Протоколы ARP, RARP, IP, ICMP. Для чего используется протокол ARP? ARP: протокол определения адреса

Введение

Проблема, которую мы будем обсуждать в этой главе, заключается в том, что IP адреса имеют какое-либо значение только в семействе протоколов TCP/IP. Канальные уровни, такие как Ethernet или Token ring, имеют собственную схему адресации (в основном 48-битные адреса); сетевые уровни, в свою очередь, используют эти канальные уровни. Сеть Ethernet, может быть использована различными сетевыми уровнями в одно и то же время. Компьютеры использующие разные сетевые протоколы могут находиться на одном и том же физическом кабеле.

Когда фрейм Ethernet отправляется от одного хоста по локальной сети к другому, по его 48-битному Ethernet адресу определяется, к какому интерфейсу он должен быть доставлен. Драйвер сетевой платы никогда не смотрит на IP адрес назначения в IP датаграмме.

Другими словами возникает необходимость установить соответствие между двумя различными формами адресов: 32-битными IP адресами и каким-либо типом адресов канального уровня. RFC 826 [ Plummer 1982] - официальная спецификация ARP.

На рисунке 4.1 показаны два протокола, которые мы рассмотрим в этой и следующей главах: протокол определения адреса (ARP - address resolution protocol) и обратный протокол определения адреса (RARP - reverse address resolution protocol).

Рисунок 4.1 Протоколы определения адреса: ARP и RARP.

ARP предоставляет динамическое сопоставление IP адресов и соответствующих аппаратных адресов. Мы используем термин динамическое, так как это происходит автоматически и обычно не зависит от используемых прикладных программ или воли системного администратора.

RARP, в основном, используется системами без жестких дисков (бездисковые рабочие станции или X терминалы), однако здесь требуется ручная конфигурация с участием системного администратора. Мы рассмотрим RARP в .

Если мы введем команду

% ftp bsdi

будет выполнена следующая последовательность действий. (См. рисунок 4.2.)

  1. Приложение, FTP клиент, вызывает функцию gethostbyname(3), чтобы конвертировать имя хоста (bsdi) в 32-битный IP адрес. Эта функция в DNS (Domain Name System) называется разборщиком (resolver) , мы опишем это подробно в . Подобное преобразование осуществляется с использованием DNS или, если существует маленькая сеть, то с помощью статического файла хостов ( /etc/hosts).
  2. FTP клиент требует установить TCP соединение с указанным IP адресом.
  3. TCP посылает запрос на установление соединения удаленному хосту, посылая IP датаграммы по указанному IP адресу. (Мы рассмотрим как это делается более подробно в .)
  4. Если хост назначения подключен к сети (Ethernet, Token ring, или к другому концу канала точка-точка), IP датаграмма может быть послана непосредственно хосту. Если хост назначения находится в удаленной сети, IP маршрутизатор определяет Internet адрес непосредственно подключенного маршрутизатора следующей пересылки, чтобы послать туда IP датаграмму. В обоих случаях IP датаграмма посылается либо хосту, либо маршрутизатору, подключенные непосредственно к данной сети.
  5. Если используется Ethernet, посылающий хост должен конвертировать 32-битный адрес в 48-битный Ethernet адрес. Или другими словами, осуществить преобразование из логического Internet адреса в соответствующий физический аппаратный адрес. Этим занимается ARP. ARP работает в широковещательных сетях, где много хостов или маршрутизаторов подключено к одной и той же сети.
  6. ARP посылает фрейм Ethernet, который называется ARP запрос (ARP request), каждому хосту в сети. Подобный метод рассылки называется широковещательным запросом (broadcast). На рисунке 4.2 широковещательный запрос показан пунктирными линиями. ARP запрос содержит IP адрес хоста назначения (имя которого bsdi) и запрос "если Вы владелец этого IP адреса, пожалуйста сообщите мне Ваш аппаратный адрес".

Рисунок 4.2 Реакция ARP на ввод пользователя: ftp hostname.

