Криптография и главные способы шифрования информации

09.07.2003

Что такое шифрование?

Шифрование используется человечеством с того самого момента, как появилась первая секретная информация, т. е. такая, доступ к которой должен быть ограничен. Это было очень давно - так, один из самых известных методов шифрования носит имя Цезаря, который если и не сам его изобрел, то активно им пользовался (см. врезку ).

Криптография обеспечивает сокрытие смысла сообщения и раскрытие его расшифровкой с помощью специальных алгоритмов и ключей. Ключ понимается нами как конкретное секретное состояние параметров алгоритмов шифрования и дешифрования. Знание ключа дает возможность прочтения секретного сообщения. Впрочем, как вы увидите ниже, далеко не всегда незнание ключа гарантирует то, что сообщение не сможет прочесть посторонний человек.

Процесс вскрытия шифра без знания ключа называется криптоанализом. Время, необходимое для взлома шифра, определяется его криптостойкостью. Чем оно больше, тем «сильнее» алгоритм шифрования. Еще лучше, если изначально вообще нельзя выяснить, достижим ли результат взлома.

Основные современные методы шифрования

Среди разнообразнейших способов шифровании можно выделить следующие основные методы:

  • Алгоритмы замены или подстановки - символы исходного текста заменяются на символы другого (или того же) алфавита в соответствии с заранее определенной схемой, которая и будет ключом данного шифра. Отдельно этот метод в современных криптосистемах практически не используется из-за чрезвычайно низкой криптостойкости.
  • Алгоритмы перестановки - символы оригинального текста меняются местами по определенному принципу, являющемуся секретным ключом. Алгоритм перестановки сам по себе обладает низкой криптостойкостью, но входит в качестве элемента в очень многие современные криптосистемы.
  • Алгоритмы гаммирования - символы исходного текста складываются с символами некой случайной последовательности. Самым распространенным примером считается шифрование файлов "имя пользователя.pwl", в которых операционная система Microsoft Windows 95 хранит пароли к сетевым ресурсам данного пользователя (пароли на вход в NT-серверы, пароли для DialUp-доступа в Интернет и т.д.).

Когда пользователь вводит свой пароль при входе в Windows 95, из него по алгоритму шифрования RC4 генерируется гамма (всегда одна и та же), применяемая для шифрования сетевых паролей. Простота подбора пароля обусловливается в данном случае тем, что Windows всегда предпочитает одну и ту же гамму.

  • Алгоритмы, основанные на сложных математических преобразованиях исходного текста по некоторой формуле. Многие из них используют нерешенные математические задачи. Например, широко используемый в Интернете алгоритм шифрования RSA основан на свойствах простых чисел.

Симметричные и асимметричные криптосистемы

Прежде чем перейти к отдельным алгоритмам, рассмотрим вкратце концепцию симметричных и асимметричных криптосистем. Сгенерировать секретный ключ и зашифровать им сообщение - это еще полдела. А вот как переслать такой ключ тому, кто должен с его помощью расшифровать исходное сообщение? Передача шифрующего ключа считается одной из основных проблем криптографии.

Оставаясь в рамках симметричной системы (так она названа оттого, что для шифрования и дешифрования подходит один и тот же ключ), необходимо иметь надежный канал связи для передачи секретного ключа. Но такой канал не всегда бывает доступен, и потому американские математики Диффи, Хеллман и Меркле разработали в 1976 г. концепцию открытого ключа и асимметричного шифрования. В таких криптосистемах общедоступным является только ключ для процесса шифрования, а процедура дешифрования известна лишь обладателю секретного ключа.

Например, когда я хочу, чтобы мне выслали сообщение, то генерирую открытый и секретный ключи. Открытый посылаю вам, вы шифруете им сообщение и отправляете мне. Дешифровать сообщение могу только я, так как секретный ключ я никому не передавал. Конечно, оба ключа связаны особым образом (в каждой криптосистеме по-разному), и распространение открытого ключа не разрушает криптостойкость системы.

В асимметричных системах должно удовлетворяться следующее требование: нет такого алгоритма (или он пока неизвестен), который бы из криптотекста и открытого ключа выводил исходный текст. Пример такой системы - широко известная криптосистема RSA.

Алгоритм RSA

Алгоритм RSA (по первым буквам фамилий его создателей Rivest-Shamir-Adleman) основан на свойствах простых чисел (причем очень больших). Простыми называются такие числа, которые не имеют делителей, кроме самих себя и единицы. А взаимно простыми называются числа, не имеющие общих делителей, кроме 1.

Для начала выберем два очень больших простых числа (большие исходные числа нужны для построения больших криптостойких ключей. Например, Unix-программа ssh-keygen по умолчанию генерирует ключи длиной 1024 бита).

Определим параметр n как результат перемножения p и q . Выберем большое случайное число и назовем его d , причем оно должно быть взаимно простым с результатом умножения (p -1)*(q -1) .

Отыщем такое число e, для которого верно соотношение

(e*d) mod ((p -1)*(q -1)) = 1

(mod - остаток от деления, т. е. если e, умноженное на d, поделить на ((p -1)*(q -1)) , то в остатке получим 1).

Открытым ключом является пара чисел e и n , а закрытым - d и n .

При шифровании исходный текст рассматривается как числовой ряд, и над каждым его числом мы совершаем операцию

C(i)= (M(i) e) mod n.

В результате получается последовательность C(i) , которая и составит криптотекст. Декодирование информации происходит по формуле

M(i) = (C(i) d) mod n.

