Электрическое сопротивление участка цепи. Формулировка для полной цепи. Сила тока в полной цепи прямо пропорциональна эдс источника тока и обратно пропорциональна полному сопротивлению цепи

Сила тока в участке цепи прямо пропорциональна напряжению, и обратно пропорциональна электрическому сопротивлению данного участка цепи.

Закон Ома записывается формулой:

Где: I — сила тока (А), U — напряжение (В), R — сопротивление (Ом).

Следует иметь в виду, что закон Ома является фундаментальным (основным) и может быть применён к любой физической системе, в которой действуют потоки частиц или полей, преодолевающие сопротивление. Его можно применять для расчёта гидравлических, пневматических, магнитных, электрических, световых, тепловых потоков.

Закон Ома определяет связь трех фундаментальных величин: силы тока, напряжения и сопротивления. Он утверждает, что сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

Ток течет из точки с избытком электронов в точку с дефицитом электронов. Путь, по которому следует ток, называется электрической цепью. Все электрические цепи состоят из источника тока , нагрузки и проводников . Источник тока обеспечивает разность потенциалов , которая позволяет течь току. Источником тока может быть батарея, генератор или другое устройство. Нагрузка оказывает сопротивление протеканию тока . Это сопротивление может быть высоким или низким, в зависимости от назначения цепи. Ток в цепи течет через проводники от источника к нагрузке . Проводник должен легко отдавать электроны. В большинстве проводников используется медь.

Путь электрического тока к нагрузке может проходить через три типа цепей: последовательную цепь, параллельную или последовательно-параллельную цепи.Ток электронов в электрической цепи течет от отрицательного вывода источника тока, через нагрузку к положительному выводу источника тока.

Пока этот путь не нарушен, цепь замкнута и ток течет.

Однако если прервать путь, цепь станет разомкнутой и ток не сможет по ней идти.

Силу тока в электрической цепи можно изменять, изменяя либо приложенное напряжение, либо сопротивление цепи. Ток изменяется в таких же пропорциях, что и напряжение или сопротивление. Если напряжение увеличивается, то ток также увеличивается. Если напряжение уменьшается, то ток тоже уменьшается. С другой стороны, если сопротивление увеличивается, то ток уменьшается. Если сопротивление уменьшается, то ток увеличивается. Это соотношение между напряжением, силои тока и сопротивлением называется законом Ома.

Закон Ома утверждает, что ток в цепи (последовательной, параллельной или последовательно-параллельной) прямо пропорционален напряжению и обратно пропорционален сопротивлению

При определении неизвестных величин в цепи, следуйте следующим правилам:

  1. Нарисуйте схему цепи и обозначьте все известные величины.
  2. Проведите расчеты для эквивалентных цепей и перерисуйте цепь.
  3. Рассчитайте неизвестные величины.

Помните: закон Ома справедлив для любого участка цепи и может применяться в любой момент. По последовательной цепи течет один и тот же ток, а к любой ветви параллельной цепи приложено одинаковое напряжение.

История закона Ома

Георг Ом, проводя эксперименты с проводником, установил, что сила тока в проводнике пропорциональна напряжению, приложенному к его концам. Коэффициент пропорциональности назвали электропроводностью, а величину принято именовать электрическим сопротивлением проводника. Закон Ома был открыт в 1826 году.

Ниже приведены анимации схем иллюстрирующих закон Ома. Обратите внимание, что (на первой картинке) Амперметр (А) является идеальным и имеет нулевое сопротивление.

Данная анимация показывает как меняется ток в цепи при изменении приложенного напряжения.

Следующая анимация показывает как меняется сила тока в цепи при изменении сопротивления.

Закон Ома.

I = U/ R

Где U – напряжение концов участка,I– сила тока, R– сопротивление проводника.

R = U / I

Эти формулы справедливы лишь когда сеть испытывает на себе одно сопротивление.

Условием движения электрических зарядов в проводнике является наличие в нем электрического поля, которое создается и поддерживается особыми устройствами, получившими название источников тока .

Основной величиной, характеризующей источник тока, является его электродвижущая сила.

Электродвижущей силой источника (сокращенно ЭДС) называется скалярная физическая величина, характеризующая работу сторонних сил, способных создавать на зажимах источника (полюсах) разность потенциалов.

