нити или спирали) из тугоплавкого металла (обычно вольфрама), накаливаемой электрическим током до температуры 2 5003 300 К, близкой к температуре плавления вольфрама (рис. 5). Световая отдача лампы накаливания 1035 лм/Вт; срок службы до 2 тыс. ч. Этот вид ламп все еще преобладает и производится в широком ассортименте, несмотря на имеющиеся в производстве более экономичные источники света. По конструкции лампы накаливания бывают вакуумные (НВ), газонаполненные (НГ), биспиральные (НБ), биспиральные с криптоно-ксеноновым наполнением (НБК). Имеются также зеркальные лампы , являющиеся лампами-светильниками.

Все большее распространение получают галогенные лампы накаливания. Наличие в колбе лампы паров галогенов (йода или брома), уменьшающих количество испарения вольфрама, позволило повысить температуру накала вольфрамовой нити, в результате чего световая отдача увеличивается до 40 лм/Вт и спектр излучаемого света приближается к естественному. Кроме того пары вольфрама, испаряющегося с нити накала, соединяются с йодом и вновь оседают на нить, препятствуя ее истощению. Срок службы этих ламп увеличился до 35 тыс. ч. Двухцокольные линейные галогенные лампы (рис. 5, г ) используются для освещения широких поверхностей. Благодаря применению упрочненных держателей, нити накала обладают высокой устойчивостью к механическим воздействиям. Лампы совмещают в себе высокую светоотдачу, отличный коэффициент цветопередачи, постоянный световой поток в течение всего срока службы, мгновенное перезажигание, возможности регулировки яркости.

Преимущества ламп накаливания:

– малая стоимость;

– отсутствие необходимости пускорегулирующей аппаратуры, при включении зажигаются практически мгновенно;

– возможность работы как на постоянном токе (любой полярности), так и на переменном;

– возможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт);

– отсутствие токсичных компонентов и как следствие отсутствие необходимости инфраструктуры по сбору и утилизации;

– отсутствие мерцания и гудения при работе на переменном токе;

– непрерывный спектр излучения;

– устойчивость к электромагнитному импульсу;

– возможность использования регуляторов яркости;

– независимость работы от условий окружающей среды и температуры;

– световой поток к концу срока службы снижается незначительно (на 15 %).

Недостатки:

– низкая световая отдача (в три–шесть раз меньше, чем у газоразрядных ламп);

– относительно малый срок службы;

– зависимость световой отдачи и срока службы от напряжения;

– цветовая температура лежит в пределах 2 300–2 900 K (преобладают желтые и красные лучи, что искажает цветопередачу, поэтому их не применяют при работах, требующих различения цветов );

– световой коэффициент полезного действия ламп накаливания, определяемый как отношение мощности лучей видимого спектра к мощности, потребляемой от электрической сети, весьма мал и не превышает 4 %;

– температура колбы галогенных ламп может достигать 500 °С, поэтому при установке ламп следует соблюдать нормы противопожарной безопасности (например, обеспечить достаточное расстояние между поверхностью перекрытия и подвесным потолком);

– обладают большой яркостью, но не дают равномерного распределения светового потока, для исключения прямого попадания света в глаза и вредного воздействия большой яркости на зрение нить накаливания лампы необходимо закрывать;

– при применении открытых ламп почти половина светового потока не используется для освещения рабочих поверхностей, поэтому ЛН необходимо устанавливать в осветительной арматуре.

Ограничения импорта, закупок и производства. В связи с необходимостью экономии электроэнергии и сокращения выброса углекислого газа в атмосферу, во многих странах введен или планируется ввод запрета на производство, закупку и импорт ламп накаливания, с целью стимулирования замены их на энергосберегающие лампы (компактные люминесцентные лампы и др.).

С 1 сентября 2009 г. в Евросоюзе вступил в силу поэтапный запрет на производство, закупку магазинами и импорт ламп накаливания (за исключением специальных ламп). С 2009 г. запрет коснется ламп мощностью ≥ 100 Вт, ламп с матовой колбой ≥ 75 Вт и др.; ожидается, что к 2012 г. будет запрещен импорт и производство ламп накаливания меньшей мощности.