Как видите, расшифровка предполагает знание секретного ключа.

Давайте попробуем на маленьких числах.

Установим p=3, q=7 . Тогда n=p*q=21. Выбираем d как 5. Из формулы (e*5) mod 12=1 вычисляем e=17 . Открытый ключ 17, 21 , секретный - 5, 21 .

Зашифруем последовательность «12345»:

C(1)= 1 17 mod 21= 1

C(2)= 2 17 mod 21 =11

C(3)= 3 17 mod 21= 12

C(4)= 4 17 mod 21= 16

C(5)= 5 17 mod 21= 17

Криптотекст - 1 11 12 16 17.

Проверим расшифровкой:

M(1)= 1 5 mod 21= 1

M(2)= 11 5 mod 21= 2

M(3)= 12 5 mod 21= 3

M(4)= 16 5 mod 21= 4

M(5)= 17 5 mod 21= 5

Как видим, результат совпал.

Криптосистема RSA широко применяется в Интернете. Когда вы подсоединяетесь к защищенному серверу по протоколу SSL, устанавливаете на свой ПК сертификат WebMoney либо подключаетесь к удаленному серверу с помощью Open SSH или SecureShell, то все эти программы применяют шифрование открытым ключом с использованием идей алгоритма RSA. Действительно ли эта система так надежна?

Конкурсы по взлому RSA

С момента своего создания RSA постоянно подвергалась атакам типа Brute-force attack (атака методом грубой силы, т. е. перебором). В 1978 г. авторы алгоритма опубликовали статью, где привели строку, зашифрованную только что изобретенным ими методом. Первому, кто расшифрует сообщение, было назначено вознаграждение в размере 100 долл., но для этого требовалось разложить на два сомножителя 129-значное число. Это был первый конкурс на взлом RSA. Задачу решили только через 17 лет после публикации статьи.

Криптостойкость RSA основывается на том предположении, что исключительно трудно, если вообще реально, определить закрытый ключ из открытого. Для этого требовалось решить задачу о существовании делителей огромного целого числа. До сих пор ее аналитическими методами никто не решил, и алгоритм RSA можно взломать лишь путем полного перебора. Строго говоря, утверждение, что задача разложения на множители сложна и что взлом системы RSA труден, также не доказано.

Полученное в результате обработки хэш-функцией текста сообщения число шифруется по RSA-алгоритму на закрытом ключе пользователя и посылается адресату вместе с письмом и экземпляром открытого ключа. Адресат с помощью открытого ключа отправителя выполняет ту же хэш-функцию над пришедшим сообщением. Если оба числа равны, это означает, что сообщение подлинное, а если был изменен хотя бы один символ, то числа не совпадут.

Один из самых распространенных в России почтовых клиентов, программа The Bat!, обладает встроенными возможностями добавлять цифровые подписи к письмам (обратите внимание на пункт меню Privacy при редактировании письма). Подробнее об этой методике читайте в статье (см. «Мир ПК», № 3/02).

Рис. 3

Криптография

Криптография - наука о принципах, средствах и методах преобразования информации для защиты ее от несанкционированного доступа и искажения. В последнее время она развивается очень и очень бурно. Это бесконечная увлекательная гонка, требующая много времени и сил: криптоаналитики взламывают алгоритмы, которые еще недавно были стандартами и повсеместно использовались. Кстати, недавно математики Дэн Голдстон (США) и Кем Илдирим (Турция) доказали первую закономерность в распределении простых чисел (до сих пор таких закономерностей не замечали). Простые числа располагаются на числовой оси некоторыми скоплениями, что несколько облегчает их поиск.

Математические исследования, ведущиеся во всем мире, постоянно приводят все к новым и новым открытиям. Как знать, может быть, мы стоим на пороге взлома алгоритма RSA или других криптосистем, основанных на нерешенных математических задачах.

Олег Бунин - специалист по разработке ПО для крупных Интернет-проектов, сотрудник компании «Рамблер», http://www..htm ).

  • Введение в криптографию / Под ред. В.В. Ященко. М.: МЦНМО, 2000.
  • Носов В. А. Краткий исторический очерк развития криптографии // Материалы конференции "Московский университет и развитие криптографии в России", МГУ, 17-18 октября 2002 г.
  • Саломаа А. Криптография с открытым ключом. М., 1996 .
  • Циммерман Ф. PGP - кодирование с открытым ключом для всех.
  • Система шифрования Цезаря

    Пример алгоритма замены - система шифрования Цезаря. Этот метод основан на замене каждой буквы сообщения на другую путем смещения от исходной на фиксированное количество символов. Попробуйте расшифровать четверостишие Омара Хайяма (время выполнения - 10 минут).

    РЛЗЬ ЁМЭЙЗ АВБЖУ ИЙЗАВЛУ, БЖЩЛУ ЖЩЭЗЬЖЗ ЖЮЁЩЕЗ, ЭЫЩ ЫЩАЖФО ИЙЩЫВЕЩ БЩИЗЁЖВ ЭЕШ ЖЩРЩЕЩ: ЛФ ЕМРСЮ ЪЗЕЗЭЩГ, РЮЁ РЛЗ ИЗИЩЕЗ ЮКЛУ, В ЕМРСЮ ЬМЭУ ЗЭВЖ, РЮЁ ЫЁЮКЛЮ К ДЮЁ ИЗИЩЕЗ.

    Успели? Привожу «отгадку»:

    Чтоб мудро жизнь прожить, знать надобно немало,

    Два важных правила запомни для начала:

    Ты лучше голодай, чем что попало есть,

    И лучше будь один, чем вместе с кем попало.

