Как найти совместную плотность распределения. Смотреть страницы где упоминается термин совместная плотность. Совместная плотность распределения вероятности двух случайных величин

Матрицей называется прямоугольная таблица чисел, состоящая из m одинаковой длины строк или n одинаковой длины столбцов.

aij - элемент матрицы, который находится в i -ой строке и j -м столбце.

Для краткости матрицу можно обозначать одной заглавной буквой, например, А или В .

В общем виде матрицу размером m ×n записывают так

Примеры:

Если в матрице число строк равно числу столбцов, то матрица называется квадратной , причём число ее строк или столбцов называется порядком матрицы. В приведённых выше примерах квадратными являются вторая матрица – её порядок равен 3, и четвёртая матрица – её порядок 1.

Матрица, в которой число строк не равно числу столбцов, называется прямоугольной . В примерах это первая матрица и третья.

Главной диагональю квадратной матрицы назовём диагональ, идущую из левого верхнего в правый нижний угол.

Квадратная матрица, у которой все элементы, лежащие ниже главной диагонали, равны нулю, называется треугольной матрицей.

.

Квадратная матрица, у которой все элементы, кроме, быть может, стоящих на главной диагонали, равны нулю, называется диагональной матрицей. Например, или .

Диагональная матрица, у которой все диагональные элементы равны единице, называется единичной матрицей и обозначается буквой E. Например, единичная матрица 3-го порядка имеет вид .

назад в содержание

(36)85.Что такое линейные операции над матрицами? Примеры.

Во всех случаях, когда вводятся новые математические объекты, необходимо договариваться о правилах действийнад ними, а также определить - какие объекты считаются равнымимежду собой.

Природа объектов не имеет никакого значения. Это могут быть вещественные или комплексные числа, векторы, матрицы, строки или что-то иное.

К числу стандартных действий относятся линейные операции, а именно: умножение на число и сложение; в данном конкретном случае - умножкние матрицы на число и сложение матриц.

При умножении матрицы на число каждый матричный элемент умножается на это число, а сложение матриц подразумевает попарное сложение элементов, расположенных в эквивалентных позициях.

Терминологическое выражение " линейная комбинация<" (векторов, матриц, строк, столбцов и так далее) всегда означает одно и тоже: алгебраическая сумма этих векторов (или матриц, строк, столбцов и так далее), предварительно умноженных на числовые коэффициенты.

Матрицы A = || a i j || и B = || a i j || считаются равными, если они имеют одинаковые размеры и их соответствующие матричные элементы попарно равны:

Сложение матриц Операция сложения определена только для матриц одинаковых размеров. Результатом сложения матриц A = || a i j || и B = || b i j || является матрица C = || c i j || , элементы которой равны сумме соответствующих матричных элементов.

Над такими матрицами производят различные действия: перемножают друг на друга, находят определители, и т.п. Матрица - частный случай массива: если массив может иметь любое количество измерений, то матрицей называют только двумерный массив.

В программировании матрицей также называют двумерный массив. Любой из массивов в программе имеет имя, как если бы это была одна переменная. Чтобы уточнить, какая из ячеек массива имеется в виду, при упоминании его в программе совместно с переменной используют номер ячейки в ней. Как двумерная матрица, так и n-мерный массив в программе может содержать не только числовую, но и символьную, строковую, булевую и иную информацию, но всегда одну и ту же в пределах всего массива.

Обозначаются матрицы заглавными буквами А:MxN, где А – имя матрицы, M– количество строк в матрице, а N– количество столбцов. Элементы – соответствующими строчными буквами с индексами, обозначающими их номер в строке и в столбце a (m, n).

Наиболее часто распространены матрицы прямоугольной формы, хотя в далеком прошлом математики рассматривали и треугольные. Если количество строк и столбцов матрицы одинаково, она называется квадратной. При этом M=N уже имеет наименование порядка матрицы. Матрица, имеющая всего одну строку, именуется строкой. Матрица с всего одним столбцом называется столбцом. Диагональная матрица – это квадратная матрица, в которой не равны нулю только элементы, расположенные по диагонали. Если все элементы равны единице, матрица называется единичной, если нулю – нулевой.