23 ноября 2009 г. президент России подписал принятый ранее Госдумой закон «Об энергосбережении и повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации». Согласно документу, с 1 января 2011 г. к обороту на территории страны не допускается продажа электрических ламп накаливания мощностью 100 Вт и более; с 1 января 2013 г. – электроламп мощностью 75 Вт и более, а с 1 января 2014 г. – ламп мощностью 25 Вт и более.

Основные характеристики ламп накаливания (ЛН) :

– номинальное значение напряжения;

– номинальное значение мощности;

– номинальное значение светового потока (иногда силы света);

– срок службы;

L , диаметр D ).

Технические данные ламп накаливания приведены в табл. 1 прил. 2 .

В настоящее время все большее применение находят газоразрядные лампы , в которых излучение оптического диапазона спектра возникает в результате электрического разряда в атмосфере инертных газов и паров металлов, а также за счет явлений люминесценции. Основным преимуществом газоразрядных ламп является их экономичность. Световая отдача этих ламп колеблется в пределах 40...110 лм/Вт. Срок их службы доходит до 12 тыс. ч. С их помощью легче создать равномерное освещение, спектр их излучения ближе к естественному свету.

По составу среды различают следующие газоразрядные лампы:

– с газом;

– с парами металлов и различных соединений.

По давлению :

– газоразрядные лампы низкого давления (от 0,1 до 25 кПа);

– газоразрядные лампы высокого давления (от 25 до 1000 кПа);

– газоразрядные лампы сверхвысокого давления (от 1000 кПа).

По типу разряда :

– дуговые;

– тлеющие;

– импульсные.

По источнику излучения :

– газоразрядные лампы, у которых источником света являются атомы, ионы или молекулы;

– фотолюминесцентные лампы, у которых источником света являются люминофоры, возбуждаемые разрядом;

– электродосветные лампы, у которых источником света являются электроды, раскаленные до высокой температуры.

По охлаждению :

– газоразрядные лампы с естественным охлаждением;

– газоразрядные лампы с принудительным охлаждением.

Наиболее распространены газоразрядные лампынизкого давления люминесцентные (рис. 6). Световая отдача – до 100 лм/Вт. Они имеют форму цилиндрической стеклянной трубки с двумя электродами. Трубка наполнена дозированным количеством ртути (3080 мг) и смесью инертных газов (часто аргон) при давлении около 400 Па (3 мм рт. ст.). По обоим концам трубки закреплены электроды. При включении электрический ток, протекающий между электродами, вызывает в парах ртути электрический разряд, сопровождающийся излучением (электролюминесценция). Внутренняя поверхность трубки покрыта тонким слоем люминофора, который преобразует ультрафиолетовое излучение, возникающее при газовом электрическом разряде, в видимый свет. В зависимости от состава люминофора люминесцентные лампы обладают различной цветностью. В настоящее время промышленность выпускает несколько типов люминесцентных ламп, отличающихся по цветности: лампы дневного света (ЛД), лампы дневного света с улучшенной цветопередачей (ЛДЦ), лампы наиболее близкие к естественному свету (ЛЕ), лампы белого цвета (ЛБ), лампы теплого белого цвета (ЛТБ), лампы холодного белого цвета (ЛХБ), лампы дневного света с исправленной цветопередачей (ЛДЦ), лампы рефлекторные с внутренним отражающим слоем (ЛР) и др.

Преимущества люминесцентных ламп:

– широкий диапазон цветности;

– благоприятные спектры излучения, обеспечивающие высокое качество цветопередачи;

– по сравнению с лампами накаливания обеспечивают такой же световой поток, но потребляют в 45 раз меньше энергии;

– имеют низкую температуру колбы;

– повышенный срок службы (до 615 тыс. ч.).