    Ключ для расшифровки: сдвигаем на семь символов (берем седьмой) влево по алфавиту. Алфавит закольцован. Регистр символов не учитывается.

    Windows и пароли

    Как Windows шифрует пароли?

    Система берет пароль, преобразует его в верхний регистр, обрезает до 14 символов, затем делит их на две половины по 7, шифрует каждую по отдельности и так сохраняет, что несколько упрощает взлом. Кстати, когда будете придумывать пароль, имейте в виду, что комбинация длиннее 14 символов имеет мало смысла.

    Конкурс AES (Advanced Encryption Standard)

    В 80-х гг. в США приняли стандарт симметричного шифрования для внутреннего применения - DES ((Data Encryption Standard, подобный стандарт есть и в России). Но в 1997 г., когда стало понятно, что 56-битового ключа DES недостаточно для надежной криптосистемы, Американский институт стандартизации объявил конкурс на новый стандартный алгоритм. Из 15 вариантов был выбран лучший: бельгийский алгоритм Rijndael (его название составлено из фамилий авторов - Rijmen и Daemen, читается как «Рэйндал». Этот алгоритм уже встроен в различные криптографические средства, поставляемые на рынок). Другими финалистами конкурса стали MARS, RC6, Serpent, TwoFish. Все эти алгоритмы были признаны достаточно стойкими и успешно противостоящими всем широко известным методам криптоанализа.

    Криптографические хэш-функции

    Криптографические хэш-функции преобразуют входные данные любого размера в строку фиксированного размера. Для них чрезвычайно сложно найти:

    • два разных набора данных с одинаковым результатом преобразования (стойкость к коллизиям); например, количество арифметических операций, необходимых для того, чтобы найти блок данных, также имеющий краткое сообщение для хэш-функции MD5, составляет приблизительно 2 64;
    • входное значение по известному результату хэширования (необратимость); для MD5 предполагаемое количество операций, необходимых для вычисления исходного сообщения, равно 2 128.

    Как ты помнишь, шифр сдвига, замены, перестановки и шифр Вернама применяют операцию к каждому конкретному символу текста. Нужно сдвинуть - сдвигаем символ, применить ключ - применяем к символу, за ним к следующему символу и так далее, пока не зашифруем все символы открытого текста. Такой метод шифрования называется поточным - мы шифруем каждый символ в отдельности. Есть и другой подход: разбить исходный открытый текст на группы по несколько символов (блоки) и выполнять операции шифрования в каждом блоке. Это - блочный метод шифрования.

    Чтобы отличие между блочными и поточными шифрами стало понятнее, приведем пример на простом шифре замены.

    Поточное шифрование

    Зашифруем поточным шифром замены слово CIPHER:

    Зашифровали каждый символ и получили шифротекст. Проще простого.

    БЛОЧНОЕ ШИФРОВАНИЕ

    Зашифруем слово AVADAKEDAVRA. Поскольку шифр блочный, открытый текст разобьем на блоки по четыре символа: AVAD | AKED | AVRA (на практике блоки текста состоят из 64-256 бит). Для каждого блока придумаем свою таблицу замены:

    А теперь шифруем каждый из блоков соответствующим алфавитом:
    Получилось чуть лучше, нежели с поточным подходом, если говорить о стойкости. Ведь обычный шифр замены мы научились дешифровать одной левой. А при таком блочном подходе злоумышленнику придется изрядно поломать голову, прежде чем он сможет подобрать длину блока и уже тогда для каждого блока применить криптоанализ для шифров замены.

    СЕТЬ ФЕЙСТЕЛЯ

    Теперь мы готовы перейти к очень важной теме, которая открывает дверь в бескрайний мир современных систем шифрования. Сеть Фейстеля - это метод блочного шифрования, разработанный Хорстом Фейстелем в лаборатории IBM в 1971 году. Сегодня сеть Фейстеля лежит в основе большого количества криптографических протоколов. Попробуем разобрать «на пальцах», что же она собой представляет.

    Сеть Фейстеля оперирует блоками открытого текста, поэтому мы рассмотрим механизм ее работы на одном из блоков. С остальными блоками действия будут аналогичны.

    • Блок разбивается на две равные части - левую (L) и правую (R).
    • После разбиения левый подблок изменяется функцией f с использованием ключа K: x = f(L, K). В качестве функции можно представить себе какое угодно преобразование — например, старый добрый шифр сдвига с ключом К.
    • Полученный подблок складывается по модулю 2 с правым подблоком R, который до этого был не у дел: х=х+R
    • Далее полученные части меняются местами и склеиваются.

    Как видишь, все достаточно просто. Для того чтобы понять, как это работает, посмотри на схему:

    Такая схема называется ячейкой Фейстеля. Сама сеть Фейстеля состоит из нескольких ячеек. Полученные на выходе первой ячейки подблоки поступают на вход второй ячейки, результирующие подблоки из второй ячейки попадают на вход третьей ячейки и так далее в зависимости от количества раундов сети Фейстеля. В каждом таком раунде применяется заранее определенный раундовый ключ. Чаще всего раундовые ключи выработаны из основного секретного ключа K. Когда все раунды будут пройдены, подблоки текста склеиваются, и получается нормальный такой шифротекст.