Она равна работе сторонних сил по перемещению заряженной частицы с положительным единичным зарядом от одного полюса источника к другому, т.е.

В СИ ЭДС измеряется в вольтах (В), т.е. в тех же единицах, что и напряжение.

Сторонние силы источника – это силы, которые осуществляют разделение зарядов в источнике и тем самым создают на его полюсах разность потенциалов. Эти силы могут иметь различную природу, но только не электрическую (отсюда и название) - Механические силы, химическая среда в аккумуляторе; световой поток в фотоэлементах.

Направление ЭДС - это направление принудительного движения положительных зарядов внутри генератора от минуса к плюсу под действием иной, чем электрическая, природы.

Внутреннее сопротивление генератора это сопротивление конструктивных элементов внутри него.

Если электрическую цепь разделить на два участка – внешний, с сопротивлением R , и внутренний, с сопротивлением r , то ЭДС источника тока окажется равной сумме напряжений на внешнем и внутреннем участках цепи:

По закону Ома напряжение на любом участке цепи определяется величиной протекающего тока и его сопротивлением:

Так как , следовательно

, (3)

т.е. напряжение на полюсах источника при замкнутой цепи зависит от соотношения сопротивлений внутреннего и внешнего участков цепи. Если приблизительно равно U .

Электрическое сопротивление.

Свойство материала проводника препятствовать прохождению через него электрического тока называется электрическим сопротивлением.

Из закона Ома: R = U / I



За единицу электрического сопротивления принят 1Ом .

Сопротивлением 1 Ом обладает проводник, в котором при напряжении 1 В проходит ток 1 А.

Величина, обратная сопротивлению, называется электрической проводимостью :

Единицей проводимости является сименс :

Величина, обратная удельной проводимости, называется удельным сопротивлением р, т. е.

Увеличение температуры сопровождается усилением хаотического теплового движения частиц вещества, что приводит к увеличению числа столкновений электронов с ними и затрудняет упорядоченное движение электронов.

Сопротивление – резистор.

Метод узловых потенциалов.

Пример 2.7.4.

Определить значения и направления токов в ветвях методом узловых потенциалов для цепи рис. 2.7.4, если:

Е1=108 В; Е2=90 В; Ri1=2 Ом; Ri2=1 Ом; R1=28 Ом; R2=39 Ом; R3=60 Ом.

Решение.

Определяем токи в ветвях.


Метод двух узлов.

Одним из распространенных методов расчета электрических цепей является метод двух узлов .Этот метод применяется в случае, когда в цепи всего два узла

Метод контурных токов.

Алгоритм действий таков:

По второму закону Кирхгофа, относительно контурных токов, составляем уравнения для всех независимых контуров. При записи равенства считать, что направление обхода контура, для которого составляется уравнение, совпадает с направлением контурного тока данного контура. Следует учитывать и тот факт, что в смежных ветвях, принадлежащих двум контурам, протекают два контурных тока. Падение напряжения на потребителях в таких ветвях надо брать от каждого тока в отдельности.

Произвольно задаемся направлением реальных токов всех ветвей и обозначаем их. Маркировать реальные токи надо таким образом, чтобы не путать с контурными. Для нумерации реальных токов можно использовать одиночные арабские цифры (I1, I2, I3 и т. д.).

При алгебраическом суммировании без изменения знака берется контурный ток, направление которого совпадает с принятым направлением реального тока ветви. В противном случае контурный ток умножается на минус единицу.



Пример расчёта сложной цепи методом контурных токов.

Рис. 1. Схема электрической цепи для примера расчета по методу контурных токов

Решение. Для расчета сложной цепи этим методом достаточно составить два уравнения, по числу независимых контуров. Контурные токи направляем по часовой стрелке и обозначаем I11 и I22 (см. рисунок 1).

По второму закону Кирхгофа относительно контурных токов составляем уравнения:

Решаем систему и получаем контурные токи I11 = I22 = 3 А.

Следует отметить, как положительный факт, что в методе контурных токов по сравнению с решением по законам Кирхгофа приходится решать систему уравнений меньшего порядка. Однако этот метод не позволяет сразу определять реальные токи ветвей.

Закон Ома.