Если в матрице поменять местами строки и столбцы, она станет транспонированной. Если все элементы заменить комплексно-сопряженными, она станет комплексно-сопряженной. Кроме того, существуют и другие виды матриц, определяющиеся условиями, которые накладываются на матричные элементы. Но большинство таких условий применимо только к квадратным .

Видео по теме

Точки в пространстве, произведение Rv даёт другой вектор, который определяет положение точки после вращения. Если v - вектор-строка , такое же преобразование можно получить, используя vR T , где R T - транспонированная к R матрица.

Энциклопедичный YouTube

    1 / 5

    C# - Консоль - Олимпиада - Квадратная спираль

    Матрица: определение и основные понятия

    Где брать силы и вдохновения Подзарядка 4 квадратной матрицы

    Сумма и разность матриц, умножение матрицы на число

    Транспонована матриця / Транспонированная матрица

    Субтитры

Главная диагональ

Элементы a ii (i = 1, ..., n ) образуют главную диагональ квадратной матрицы. Эти элементы лежат на воображаемой прямой, проходящей из левого верхнего угла в правый нижний угол матрицы. Например, главная диагональ 4х4 матрицы на рисунке содержит элементы a 11 = 9, a 22 = 11, a 33 = 4, a 44 = 10.

Диагональ квадратной матрицы, проходящая через нижний левый и верхний правый углы, называется побочной .

Специальные виды

Название Пример с n = 3
Диагональная матрица [ a 11 0 0 0 a 22 0 0 0 a 33 ] {\displaystyle {\begin{bmatrix}a_{11}&0&0\\0&a_{22}&0\\0&0&a_{33}\end{bmatrix}}}
Нижняя треугольная матрица [ a 11 0 0 a 21 a 22 0 a 31 a 32 a 33 ] {\displaystyle {\begin{bmatrix}a_{11}&0&0\\a_{21}&a_{22}&0\\a_{31}&a_{32}&a_{33}\end{bmatrix}}}
Верхняя треугольная матрица [ a 11 a 12 a 13 0 a 22 a 23 0 0 a 33 ] {\displaystyle {\begin{bmatrix}a_{11}&a_{12}&a_{13}\\0&a_{22}&a_{23}\\0&0&a_{33}\end{bmatrix}}}

Диагональные и треугольные матрицы

Если все элементы вне главной диагонали нулевые, A называется диагональной . Если все элементы над (под) главной диагональю нулевые, A называется нижней (верхней) треугольной матрицей .

Единичная матрица

Q (x ) = x T Ax

принимает только положительные значения (соответственно, отрицательные значения или и те, и другие). Если квадратичная форма принимает только неотрицательные (соответственно, только неположительные) значения, симметричная матрица называется положительно полуопределённой (соответственно, отрицательно полуопределённой). Матрица будет неопределённой, если она ни положительно, ни отрицательно полуопределена.

Симметричная матрица положительно определена тогда и только тогда, когда все её собственные значения положительны. Таблица справа показывает два возможных случая для матриц 2×2.

Если использовать два различных вектора, получим билинейную форму , связанную с A :

B A (x , y ) = x T Ay .

Ортогональная матрица

Ортогональная матрица - это квадратная матрица с вещественными элементами, столбцы и строки которой являются ортогональными единичными векторами (т. е. ортонормальными). Можно также определить ортогональную матрицу как матрицу, обратная которой равна транспонированной:

A T = A − 1 , {\displaystyle A^{\mathrm {T} }=A^{-1},}

откуда вытекает

A T A = A A T = E {\displaystyle A^{T}A=AA^{T}=E} ,

Ортогональная матрица A всегда обратима (A −1 = A T), унитарна (A −1 = A *), и нормальна (A *A = AA *). Определитель любой ортонормальной матрицы равен либо +1, либо −1. В качестве линейного отображения любая ортонормальная матрица с определителем +1 является простым поворотом , в то время как любая любая ортонормальная матрица с определителем −1 является либо простым отражением , либо композицией отражения и поворота.

Операции

След

Определитель det(A ) или |A | квадратной матрицы A - это число, определяющее некоторые свойства матрицы. Матрица обратима тогда и только тогда , когда её определитель ненулевой.