    Теперь посмотрим работу сети Фейстеля на примере. Возьмем слово AVADAKEDAVRA и разобьем его на два блока по шесть символов - AVADAK | EDAVRA. За функцию возьмем шифр сдвига на число позиций, определенных раундовым ключом. Пусть секретный ключ K = . В качестве раундовых ключей возьмем K = 1, K = 2. Для сложения по модулю 2 переведем текст в двоичный код согласно телеграфному алфавитику , которым вряд ли кто-то еще пользуется вообще.

    Вот что получилось:

    Теперь прогоним через сеть Фейстеля из двух раундов первый блок:

    Второй блок попробуй зашифровать сам, у меня получилось MOSSTR.

    Расшифрование осуществляется точно так же: шифротекст разбивается на блоки и затем подблоки, левый подблок поступает в функцию, складывается по модулю 2 с правым, и затем подблоки меняются местами. Отличие заключается в том, что раундовые ключи подаются в обратном порядке, то есть в нашем случае в первом раунде применим ключ K = 2, а затем во втором раунде K = 1.

    Исследования сети Фейстеля показали, что при независимых раундовых ключах и криптостойкой псевдослучайной функции f трех раундов сети Фейстеля будет достаточно, чтобы шифротекст был псевдослучайным. Это говорит о том, что шифры, основанные на сети Фейстеля, на данный момент достаточно криптостойки.

    ГОСТ 28147-89 (МАГМА)

    В арсенале уже есть почти все необходимые понятия, поэтому мы готовы пе- рейти к первой важной теме отечественной криптографии - ГОСТ 28147-89. Стоит сказать, что про этот стандарт не написал еще только ленивый, поэтому я попробую в миллион первый раз кратко и без тучи формул изложить суть режимов шифрования великой и ужасной Магмы. Если решишь почитать сам стандарт, то стоит запастись временем, силами, терпением и едой, потому что стандарты на человеческом языке, как известно, писать строго запрещено.

    Основные характеристики: ключ 256 бит, блок 64 бита.

    Перед разбором Магмы нужно усвоить новое понятие - таблицы замены, или S-боксы. Это таблица того же вида, что и таблица в шифре замены. Предназначена для замены символов подблока на символы, зафиксированные в таблице. Не стоит думать, что S-бокс - это случайные цифры, сгенерированные функцией rand(). S-боксы представляют собой результат продуманных сгенерированных последовательностей, ведь на них держится криптостойкость всего шифра.

    ГОСТ 28147 весьма скупо характеризует свои таблицы замены. Говорится лишь о том, что они являются дополнительным секретным элементом (наряду с секретным ключом) и «поставляются в установленном порядке». Больше ничего. С момента принятия ГОСТ 28147 научно-техническая неопределенность, связанная с выбором S-боксов, порождала слухи и домыслы. Ходили разговоры о секретных критериях, известных только разработчикам ГОСТа. Естественно, что эта неопределенность снижала доверие к криптосистеме.

    Этот недостаток дал отличную почву для критики стандарта. Французский криптограф Николя Куртуа опубликовал несколько статей, содержащих ряд спорных положений относительно стойкости ГОСТа. Куртуа считает, что на российский стандарт легко построить атаку и его никак нельзя причислять к международным. Однако свой анализ Куртуа проводит для S-боксов, отличных от действующих, так что не стоит полагаться на его мнение.

    А теперь посмотрим, что же напридумывали в стенах мрачной Лубянки.

    Режим простой замены

    В режиме простой замены на 32 раунда, согласно стандарту, нам нужно 32 раундовых ключа. Для генерации раундовых ключей исходный 256-битный ключ разбивается на восемь 32-битных блоков: K1…K8. Ключи K9…K24 являются циклическим повторением ключей K1…K8. Ключи K25…K32 являются ключами K8…K1.

    1. Каждый блок 64 бита делится на два подблока - Ai и Bi.
    2. Левый подблок Ai складывается по модулю 232 с раундовым ключом K1: Ai+1 = Ai + Ki mod 232.
    3. Левый подблок проходит через S-бокс.
    4. Биты левого подблока сдвигаются на 11 позиций (циклический сдвиг).
    5. Левый подблок складывается с правым по модулю 2: A = A ⊕ B . iii
    6. Правый подблок принимает первоначальное значение левого подблока: Bi+1 = Ai.
    7. Подблоки меняются местами.

    Сразу пример одного раунда. Ключ 256 бит:

    arvadek adava arvadek adava arvadek adava arvadek adava arva

    00011 01010 11110 00011 01001 00001 01111 00011 01001 00011 11110

    00011... . . . 00011 01010 11110 0

    Тогда раундовые ключи

    K1 = 00011 01010 11110 00011 01001 00001 01

    K2 = 111 00011 01001 00011 11110 00011 0001

    K3 = . . .

    S - бокс= [ 1 , 15 , 13 , 0 , 5 , 7 , 10 , 4 , 9 , 2 , 3 , 14 , 6 , 11 , 8 , 12 ]

    Как пользоваться таким S-боксом? Очень просто! Если на входе S-бокса 0, то на выходе будет 1 (берем 0-й символ S-бокса), если 4, то на выходе будет 5 (берем 4-й символ), если на входе 7, то на выходе 4, и так далее.

    Открытый текст:

    Делится на два 32-битных блока старших и младших битов:

    Пример, конечно, вышел дикий, потому что ГОСТ - это все-таки не такой стандарт, чтоб каждый мог его ручками перебирать.

    Режим простой замены чересчур простой и имеет существенные недостатки:

    • одна ошибка в шифрованном блоке искажает все биты этого блока;
    • при шифровании одинаковых блоков открытого текста получаются одинаковые блоки шифротекста, что может дать определенную информацию криптоаналитику.