Согласно закону Ома для некоторого участка цепи, сила тока на участке цепи прямо пропорциональна напряжению на концах участка и обратно пропорциональна сопротивлению.

«Физика - 10 класс»

Что заставляет заряды двигаться вдоль проводника?
Как электрическое поле действует на заряды?


Вольт-амперная характеристика.


В предыдущем параграфе говорилось, что для существования тока в проводнике необходимо создать разность потенциалов на его концах. Сила тока в проводнике определяется этой разностью потенциалов. Чем больше разность потенциалов, тем больше напряжённость электрического поля в проводнике и, следовательно, тем большую скорость направленного движения приобретают заряженные частицы. Это означает увеличение силы тока.

Для каждого проводника - твёрдого, жидкого и газообразного - существует определённая зависимость силы тока от приложенной разности потенциалов на концах проводника.

Зависимость силы тока в проводнике от напряжения, подаваемого на него, называют вольт-амперной характеристикой проводника.

Её находят, измеряя силу тока в проводнике при различных значениях напряжения. Знание вольт-амперной характеристики играет большую роль при изучении электрического тока.


Закон Ома.


Наиболее простой вид имеет вольт- амперная характеристика металлических проводников и растворов электролитов. Впервые (для металлов) её установил немецкий учёный Георг Ом, поэтому зависимость силы тока от напряжения носит название закона Ома .

На участке цепи, изображённой на рисунке 15.3, ток направлен от точки 1 к точке 2. Разность потенциалов (напряжение) на концах проводника равна U = φ 1 - φ 2 . Так как ток направлен слева направо, то напряжённость электрического поля направлена в ту же сторону и φ 1 > φ 2 .

Измеряя силу тока амперметром а напряжение вольтметром, можно убедиться в том, что сила тока прямо пропорциональна напряжению.

Закон Ома для участка цепи

Сила тока на участке цепи прямо пропорциональна приложенному к нему напряжению U и обратно пропорциональна сопротивлению этого участка R.

Применение обычных приборов для измерения напряжения - вольтметров - основано на законе Ома. Принцип устройства вольтметра такой же, как и у амперметра. Угол поворота стрелки прибора пропорционален силе тока.

Сила тока, проходящего по вольтметру, определяется напряжением между точками цепи, к которой он подключён. Поэтому, зная сопротивление вольтметра, можно по силе тока определить напряжение. На практике прибор градуируют так, чтобы он сразу показывал напряжение в вольтах.


Сопротивление.


Основная электрическая характеристика проводника - сопротивление . От этой величины зависит сила тока в проводнике при заданном напряжении.

Свойство проводника ограничивать силу тока в цепи, т. е. противодействовать электрическому току, называют электрическим сопротивлением проводника .

С помощью закона Ома (15.3) можно определить сопротивление проводника:

Для этого нужно измерить напряжение на концах проводника и силу тока в нём.

На рисунке 15.4 приведены графики вольт-амперных характеристик двух проводников. Очевидно, что сопротивление проводника, которому соответствует график 2, больше, чем сопротивление проводника, которому соответствует график 1.

Сопротивление проводника не зависит от напряжения и силы тока.

Сопротивление зависит от материала проводника и его геометрических размеров.

Сопротивление проводника длиной l с постоянной площадью поперечного сечения S равно:

где ρ - величина, зависящая от рода вещества и его состояния (от температуры в первую очередь).

Величину ρ называют удельным сопротивлением проводника .

Удельное сопротивление материала численно равно сопротивлению проводника из этого материала длиной 1 м и площадью поперечного сечения 1 м 2 .

Единицу сопротивления проводника устанавливают на основе закона Ома и называют её омом.

Проводник имеет сопротивление 1 Ом, если при разности потенциалов 1 В сила тока в нём 1 А.

Единицей удельного сопротивления является 1 Ом м. Удельное сопротивление металлов мало. А вот диэлектрики обладают очень большим удельным сопротивлением. Например, удельное сопротивление серебра 1,59 10 -8 Ом м, а стекла порядка 10 10 Ом м. В справочных таблицах приводятся значения удельного сопротивления некоторых веществ.


Значение закона Ома.