Пусть имеется квадратная матрица n-го порядка

Матрица А -1 называется обратной матрицей по отношению к матрице А, если А*А -1 = Е, где Е — единичная матрица n-го порядка.

Единичная матрица — такая квадратная матрица, у которой все элементы по главной диагонали, проходящей от левого верхнего угла к правому нижнему углу, — единицы, а остальные — нули, например:

Обратная матрица может существовать только для квадратных матриц т.е. для тех матриц, у которых число строк и столбцов совпадают.

Теорема условия существования обратной матрицы

Для того чтобы матрица имела обратную матрицу необходимо и достаточно, чтобы она была невырожденной.

Матрица А = (А1, А2,...А n) называется невырожденной , если векторы-столбцы являются линейно независимыми. Число линейно независимых векторов-столбцов матрицы называется рангом матрицы . Поэтому можно сказать, что для того, чтобы существовала обратная матрица, необходимо и достаточно, чтобы ранг матрицы равнялся ее размерности, т.е. r = n.

Алгоритм нахождения обратной матрицы

  1. Записать в таблицу для решения систем уравнений методом Гаусса матрицу А и справа (на место правых частей уравнений) приписать к ней матрицу Е.
  2. Используя преобразования Жордана, привести матрицу А к матрице, состоящей из единичных столбцов; при этом необходимо одновременно преобразовать матрицу Е.
  3. Если необходимо, то переставить строки (уравнения) последней таблицы так, чтобы под матрицей А исходной таблицы получилась единичная матрица Е.
  4. Записать обратную матрицу А -1 , которая находится в последней таблице под матрицей Е исходной таблицы.
Пример 1

Для матрицы А найти обратную матрицу А -1

Решение: Записываем матрицу А и справа приписываем единичную матрицу Е. Используя преобразования Жордана, приводим матрицу А к единичной матрице Е. Вычисления приведены в таблице 31.1.

Проверим правильность вычислений умножением исходной матрицы А и обратной матрицы А -1 .

В результате умножения матриц получилась единичная матрица. Следовательно, вычисления произведены правильно.

Ответ:

Решение матричных уравнений

Матричные уравнения могут иметь вид:

АХ = В, ХА = В, АХВ = С,

где А,В,С — задаваемые матрицы, Х- искомая матрица.

Матричные уравнения решаются с помощью умножения уравнения на обратные матрицы.

Например, чтобы найти матрицу из уравнения , необходимо умножить это уравнение на слева.

Следовательно, чтобы найти решение уравнения , нужно найти обратную матрицу и умножить ее на матрицу , стоящие в правой части уравнения.

Аналогично решаются другие уравнения.

Пример 2

Решить уравнение АХ = В, если

Решение : Так как обратная матрица равняется (см. пример 1)

Матричный метод в экономическом анализе

Наряду с другими в находят применение также матричные методы . Эти методы базируются на линейной и векторно-матричной алгебре. Такие методы применяются для целей анализа сложных и многомерных экономических явлений. Чаще всего эти методы используются при необходимости сравнительной оценки функционирования организаций и их структурных подразделений.

В процессе применения матричных методов анализа можно выделить несколько этапов.

На первом этапе осуществляется формирование системы экономических показателей и на ее основе составляется матрица исходных данных , которая представляет собой таблицу, в которой по ее отдельным строкам показываются номера систем (i = 1,2,....,n) , а по вертикальным графам — номера показателей (j = 1,2,....,m) .

На втором этапе по каждой вертикальной графе выявляется наибольшее из имеющихся значений показателей, которое и принимается за единицу.

После этого все суммы, отраженные в данной графе делят на наибольшее значение и формируется матрица стандартизированных коэффициентов .

На третьем этапе все составные части матрицы возводят в квадрат. Если они имеют различную значимость, то каждому показателю матрицы присваивается определенный весовой коэффициент k . Величина последнего определяется экспертным путем.

На последнем, четвертом этапе найденные величины рейтинговых оценок R j группируются в порядке их увеличения или уменьшения.

Изложенные матричные методы следует использовать, например, при сравнительном анализе различных инвестиционных проектов, а также при оценке других экономических показателей деятельности организаций.




Top