    Таким образом, применять ГОСТ 28147-89 в режиме простой замены желательно лишь для шифрования ключевых данных.

    РЕЖИМ ГАММИРОВАНИЯ

    Недостатков режима простой замены этот режим не имеет. Режим гаммирования называется так потому, что в нем используется гамма - псевдослучайная последовательность, которая в каждом раунде складывается по модулю 2 с открытым текстом. Гамма образуется из синхропосылки S - псевдослучайной последовательности, которая изменяется с каждой итерацией и проходит шифрование в режиме простой замены, после чего превращается в гамму и накладывается на открытый текст.

    А теперь все по порядку.

    Шаги 3–5 повторяются для каждого блока. Все эти манипуляции можно посмотреть на схеме.

    Расшифрование выполняется аналогично, вместо блока открытого текста подается блок шифротекста.

    Режим гаммирования с обратной связью

    Идем на усложнение. Алгоритм похож на режим гаммирования, однако гамма формируется на основе предыдущего блока зашифрованных данных, так что результат шифрования текущего блока зависит также и от предыдущих блоков. 1. Синхропосылка S - 64-битная псевдослучайная последовательность.

    2. S шифруется в режиме простой замены.
    3. Открытый текст складывается по модулю 2 с полученной гаммой.
    4. Полученный шифротекст поступает в качестве синхропосылки для следующего блока, а также поступает на выход. Как это выглядит, можно посмотреть на схеме.

    Режим имитовставки

    В этом режиме вырабатывается имитовставка - дополнительный блок фиксированной длины, зависящий от исходного текста и ключей. Такой небольшой блок нужен для подтверждения того, что в шифротекст случайно или преднамеренно не были внесены искажения, - то есть для проверки целостности. Работает этот режим так:

    1. Блок открытого текста проходит 16 раундов в режиме простой замены.
    2. К полученному блоку по модулю 2 прибавляется еще один блок открытого текста.
    3. Сумма проходит еще 16 раундов в режиме простой замены.
    4. Прибавляется следующий блок открытого текста и опять простая замена и так далее, пока не кончатся блоки открытого текста.

    Для проверки получатель после расшифровывания текста проводит аналогичную описанной процедуру. В случае несовпадения результата с переданной имитовставкой все соответствующие M блоков считаются ложными.

    ГОСТ 34.12-2015 (КУЗНЕЧИК)

    Многие считают ГОСТ 28147-89 морально устаревшим и недостаточно стойким по сравнению с зарубежными алгоритмами. На смену ему отечественными криптографами был выпущен новый стандарт шифрования. Говорят, что это произошло то ли из-за большого количества атак на старый ГОСТ, то ли потому, что такая длина блока уже устарела и маловата для современных массивов данных. Истинных причин никто не афиширует. Конечно, не обошлось без из- менений основных характеристик.

    Основные характеристики: ключ 256 бит, блок 128 бит.

    Также стоит сказать, что в новом стандарте S-боксы фиксированы и продуманны, так что не стоит изобретать свои чудо-случайные подстановки. В новом ГОСТе режимов шифрования стало гораздо больше:
    режим простой замены (Electronic Codebook, ЕСВ);
    режим гаммирования (Counter, CTR);
    режим гаммирования с обратной связью по выходу (Output Feedback, OFB);
    режим простой замены с зацеплением (Cipher Block Chaining, СВС);
    режим гаммирования с обратной связью по шифротексту (Cipher Feedback,CFB);
    режим выработки имитовставки (Message Authentication Code algorithm).

    Рассмотрим новые режимы.

    Режим простой замены с зацеплением

    Как было видно на прошлом стандарте, режим простой замены - самый слабый из режимов, поэтому в новом стандарте он теперь выступает с зацеплением и стал вовсе не таким простым.

    1. Инициализирующий вектор - звучит страшно, но на деле всего лишь последовательность битов, поступающая на вход.
    2. Вектор разбивается на две части - L и R, одна из которых складывается по модулю 2 с открытым текстом, а другая становится половинкой инициализирующего вектора для следующего блока.
    3. Сумма открытого текста и кусочка инициализирующего вектора проходит через шифр простой замены.
    4. Полученные блоки зашифрованного текста склеиваются.

    Стоит посмотреть на схему, и сразу все становится ясно.

    Разумеется, с инициализирующим вектором не все так просто: он проходит через ряд линейных преобразований (с использованием линейного регистра сдвига), прежде чем начать шифрование нового блока. Но для знакомства с шифром достаточно представлять такую схему. Расшифрование в этом режиме тоже не совсем очевидное, поэтому лучше посмотреть схему.

    Для плюсов - Encryptions . Среди отечественных разработок это криптопровайдер КриптоПро CSP .

    Пара слов о стойкости режимов шифрования. Немало зарубежных криптографов пытались поднять руку на наш стандарт, однако на данный момент не известно ни одной атаки, которая может быть реализована на современном технологическом уровне развития. Среди программистов этот стандарт долгое время был не слишком популярен, так как из его текста понять алгоритм работы тяжело, а более четких описаний маловато. Но сейчас уже полно реализаций на многих языках программирования. Так что теперь использование ГОСТа вполне реально, и по многим параметрам он превосходит зарубежные стандарты. В конце концов, где же патриотизмъ?!

    Шифрование данных чрезвычайно важно для защиты конфиденциальности. В этой статье я расскажу о различных типах и методах шифрования, которые используются для защиты данных сегодня.