  • Хост назначения на ARP уровне получает этот широковещательный запрос, определяет, что отправитель спрашивает именно его IP адрес, и отвечает на него ARP откликом (ARP reply). Этот отклик содержит IP адрес и соответствующий аппаратный адрес.
  • ARP отклик принимается, и IP датаграмма, из-за которой начался обмен ARP запрос - ARP отклик, может быть послана.
  • IP датаграмма отправляется на хост назначения.
  • Фундаментальная концепция, заложенная в ARP, заключается в следующем. Сетевой интерфейс имеет аппаратный адрес (48-битное значение для Ethernet или Token ring). Фреймы, которыми обмениваются на аппаратном уровне, должны адресоваться к корректному интерфейсу. Однако TCP/IP испоьзует собственную схему адрессации: 32-битные IP адреса. Знание IP адреса хоста не позволяет ядру послать датаграмму этому хосту. Драйвер Ethernet должен знать аппаратный адрес пункта назначения, чтобы послать туда данные. В задачу ARP входит обеспечение динамического соответствия между 32-битными IP адресами и аппаратными адресами, используемыми различными сетевыми технологиями.

    Каналы точка-точка не используют ARP. Когда эти каналы конфигурируются (обычно во время загрузки), ядру необходимо сказать IP адрес для каждого конца канала. Аппаратные адреса, такие как Ethernet адреса, в данном случае не используются.

    Эффективность функционирования ARP во многом зависит от ARP кэша (ARP cache), который присутствует на каждом хосте. В кэше содержатся Internet адреса и соответствующие им аппаратные адреса. Стандартное время жизни каждой записи в кэше составляет 20 минут с момента создания записи.

    Содержимое ARP кэша можно увидеть с использованием команды arp(8). Опция -a показывает все записи, содержащиеся в кэше:

    bsdi % arp -a
    sun (140.252.13.33) at 8:0:20:3:f6:42
    svr4 (140.252.13.34) at 0:0:c0:c2:9b:26

    48-битные Ethernet адреса приведены в виде шести шестнадцатиричных чисел, разделенных двоеточиями. Дополнительные функции команды arp обсуждаются в разделе главы 4.

    Формат пакета ARP

    На рисунке 4.3 показан формат ARP запроса и формат ARP отклика, в случае использования Ethernet и IP адресов. (ARP можно использовать в других сетей, при этом он способен устанавливать соответствие не только для IP адресов. Первые четыре поля, следующие за полем типа фрейма, указывают на типы и размеры заключительных четырех полей.)

    Рисунок 4.3 Формат ARP запроса или отклика при работе с Ethernet.

    Два первых поля в Ethernet заголовке - поля источника и назначения Ethernet. Специальный адрес назначения Ethernet, состоящий из всех единиц, означает широковещательный адрес. Фреймы с таким адресом будут получены всеми Ethernet интерфейсами на кабеле.

    Двухбайтовый тип фрейма (frame type) Ethernet указывает, данные какого типа, пойдут следом. Для ARP запроса или ARP отклика это поле содержит 0x0806.

    Выражения аппаратный (hardware) и протокол (protocol) используются для описания полей в пакетах ARP. Например, ARP запрос запрашивает аппаратный адрес (в данном случае Ethernet адрес) соответствующий адресу протокола (в данном случае IP адрес).

    Поле hard type указывает на тип аппаратного адреса. Для Ethernet это значение равно единице. Prot type указывает тип адреса протокола, к которому будет приведено соответствие. Для IP адресов используется значение 0x0800. По своему целевому назначению это значение соответствует полю типа во фрейме Ethernet, который содержит IP датаграмму. (См. рисунок 2.1.)

    Два следующих однобайтных поля, hard size и prot size, указывают на размеры в байтах аппаратного адреса и адреса протокола. В ARP запросах и откликах они составляют 6 для Ethernet и 4 для IP адреса.

    Поле op указывает на тип операции: ARP запрос (значение устанавливается в 1), ARP отклик (2), RARP запрос (3) и RARP отклик (4). (Мы поговорим о RARP в .) Это поле необходимо, так как поля типа фрейма (frame type) одинаковы для ARP запроса и ARP отклика.

    Следующие четыре поля: аппаратный адрес отправителя (Ethernet адрес в данном примере), адрес протокола (IP адрес), аппаратный адрес назначения и адрес протокола назначения. Обратите внимание, что в данном случае происходит некоторое дублирование информации: аппаратный адрес отправителя может быть получен как из Ethernet заголовка, так и из ARP запроса.