Недостатки люминесцентных ламп:

– относительная сложность схемы включения, шум дросселей;

– ограниченная единичная мощность и большие размеры при данной мощности;

– невозможность переключения ламп, работающих на переменном токе, на питание от сети постоянного тока;

– зависимость характеристик от температуры внешней среды (световой поток снижается при повышенных температурах);

– значительное снижение потока к концу срока службы;

– относительная дороговизна;

– вредные для зрения пульсации светового потока с частотой 100 Гц при переменном токе 50 Гц;

– срок действия компактных ЛЛ не всегда соответствует заявленному и может быть сравним со сроком ламп накаливания при существенно большей стоимости.

Пульсация светового потока возникает вследствие малой инерционности свечения люминофора. Это может привести к появлению стробоскопического эффекта , который проявляется в искажении зрительного восприятия движущихся или вращающихся объектов. При кратности или совпадении частоты пульсации светового потока и частоты вращения объекта вместо одного предмета видны изображения нескольких, искажаются скорость и направление движения. Стробоскопический эффект очень опасен, так как вращающиеся части механизмов, детали, инструмент могут показаться неподвижными и стать причиной травматизма.

Основные характеристики люминесцентных ламп :

– номинальная мощность;

– номинальное напряжение;

– номинальный ток лампы;

– световой поток;

– габаритные размеры (полная длина L , диаметр D );

– пульсации светового потока.

Технические данные основных типов ЛЛ приведены в табл. 2 Приложения 2 .

К газоразрядным лампам высокого и сверхвысокого давления относят лампы: ДРЛ дуговые ртутные люминесцентные; ДРЛР рефлекторные дуговые ртутные лампы с отражающим слоем; ДРИ ртутные лампы высокого давления с добавкой иодидов металла; ДКсТ дуговые ксеноновые трубчатые и др.

Принцип действия ламп ДРЛ (рис. 7): в горелке из прочного тугоплавкого химически стойкого прозрачного материала в присутствии газов и паров металлов возникает свечение разряда электролюминесценция. При подаче напряжения на лампу между близко расположенными главным катодом и дополнительным электродом обратной полярности на обоих концах горелки начинается ионизация газа. Когда степень ионизации газа достигает определенного значения, разряд переходит на промежуток между главными катодами, так как они включены в цепь тока без добавочных сопротивлений, и поэтому напряжение между ними выше. Стабилизация параметров наступает через 1015 минут после включения (в зависимости от температуры окружающей среды, чем холоднее, тем дольше будет разгораться лампа).

Электрический разряд в газе создает видимое белое, без красной и голубой составляющих спектра, и невидимое ультрафиолетовое излучение, вызывающее красноватое свечение люминофора. Эти свечения суммируются, в результате получается яркий свет, близкий к белому.

При изменении напряжения сети на 1015 % в большую или меньшую сторону работающая лампа отзывается соответствующим повышением или потерей светового потока на 2530 %. При напряжении менее 80 % сетевого лампа может не зажечься, а в горящем состоянии погаснуть.

При горении лампа сильно нагревается, после выключения должна остыть перед следующим включением.

Лампы ДРЛ позволяют создавать большие уровни освещенности и рекомендуются к применению при высоте помещения более 12...14 м, при наличии в воздухе дыма, пыли и копоти. Однако по спектральному составу излучения они сильно отличаются от люминесцентных. Их нельзя применять там, где недопустимо искажение цветовосприятия.

Наиболее экономичными являются ДРИ ртутные лампы высокого давления с добавкой иодидов металла , их часто называют металлогалогенными. Светоотдача этих ламп достигает 80 лм/Вт.

Трубчатые ксеноновые газоразрядные лампы высокого давления ДКсТ (дуговые ксеноновые трубчатые), имеющие высокую мощность (от 2 до 100 кВт), применяются в основном для наружного освещения в связи с опасностью ультрафиолетового облучения работающих в помещении. Разработаны специальные ксеноновые лампы ДКсТЛ в колбе из легированного кварца, предназначенные для применения в производственных помещениях, расположенных на Севере нашей страны, где они служат одновременно и для ультрафиолетового облучения работающих.