    Знаете ли вы?
    Еще во времена Римской империи, шифрование использовалось Юлием Цезарем для того, чтобы сделать письма и сообщения нечитаемыми для врага. Это играло важную роль как военная тактика, особенно во время войн.

    Так как возможности Интернета продолжают расти, все больше и больше наших предприятий проводятся на работу онлайн. Среди этого наиболее важными являются, интернет банк, онлайн оплата, электронные письма, обмен частными и служебными сообщениями и др., которые предусматривают обмен конфиденциальными данными и информацией. Если эти данные попадут в чужие руки, это может нанести вред не только отдельному пользователю, но и всей онлайн системе бизнеса.

    Чтобы этого не происходило, были приняты некоторые сетевые меры безопасности для защиты передачи личных данных. Главными среди них являются процессы шифрования и дешифрования данных, которые известны как криптография. Существуют три основные методы шифрования, используемых в большинстве систем сегодня: хеширование, симметричное и асимметричное шифрование. В следующих строках, я расскажу о каждом из этих типов шифрования более подробно.

    Типы шифрования

    Симметричное шифрование

    При симметричном шифровании, нормальные читабельные данные, известные как обычный текст, кодируется (шифруется), так, что он становится нечитаемым. Это скремблирование данных производится с помощью ключа. Как только данные будут зашифрованы, их можно безопасно передавать на ресивер. У получателя, зашифрованные данные декодируются с помощью того же ключа, который использовался для кодирования.

    Таким образом ясно что ключ является наиболее важной частью симметричного шифрования. Он должен быть скрыт от посторонних, так как каждый у кого есть к нему доступ сможет расшифровать приватные данные. Вот почему этот тип шифрования также известен как "секретный ключ".

    В современных системах, ключ обычно представляет собой строку данных, которые получены из надежного пароля, или из совершенно случайного источника. Он подается в симметричное шифрование программного обеспечения, которое использует его, чтобы засекретить входные данные. Скремблирование данных достигается с помощью симметричного алгоритма шифрования, такие как Стандарт шифрования данных (DES), расширенный стандарт шифрования (AES), или международный алгоритм шифрования данных (IDEA).

    Ограничения

    Самым слабым звеном в этом типе шифрования является безопасность ключа, как в плане хранения, так и при передаче аутентифицированного пользователя. Если хакер способен достать этот ключ, он может легко расшифровать зашифрованные данные, уничтожая весь смысл шифрования.

    Еще один недостаток объясняется тем, что программное обеспечение, которое обрабатывает данные не может работать с зашифрованными данными. Следовательно, для возможности использовать этого программного обеспечение, данные сначала должны быть декодированы. Если само программное обеспечение скомпрометировано, то злоумышленник сможет легко получить данные.

    Асимметричное шифрование

    Асимметричный ключ шифрования работает аналогично симметричному ключу, в том, что он использует ключ для кодирования передаваемых сообщений. Однако, вместо того, чтобы использовать тот же ключ, для расшифровки этого сообщения он использует совершенно другой.

    Ключ, используемый для кодирования доступен любому и всем пользователям сети. Как таковой он известен как «общественный» ключ. С другой стороны, ключ, используемый для расшифровки, хранится в тайне, и предназначен для использования в частном порядке самим пользователем. Следовательно, он известен как «частный» ключ. Асимметричное шифрование также известно, как шифрование с открытым ключом.

    Поскольку, при таком способе, секретный ключ, необходимый для расшифровки сообщения не должен передаваться каждый раз, и он обычно известен только пользователю (приемнику), вероятность того, что хакер сможет расшифровать сообщение значительно ниже.

    Diffie-Hellman и RSA являются примерами алгоритмов, использующих шифрование с открытым ключом.

    Ограничения

    Многие хакеры используют «человека в середине» как форму атаки, чтобы обойти этот тип шифрования. В асимметричном шифровании, вам выдается открытый ключ, который используется для безопасного обмена данными с другим человеком или услугой. Однако, хакеры используют сети обман, чтобы заставить вас общаться с ними, в то время как вас заставили поверить, что вы находитесь на безопасной линии.

    Чтобы лучше понять этот тип взлома, рассмотрим две взаимодействующие стороны Сашу и Наташу, и хакера Сергея с умыслом на перехват их разговора. Во-первых, Саша отправляет сообщение по сети, предназначенное для Наташи, прося ее открытый ключ. Сергей перехватывает это сообщение и получает открытый ключ, связанный с ней, и использует его для шифрования и передачи ложного сообщения, Наташе, содержащего его открытый ключ вместо Сашиного.

    Наташа, думая, что это сообщение пришло от Саши, теперь шифрует ее с помощью открытого ключа Сергея, и отправляет его обратно. Это сообщение снова перехватил Сергей, расшифровал, изменил (при желании), зашифровал еще раз с помощью открытого ключа, который Саша первоначально отправил, и отправил обратно к Саше.

    Таким образом, когда Саша получает это сообщение, его заставили поверить, что оно пришло от Наташи, и продолжает не подозревать о нечестной игре.

    Хеширование

    Методика хеширования использует алгоритм, известный как хэш-функция для генерации специальной строки из приведенных данных, известных как хэш. Этот хэш имеет следующие свойства:

    • одни и те же данные всегда производит тот же самый хэш.
    • невозможно, генерировать исходные данные из хэша в одиночку.
    • Нецелесообразно пробовать разные комбинации входных данных, чтобы попытаться генерировать тот же самый хэш.