    Для ARP запроса все поля заполнены, за исключением аппаратного адреса назначения. Когда система получает ARP запрос, который предназначается ей, она вставляет свой аппаратный адрес, меняет местами адреса источника и назначения, устанавливает поле op в значение 2 и отправляет отклик.

    Примеры ARP

    В этом разделе мы воспользуемся командой tcpdump, чтобы посмотреть, как в действительности работает ARP при запуске обычного TCP приложения, например, Telnet. В содержится дополнительная информация о работе программы tcpdump.

    Типичный пример

    Чтобы посмотреть как функционирует ARP, мы запустим команду telnet, чтобы подсоединиться к discard (discard server - сервер, не предоставляющий пользователю никаких услуг) серверу.

    bsdi% arp -a проверяем, что ARP кэш пуст
    bsdi% telnet svr4 discard подсоединяемся к серверу
    Trying 140.252.13.34 ...
    Connected to svr4.
    Escape character is "^]" .
    ^] нажимаем Control и правую квадратную скобку,
    telnet> quit чтобы получить приглашение Telnet и закрыть сессию
    Connection closed.

    Пока осуществляются эти действия, мы запускаем команду tcpdump с опцией -e на другом хосте (sun). Это позволит нам посмотреть аппаратные адреса (48-битные адреса Ethernet).


    arp who-has svr4 tell bsdi
    2 0.002174 (0.0022) 0:0:c0:c2:9b:26 0:0:c0:6f:2d:40 arp 60:
    arp reply svr4 is-at 0:0:c0:c2:9b:26
    3 0.002831 (0.0007) 0:0:c0:6f:2d:40 0:0:c0:c2:9b:26 ip 60:
    bsdi.1030>svr4.discard: S 596459521:596459521 (0)
    win 4096
    4 0.007834 (0.0050) 0:0:c0:c2:9b:26 0:0:c0:6f:2d:40 ip 60:
    svr4.discard>bsdi.1030: S 3562228252:3562228252 (0)
    ack 596459522 win 4096
    5 0.009615 (0.0018) 0:0:c0:6f:2d:40 0:0:c0:c2:9b:26 ip 60:
    bsdi.1030>svr4.discard: . ack 1 win 4096

    Рисунок 4.4 ARP запрос и ARP отклик, сгенерированные при запросе на Telnet соединение.