Из закона Ома следует, что при заданном напряжении сила тока на участке цепи тем больше, чем меньше сопротивление этого участка. Если по какой-то причине (нарушение изоляции близко расположенных проводов, неосторожные действия при работе с электропроводкой и пр.) сопротивление между двумя точками, находящимися под напряжением, оказывается очень малым, то сила тока резко возрастает (возникает короткое замыкание), что может привести к выходу из строя электроприборов и даже возникновению пожара.

Именно из-за закона Ома нельзя говорить, что чем выше напряжение, тем оно опаснее для человека. Сопротивление человеческого тела может сильно изменяться в зависимости от условий (влажности, температуры окружающей среды, внутреннего состояния человека) поэтому даже напряжение 10-20 В может оказаться опасным для здоровья и жизни человека. Следовательно, всегда необходимо учитывать не только напряжение, но и силу электрического тока. При работе в физической лаборатории нужно строго соблюдать правила техники безопасности!

Закон Ома - основа расчётов электрических цепей в электротехнике.

Если I - сила тока, U - напряжение, a R - сопротивление, то

I =

Этот закон носит название закона Ома , по имени ученого, его открывшего.

Часто бывает нужно регулировать силу тока в цепи. Для этого используются специальные приборы, называемые реостатами. В реостате проволока, сделанная из материала с большим удельным сопротивлением, намотана на керамический цилиндр. Над обмоткой расположен металлический стержень, по которому может перемещаться контакт. Контакт прижимается к обмотке; при его перемещении меняется длина обмотки, по которой проходит ток, и соответственно сопротивление реостата. Реостат и его условное обозначение на схемах показаны на рисунке 17.

Закон ома для полной цепи

Пусть за время t через поперечное сечение проводника пройдет электрический заряд q. Тогда работу сторонних сил при перемещении заряда можно записать так:

Аст = q.

Согласно определению силы тока

q = It.

Поэтому

Аст = It .

При совершении этой работы на внутреннем и внешнем участках цепи, сопротивления которых R и r , выделяется некоторое количество теплоты Q . По закону Джоуля-Ленца оно равно:

Q = I Rt + I r.

Согласно закону сохранения энергии

A = Q.

Следовательно,

= IR + I r.

Произведение силы тока на сопротивление участка цепи часто называют падением напряжения на этом участке. Таким образом, ЭДС равна сумме падений напряжений на внутреннем и внешнем участках замкнутой цепи. Обычно это выражение записывают так:

I = /( R + r ).

Эту зависимость опытным путем получил Г. Ом, и называется она законом Ома для полной цепи и читается так:

Сила тока в полной цепи прямо пропорциональна эдс источника тока и обратно пропорциональна полному сопротивлению цепи.

При разомкнутой цепи ЭДС равна напряжению на зажимах источника и, следовательно, может быть измерена вольтметром.

f 214. Ядерные силы

В состав ядра входят протоны, испытывающие взаимное кулоновское отталкивание, и нейтроны. Устойчивость ядер, не разлетающихся под действием кулоновских сил отталкивания, свидетельствует о том, что в ядрах действуют специфические силы притяжения, называемые ядерными силами. Ядерные силы не могут быть обычными силами кулоновского взаимодействия. Кулоновское взаимодействие между протоном и протоном сводится к отталкиванию, а между нейтроном и протоном, нейтроном и нейтроном отсутствует. Электрические силы зависят от заряда и малы по сравнению с ядерными. Гравитационные силы также не могут удерживать частицы в ядре, так как они слишком малы. Например, гравитационное взаимодействие двух протонов в 1036 раз меньше их кулоновского взаимодействия. В роли ядерных сил не могут выступать и силы магнитного взаимодействия. Расчеты " показывают, что энергия" магнитного взаимодействия, например протона и нейтрона в ядре атома дейтерия |Н, составляет около 0,1 МэВ, что гораздо меньше энергии связи нуклонов в ядре (2,2 МэВ).

Все это говорит о том, что ядерные силы не могут быть сведены ни к электрическим, ни к магнитным, ни к гравитационным, а представляют собой специфический вид сил.

Взаимодействие между нуклонами в ядре является примером сильных взаимодействий - взаимодействий через ядерные силы.

В 1827 году Георг Ом опубликовал свои исследования, которые составляют основу формулы, используемую и по сей день. Ом выполнил большую серию экспериментов, которые показали связь между приложенным напряжением и током, протекающим через проводник.