    Таким образом, основное различие между хэшированием и двумя другими формами шифрования данных заключается в том, что, как только данные зашифрованы (хешированы), они не могут быть получены обратно в первозданном виде (расшифрованы). Этот факт гарантирует, что даже если хакер получает на руки хэш, это будет бесполезно для него, так как он не сможет расшифровать содержимое сообщения.

    Message Digest 5 (MD5) и Secure Hashing Algorithm (SHA) являются двумя широко используемыми алгоритмами хеширования.

    Ограничения

    Как уже упоминалось ранее, почти невозможно расшифровать данные из заданного хеша. Впрочем, это справедливо, только если реализовано сильное хэширование. В случае слабой реализации техники хеширования, используя достаточное количество ресурсов и атаки грубой силой, настойчивый хакер может найти данные, которые совпадают с хэшем.

    Сочетание методов шифрования

    Как обсуждалось выше, каждый из этих трех методов шифрования страдает от некоторых недостатков. Однако, когда используется сочетание этих методов, они образуют надежную и высоко эффективную систему шифрования.

    Чаще всего, методики секретного и открытого ключа комбинируются и используются вместе. Метод секретного ключа дает возможность быстрой расшифровки, в то время как метод открытого ключа предлагает более безопасный и более удобный способ для передачи секретного ключа. Эта комбинация методов известна как "цифровой конверт". Программа шифрования электронной почты PGP основана на технике "цифровой конверт".

    Хеширования находит применение как средство проверки надежности пароля. Если система хранит хэш пароля, вместо самого пароля, он будет более безопасным, так как даже если хакеру попадет в руки этот хеш, он не сможет понять (прочитать) его. В ходе проверки, система проверит хэш входящего пароля, и увидит, если результат совпадает с тем, что хранится. Таким образом, фактический пароль будет виден только в краткие моменты, когда он должен быть изменен или проверен, что позволит существенно снизить вероятность его попадания в чужие руки.

    Хеширование также используется для проверки подлинности данных с помощью секретного ключа. Хэш генерируется с использованием данных и этого ключа. Следовательно, видны только данные и хэш, а сам ключ не передается. Таким образом, если изменения будут сделаны либо с данными, либо с хэшем, они будут легко обнаружены.

    В заключение можно сказать, что эти методы могут быть использованы для эффективного кодирования данных в нечитаемый формат, который может гарантировать, что они останутся безопасными. Большинство современных систем обычно используют комбинацию этих методов шифрования наряду с сильной реализацией алгоритмов для повышения безопасности. В дополнение к безопасности, эти системы также предоставляют множество дополнительных преимуществ, таких как проверка удостоверения пользователя, и обеспечение того, что полученные данные не могут быть подделаны.

    Введение

    Проблема защиты информации путем ее преобразования, исключающего ее прочтение посторонним лицом волновала человеческий ум с давних времен. История криптографии - ровесница истории человеческого языка. Более того, первоначально письменность сама по себе была криптографической системой, так как в древних обществах ею владели только избранные.

    Священные книги Древнего Египта, Древней Индии тому примеры.

    С широким распространением письменности криптография стала формироваться как самостоятельная наука. Первые криптосистемы встречаются уже в начале нашей эры. Так, Цезарь в своей переписке использовал уже более менее систематический шифр, получивший его имя.

    Бурное развитие криптографические системы получили в годы первой и второй мировых войн. Начиная с послевоенного времени и по нынешний день появление вычислительных средств ускорило разработку и совершенствование криптографических методов.

    Почему проблема использования криптографических методов в информационных системах (ИС) стала в настоящий момент особо актуальна?

    С одной стороны, расширилось использование компьютерных сетей, в частности глобальной сети Internet, по которым передаются большие объемы информации государственного, военного, коммерческого и частного характера, не допускающего возможность доступа к ней посторонних лиц.

    С другой стороны, появление новых мощных компьютеров, технологий сетевых и нейронных вычислений сделало возможным дискредитацию криптографических систем еще недавно считавшихся практически не раскрываемыми.

    В первой главе данной работы можно познакомиться с основными понятиями современной криптографии, требованиям к ним, возможностями ее практического применения.

    Во второй главе работы с протоколами распределения криптографических ключей, понятием электронной подписи и протоколами электронной подписи..

    Третья глава данной работы рассказывает о хэш-функциях и (методах) алгоритмах их построения.

    В четвертой главе будет рассказано о модернизации электронной подписи Эль Гамаля и задаче дискретного логарифмирования.

    Глава 1. Основные понятия современной криптографии

    Проблемой защиты информации путем ее преобразования занимается криптология (kryptos - тайный, logos - наука). Криптология разделяется на два направления - криптографию и криптоанализ. Цели этих направлений прямо противоположны.

    Криптография занимается поиском и исследованием математических методов преобразования информации.

    Сфера интересов криптоанализа - исследование возможности расшифровывания информации без знания ключей.

    В этой работе основное внимание будет уделено криптографическим методам.

    Современная криптография включает в себя четыре крупных раздела:

    Симметричные криптосистемы.

    Криптосистемы с открытым ключом.

    Системы электронной подписи.

    Управление ключами.

    Основные направления использования криптографических методов - передача конфиденциальной информации по каналам связи (например, электронная почта), установление подлинности передаваемых сообщений, хранение информации (документов, баз данных) на носителях в зашифрованном виде.

    Криптография дает возможность преобразовать информацию таким образом, что ее прочтение (восстановление) возможно только при знании ключа.

    В качестве информации, подлежащей шифрованию и дешифрованию, будут рассматриваться тексты, построенные на некотором алфавите. Под этими терминами понимается следующее.