    %D0%A7%D0%B8%D1%81%D0%BB%D0%BE,%20%D0%BA%D0%BE%D1%82%D0%BE%D1%80%D0%BE%D0%B5%20%D0%BF%D0%B5%D1%87%D0%B0%D1%82%D0%B0%D0%B5%D1%82%D1%81%D1%8F%20%D0%B2%20%D0%BA%D0%B0%D0%B6%D0%B4%D0%BE%D0%B9%20%D1%81%D1%82%D1%80%D0%BE%D0%BA%D0%B5,%20%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%20%D0%BD%D0%BE%D0%BC%D0%B5%D1%80%D0%B0%20%D1%81%D1%82%D1%80%D0%BE%D0%BA%D0%B8%20-%20%D1%8D%D1%82%D0%BE%0A%D0%B2%D1%80%D0%B5%D0%BC%D1%8F%20(%D0%B2%20%D1%81%D0%B5%D0%BA%D1%83%D0%BD%D0%B4%D0%B0%D1%85)%20%D0%BA%D0%BE%D0%B3%D0%B4%D0%B0%20%D0%BF%D0%B0%D0%BA%D0%B5%D1%82%20%D0%B1%D1%8B%D0%BB%20%D0%BF%D1%80%D0%B8%D0%BD%D1%8F%D1%82%20%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D0%BE%D0%B9%20tcpdump.%20%D0%92%20%D0%BA%D0%B0%D0%B6%D0%B4%D0%BE%D0%B9%20%D1%81%D1%82%D1%80%D0%BE%D0%BA%D0%B5%0A%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%20%D0%BF%D0%B5%D1%80%D0%B2%D0%BE%D0%B9%20%D1%81%D0%BE%D0%B4%D0%B5%D1%80%D0%B6%D0%B8%D1%82%D1%81%D1%8F%20%D1%80%D0%B0%D0%B7%D0%BD%D0%B8%D1%86%D0%B0%20%D0%B2%D0%BE%20%D0%B2%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%B8%20(%D0%B2%20%D1%81%D0%B5%D0%BA%D1%83%D0%BD%D0%B4%D0%B0%D1%85)%20%D1%81%20%D0%BF%D1%80%D0%B5%D0%B4%D1%8B%D0%B4%D1%83%D1%89%D0%B5%D0%B9%20%D1%81%D1%82%D1%80%D0%BE%D0%BA%D0%BE%D0%B9.%0A%D0%AD%D1%82%D0%BE%20%D0%B7%D0%BD%D0%B0%D1%87%D0%B5%D0%BD%D0%B8%D0%B5%20%D0%BF%D1%80%D0%B8%D0%B2%D0%BE%D0%B4%D0%B8%D1%82%D1%81%D1%8F%20%D0%B2%20%D1%81%D0%BA%D0%BE%D0%B1%D0%BA%D0%B0%D1%85.%20%D0%9A%D0%B0%D0%BA%20%D0%B2%D0%B8%D0%B4%D0%BD%D0%BE%20%D0%B8%D0%B7%20%D1%80%D0%B8%D1%81%D1%83%D0%BD%D0%BA%D0%B0,%20%D0%B2%D1%80%D0%B5%D0%BC%D1%8F%20%D0%BC%D0%B5%D0%B6%D0%B4%D1%83%20%D0%BE%D1%82%D0%BF%D1%80%D0%B0%D0%B2%D0%BA%D0%BE%D0%B9%0AARP%20%D0%B7%D0%B0%D0%BF%D1%80%D0%BE%D1%81%D0%B0%20%D0%B8%20%D0%BF%D0%BE%D0%BB%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5%D0%BC%20ARP%20%D0%BE%D1%82%D0%BA%D0%BB%D0%B8%D0%BA%D0%B0%20%D1%81%D0%BE%D1%81%D1%82%D0%B0%D0%B2%D0%BB%D1%8F%D0%B5%D1%82%202,2%20%D0%BC%D1%81.%20%D0%9F%D0%B5%D1%80%D0%B2%D1%8B%D0%B9%20TCP%20%D1%81%D0%B5%D0%B3%D0%BC%D0%B5%D0%BD%D1%82%0A%D0%BF%D0%BE%D1%81%D0%BB%D0%B0%D0%BD%20%D1%87%D0%B5%D1%80%D0%B5%D0%B7%200,7%20%D0%BC%D1%81%20%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%20%D1%8D%D1%82%D0%BE%D0%B3%D0%BE.%20%D0%A2%D0%B0%D0%BA%D0%B8%D0%BC%20%D0%BE%D0%B1%D1%80%D0%B0%D0%B7%D0%BE%D0%BC,%20%D0%B4%D0%BB%D1%8F%20%D0%B4%D0%B8%D0%BD%D0%B0%D0%BC%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B3%D0%BE%20%D0%BE%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F%0A%D0%B0%D0%B4%D1%80%D0%B5%D1%81%D0%B0%20%D1%81%20%D0%B8%D1%81%D0%BF%D0%BE%D0%BB%D1%8C%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5%D0%BC%20ARP,%20%D0%B2%20%D0%B4%D0%B0%D0%BD%D0%BD%D0%BE%D0%BC%20%D0%BF%D1%80%D0%B8%D0%BC%D0%B5%D1%80%D0%B5,%20%D0%BF%D0%BE%D1%82%D1%80%D0%B5%D0%B1%D0%BE%D0%B2%D0%B0%D0%BB%D0%BE%D1%81%D1%8C%20%D0%BC%D0%B5%D0%BD%D0%B5%D0%B5%20%D1%87%D0%B5%D0%BC%203%20%D0%BC%D1%81.