Этот закон является эмпирическим, то есть основанный на опыте. Обозначение «Ом» принято в качестве официальной единицы СИ для электрического сопротивления.

Закон Ома для участка цепи гласит, что электрический ток в проводнике прямо пропорционален разности потенциалов в нем и обратно пропорционален его сопротивлению. Принимая во внимание, что сопротивление проводника (не путать с ) величина постоянная, можно оформить это следующей формулой:

  • I — тока в амперах (А)
  • V — напряжение в вольтах (В)
  • R — сопротивления в омах (Ом)

Для наглядности: резистор имеющий сопротивление 1 Ом, через который протекает ток силой в 1 А на своих выводах имеет разность потенциалов (напряжение) в 1 В.

Немецкий физик Кирхгоф (известен своими правилами Кирхгофа) сделал обобщение, которое больше используется в физике:

  • σ – проводимость материала
  • J — плотность тока
  • Е — электрическое поле.

Закон Ома и резистор

Резисторы являются пассивными элементами, которые оказывают сопротивление потоку электрического тока в цепи. , который функционирует в соответствии с законом Ома, называется омическим сопротивлением. Когда ток проходит через такой резистор, то падение напряжения на его выводах пропорционально величине сопротивления.

Формула Ома остается справедливой и для цепей с переменным напряжением и током. Для конденсаторов и катушек индуктивности закон Ома не подходит, так как их ВАХ (вольт-амперная характеристика) по сути, не является линейной.

Формула Ома действует так же для схем с несколькими резисторами, которые могут быть соединены последовательно, параллельно или иметь смешанное соединение. Группы резисторов, соединенные последовательно или параллельно могут быть упрощены в виде эквивалентного сопротивления.

В статьях о и соединении более подробно описано как это сделать.

Немецкий физик Георг Симон Ом опубликовал в 1827 свою полную теорию электричества под названием «теория гальванической цепи». Он нашел, что падение напряжения на участке цепи является результатом работы тока, протекающего через сопротивление этого участка цепи. Это легло в основу закона, который мы используем сегодня. Закон является одним из основных уравнений для резисторов.

Закон Ома — формула

Формула закона Ома может быть использована, когда известно две из трех переменных. Соотношение между сопротивлением, током и напряжением может быть записано по-разному. Для усвоения и запоминания может быть полезен «треугольник Ома».

Ниже приведены два примера использования такого треугольного калькулятора.

Имеем резистор сопротивлением в 1 Ом в цепи с падением напряжения от 100В до 10В на своих выводах. Какой ток протекает через этот резистор? Треугольник напоминает нам, что:
Имеем резистор сопротивлением в 10 Ом через который протекает ток в 2 Ампера при напряжении 120В. Какое будет падение напряжения на этом резисторе? Использование треугольника показывает нам, что: Таким образом, напряжение на выводе будет 120-20 = 100 В.

Закон Ома — мощность

Когда через резистор протекает электрический ток, он рассеивает определенную часть мощности в виде тепла.

Мощность является функцией протекающего тока I (А) и приложенного напряжения V (В):

  • Р — мощность в ваттах (В)

В сочетании с законом Ома для участка цепи, формулу можно преобразовать в следующий вид:

Идеальный резистор рассеивает всю энергию и не сохраняет электрическую или магнитную энергию. Каждый резистор имеет предел мощности, которая может быть рассеяна, не оказывая повреждение резистору. Это мощность называется номинальной.

Окружающие условия могут снизить или повысить это значение. Например, если окружающий воздух горячий, то способность рассеять излишнее тепло у резистора снижается, и на оборот, при низкой температуре окружающего воздух рассеиваемая способность резистора возрастает.

На практике, резисторы редко имеют обозначение номинальной мощности. Тем не менее, большинство из резисторов рассчитаны на 1/4 или 1/8 Вт.

Ниже приведена круговая диаграмма, которая поможет вам быстро определить связь между мощностью, силой тока, напряжением и сопротивлением. Для каждого из четырех параметров показано, как вычислить свое значение.

Закон Ома — калькулятор

Данный онлайн калькулятор закона Ома позволяет определить взаимосвязь между силой тока, электрическим напряжением, сопротивлением проводника и мощностью. Для расчета введите любые два параметра и нажмите кнопку расчет.




Top