    Алфавит - конечное множество используемых для кодирования информации знаков.

    Текст - упорядоченный набор из элементов алфавита.

    В качестве примеров алфавитов, используемых в современных ИС можно привести следующие:

    алфавит Z33 - 32 буквы русского алфавита и пробел;

    алфавит Z256 - символы, входящие в стандартные коды ASCII и КОИ-8;

    бинарный алфавит - Z2 = {0,1};

    восьмеричный алфавит или шестнадцатеричный алфавит;

    Шифрование - преобразовательный процесс: исходный текст, который носит также название открытого текста, заменяется шифрованным текстом.

    Дешифрование - обратный шифрованию процесс. На основе ключа шифрованный текст преобразуется в исходный.

    Ключ - информация, необходимая для беспрепятственного шифрования и дешифрования текстов.

    Криптографическая система представляет собой семейство T преобразований открытого текста. Члены этого семейства индексируются, или обозначаются символом k; параметр k является ключом. Пространство ключей K - это набор возможных значений ключа. Обычно ключ представляет собой последовательный ряд букв алфавита.

    Криптосистемы разделяются на симметричные и с открытым ключом.

    В симметричных криптосистемах и для шифрования, и для дешифрования используется один и тот же ключ.

    В системах с открытым ключом используются два ключа - открытый и закрытый, которые математически связаны друг с другом. Информация шифруется с помощью открытого ключа, который доступен всем желающим, а расшифровывается с помощью закрытого ключа, известного только получателю сообщения. Термины распределение ключей и управление ключами относятся к процессам системы обработки информации, содержанием которых является составление и распределение ключей между пользователями.

    Электронной (цифровой) подписью называется присоединяемое к тексту его криптографическое преобразование, которое позволяет при получении текста другим пользователем проверить авторство и подлинность сообщения.

    Криптостойкостью называется характеристика шифра, определяющая его стойкость к дешифрованию без знания ключа (т.е. криптоанализу). Имеется несколько показателей криптостойкости, среди которых:

    количество всех возможных ключей;

    среднее время, необходимое для криптоанализа.

    Преобразование Tk определяется соответствующим алгоритмом и значением параметра k. Эффективность шифрования с целью защиты информации зависит от сохранения тайны ключа и криптостойкости шифра.

    Процесс криптографического закрытия данных может осуществляться как программно, так и аппаратно. Аппаратная реализация отличается существенно большей стоимостью, однако ей присущи и преимущества: высокая производительность, простота, защищенность и т.д. Программная реализация более практична, допускает известную гибкость в использовании.

    Для современных криптографических систем защиты информации сформулированы следующие общепринятые требования:

    зашифрованное сообщение должно поддаваться чтению только при наличии ключа;

    число операций, необходимых для определения использованного ключа шифрования по фрагменту шифрованного сообщения и соответствующего ему открытого текста, должно быть не меньше общего числа возможных ключей;

    число операций, необходимых для расшифровывания информации путем перебора всевозможных ключей должно иметь строгую нижнюю оценку и выходить за пределы возможностей современных компьютеров (с учетом возможности использования сетевых вычислений);

    знание алгоритма шифрования не должно влиять на надежность защиты;

    незначительное изменение ключа должно приводить к существенному изменению вида зашифрованного сообщения даже при использовании одного и того же ключа;

    структурные элементы алгоритма шифрования должны быть неизменными;

    дополнительные биты, вводимые в сообщение в процессе шифрования, должен быть полностью и надежно скрыты в шифрованном тексте;

    длина шифрованного текста должна быть равной длине исходного текста;

    не должно быть простых и легко устанавливаемых зависимостью между ключами, последовательно используемыми в процессе шифрования;

    любой ключ из множества возможных должен обеспечивать надежную защиту информации;

    алгоритм должен допускать как программную, так и аппаратную реализацию, при этом изменение длины ключа не должно вести к качественному ухудшению алгоритма шифрования.

    Глава 2. Протоколы распределения криптографических ключей и протоколы электронной подписи.

    Как бы ни были сложны и надежны криптографические системы - их слабое мест при практической реализации - проблема распределения ключей. Для того, чтобы был возможен обмен конфиденциальной информацией между двумя субъектами ИС, ключ должен быть сгенерирован одним из них, а затем каким-то образом опять же в конфиденциальном порядке передан другому. Т.е. в общем случае для передачи ключа опять же требуется использование какой-то криптосистемы.

    Для решения этой проблемы на основе результатов, полученных классической и современной алгеброй, были предложены системы с открытым ключом.

    Суть их состоит в том, что каждым адресатом ИС генерируются два ключа, связанные между собой по определенному правилу. Один ключ объявляется открытым, а другой закрытым. Открытый ключ публикуется и доступен любому, кто желает послать сообщение адресату. Секретный ключ сохраняется в тайне.

    Исходный текст шифруется открытым ключом адресата и передается ему. Зашифрованный текст в принципе не может быть расшифрован тем же открытым


    ключом. Дешифрование сообщение возможно только с использованием закрытого ключа, который известен только самому адресату.

    Криптографические системы с открытым ключом используют так называемые необратимые или односторонние функции, которые обладают следующим свойством: при заданном значении x относительно просто вычислить значение f(x), однако если y=f(x), то нет простого пути для вычисления значения x.

    Множество классов необратимых функций и порождает все разнообразие систем с открытым ключом. Однако не всякая необратимая функция годится для использования в реальных ИС.



    
    Top