    %D0%98%20%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BD%D0%B5%D0%B5%20%D0%BD%D0%B0%20%D1%87%D1%82%D0%BE%20%D1%81%D0%BB%D0%B5%D0%B4%D1%83%D0%B5%D1%82%20%D0%BE%D0%B1%D1%80%D0%B0%D1%82%D0%B8%D1%82%D1%8C%20%D0%B2%D0%BD%D0%B8%D0%BC%D0%B0%D0%BD%D0%B8%D0%B5%20%D0%B2%20%D0%B2%D1%8B%D0%B2%D0%BE%D0%B4%D0%B5%20tcpdump:%20%D0%BC%D1%8B%20%D0%BD%D0%B5%0A%D1%83%D0%B2%D0%B8%D0%B4%D0%B8%D0%BC%20ARP%20%D0%B7%D0%B0%D0%BF%D1%80%D0%BE%D1%81%20%D0%BE%D1%82%20svr4,%20%D0%BA%D0%BE%D0%B3%D0%B4%D0%B0%20%D0%BE%D0%BD%20%D0%BF%D0%BE%D1%81%D1%8B%D0%BB%D0%B0%D0%B5%D1%82%20%D1%81%D0%B2%D0%BE%D0%B9%20%D0%BF%D0%B5%D1%80%D0%B2%D1%8B%D0%B9%20TCP%20%D1%81%D0%B5%D0%B3%D0%BC%D0%B5%D0%BD%D1%82%20(%D1%81%D1%82%D1%80%D0%BE%D0%BA%D0%B0%204).%0A%D0%94%D0%B5%D0%BB%D0%BE%20%D0%B2%20%D1%82%D0%BE%D0%BC,%20%D1%87%D1%82%D0%BE%20svr4%20%D1%83%D0%B6%D0%B5%20%D0%B8%D0%BC%D0%B5%D0%B5%D1%82%20%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D0%B5%20%D0%BE%20bsdi%20%D0%B2%20%D1%81%D0%B2%D0%BE%D0%B5%D0%BC%20ARP%20%D0%BA%D1%8D%D1%88%D0%B5,%20%D1%82%D0%B0%D0%BA%20%D0%BA%D0%B0%D0%BA,%20%D0%BA%D0%BE%D0%B3%D0%B4%D0%B0%0A%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0%20%D0%BF%D0%BE%D0%BB%D1%83%D1%87%D0%B0%D0%B5%D1%82%20ARP%20%D0%B7%D0%B0%D0%BF%D1%80%D0%BE%D1%81,%20%D0%BF%D0%BE%D0%BC%D0%B8%D0%BC%D0%BE%20%D1%82%D0%BE%D0%B3%D0%BE%20%D1%87%D1%82%D0%BE%20%D0%BE%D0%BD%D0%B0%20%D0%BF%D0%BE%D1%81%D1%8B%D0%BB%D0%B0%D0%B5%D1%82%20ARP%20%D0%BE%D1%82%D0%BA%D0%BB%D0%B8%D0%BA,%20%D0%BE%D0%BD%D0%B0%20%D1%82%D0%B0%D0%BA%D0%B6%D0%B5%0A%D1%81%D0%BE%D1%85%D1%80%D0%B0%D0%BD%D1%8F%D0%B5%D1%82%20%D0%B0%D0%BF%D0%BF%D0%B0%D1%80%D0%B0%D1%82%D0%BD%D1%8B%D0%B9%20%D0%B0%D0%B4%D1%80%D0%B5%D1%81%20%D0%B8%20IP%20%D0%B0%D0%B4%D1%80%D0%B5%D1%81%20%D0%B7%D0%B0%D0%BF%D1%80%D0%BE%D1%81%D0%B8%D0%B2%D1%88%D0%B5%D0%B3%D0%BE%20%D0%B2%20%D1%81%D0%B2%D0%BE%D0%B5%D0%BC%20ARP%20%D0%BA%D1%8D%D1%88%D0%B5.%20%D0%AD%D1%82%D0%BE%0A%D0%BB%D0%BE%D0%B3%D0%B8%D1%87%D0%BD%D0%BE,%20%D1%82%D0%B0%D0%BA%20%D0%BA%D0%B0%D0%BA%20%D0%B5%D1%81%D0%BB%D0%B8%20%D0%B7%D0%B0%D0%BF%D1%80%D0%BE%D1%81%D0%B8%D0%B2%D1%88%D0%B8%D0%B9%20%D1%81%D0%BE%D0%B1%D0%B8%D1%80%D0%B0%D0%B5%D1%82%D1%81%D1%8F%20%D0%BF%D0%BE%D1%81%D0%BB%D0%B0%D1%82%D1%8C%20IP%20%D0%B4%D0%B0%D1%82%D0%B0%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D1%83,%20%D1%82%D0%BE%0A%D0%BF%D0%BE%D0%BB%D1%83%D1%87%D0%B8%D0%B2%D1%88%D0%B5%D0%BC%D1%83%20%D1%81%D0%BA%D0%BE%D1%80%D0%B5%D0%B5%20%D0%B2%D1%81%D0%B5%D0%B3%D0%BE%20%D0%BF%D1%80%D0%B8%D0%B4%D0%B5%D1%82%D1%81%D1%8F%20%D0%BE%D1%82%D0%BF%D1%80%D0%B0%D0%B2%D0%B8%D1%82%D1%8C%20%D0%BE%D1%82%D0%B2%D0%B5%D1%82%20%D0%BD%D0%B0%20%D1%8D%D1%82%D1%83%0A%D0%B4%D0%B0%D1%82%D0%B0%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D1%83.