Натриевые газоразрядные лампы высокого давления ДНаТ (дуговые натриевые трубчатые) обладают наивысшей эффективностью и удовлетворительной цветопередачей. Применяются для освещения помещений с большой высотой, где требования к цветопередаче невысоки или в декоративных целях.

Преимущества ламп ДРИ:

– большой срок службы (до 12–20 тыс. ч.);

– большая световая отдача;

– компактность при большой единичной мощности;

– обеспечивают более равномерное освещение и рекомендованы для применения в светильниках общего освещения.

Недостатки :

– преобладание в спектре сине-зеленой части, ведущее к неудовлетворительной цветопередаче;

– возможность работы только на переменном токе;

– длительность разгорания при включении (примерно 7 мин) и начало повторного зажигания после даже очень кратковременного перерыва питания лампы лишь после остывания (примерно 10 мин);

– пульсации светового потока больше, чем у люминесцентных ламп;

– значительное снижение светового потока к концу срока службы (до 70 %);

– наличие ртути (от 20 до 150 мг ртути).

Повреждения герметичности лампы ДРЛ вполне хватит, чтобы серьезно загрязнить, например, цех авиационного завода размерами сто на триста метров и с высотой потолков до 10 метров.

Технические данные ламп ДРЛ приведены в табл. 3 прил. 2 .

Светодиодное освещение – одно из перспективных направлений технологий искусственного освещения, основанное на использовании светодиодов в качестве источника света. Светодиод или светоизлучающий диод (СД, СИД, LED – англ. Light-emitting diode ) полупроводниковый прибор, излучающий свет при пропускании через него электрического тока. Излучаемый свет лежит в узком диапазоне спектра, его цветовые характеристики зависят от химического состава использованного в нем полупроводника.

Светодиодное освещение, благодаря эффективному расходу электроэнергии и простоте конструкции, нашло широкое применение в ручных осветительных приборах, в светотехнике для создания дизайнерского освещения специальных современных дизайн-проектов. Надежность светодиодных источников света позволяет использовать их в труднодоступных для частой замены местах (встроенное потолочное освещение и т. д.).

Преимущества светодиодного освещения:

– экономичность – световая отдача светодиодных систем уличного освещения достигает 140 лм/Вт;

– срок службы в 30 раз больше по сравнению с лампами накаливания;

– возможность получать различные спектральные характеристики без применения светофильтров;

– малые размеры;

– отсутствие ртутных паров (в сравнении с люминесцентными лампами);

– малое ультрафиолетовое и инфракрасное излучение;

– незначительное относительное тепловыделение (для маломощных устройств);

– высокая прочность.

Недостатки :

– высокая цена (отношение цена/люмен у сверхъярких светодиодов в 50–100 раз больше, чем у обычной лампы накаливания);

– низкая предельная температура: мощные осветительные светодиоды требуют внешнего радиатора для охлаждения;

– необходимость низковольтного источника питания постоянного тока для обеспечения питания светодиодов от сети;

– высокий коэффициент пульсаций светового потока при питании напрямую от сети промышленной частоты.

Создание в производственных помещениях качественного и эффективного освещения невозможно без рациональных светильников .

Электрический светильник это совокупность источника света и осветительной арматуры, предназначенной для перераспределения излучаемого источником светового потока в требуемом направлении, предохранения глаз рабочего от слепящего действия ярких элементов источника света, защиты источника от механических повреждений, воздействия окружающей среды и эстетического оформления помещения.

Тип светильников определяется характером производственного помещения и технологического процесса, необходимой безопасностью, качеством освещения и удобством обслуживания . Слепящее действие света устраняется при правильном выборе высоты подвеса определенного типа светильника.

Важной характеристикой светильника является его коэффициент полезного действия – отношение фактического светового потока светильника Ф ф к световому потоку помещенной в него лампы Ф л, т. е.
.

По распределению светового потока в пространстве различают светильники прямого, преимущественно прямого, рассеянного, отраженного и преимущественно отраженного света.




Top