    %0A%0A

    в этот раз telnet на IP адрес, а не на имя хоста (hostname)
    bsdi % date ; telnet 140.252.13.36 ; date
    Sat Jan 30 06:46:33 MST 1993
    Trying 140.252.13.36 ...
    telnet: Unable to connect to remote host: Connection timed out
    Sat Jan 30 06:47:49 MST 1993 прошло 76 секунд

    bsdi % arp -a проверяем ARP кэш
    ? (140.252.13.36) at (incomplete)

    На рисунке 4.5 мы видим вывод tcpdump.

    1 0.0 arp who-has 140.252.13.36 tell bsdi
    2 5.509069 (5.5091) arp who-has 140.252.13.36 tell bsdi
    3 29.509745 (24.0007) arp who-has 140.252.13.36 tell bsdi

    Рисунок 4.5 ARP запрос на несуществующий хост.

    Сейчас мы не указываем опцию -e, так как мы уже знаем, что ARP запрос широковещательный.

    Здесь интересно посмотреть, с какой частотой рассылаются ARP запросы: 5,5 секунд после первого запроса и снова через 24 секунды. (Мы рассмотрим тайм-ауты TCP и алгоритм повторных передач более подробно в .) Полное время, показанное в выводе tcpdump, составляет 29,5 секунды. Однако вывод от команды date перед и после команды telnet показывает, что запрос на соединение от Telnet клиента длился в течении 75 секунд. И действительно, мы увидим позже, что большинство BSD реализаций устанавливают ограничение в 75 секунд для завершения запроса на установление TCP соединения.

    Уполномоченный агент ARP

    Уполномоченный агент ARP позволяет маршрутизатору отвечать на ARP запросы в одну сеть, в то время как запрашиваемый хост находится в другой сети. С помощью этого средства происходит обман отправителя, который отправил ARP запрос, после чего он думает, что маршрутизатор является хостом назначения, тогда как в действительности хост назначения находится "на другой стороне" маршрутизатора. Маршрутизатор выступает в роли уполномоченного агента хоста назначения, перекладывая пакеты от другого хоста.

    Для того чтобы лучше описать работу уполномоченных агентов ARP, мы рассмотрим пример. Из рисунка 3.10 видно, что система sun подключена к двум сетям Ethernet. Однако в действительности это не так, в чем можно убедиться, если сравнить этот рисунок с рисунком, который приведен на внутренней стороне обложки. Между sun и подсетью 140.252.1 находится маршрутизатор, который выступает в роли уполномоченного агента ARP, при этом все выглядело так, как будто sun находится в подсети 140.252.1. На рисунке 4.6 показано, что Telebit NetBlazer, названный netb, находится между подсетью и хостом sun.

    Рисунок 4.6 Пример уполномоченного ARP.

    Когда какой-либо другой хост в подсети 140.252.1 (скажем, gemini) хочет послать IP датаграмму хосту sun на адрес 140.252.1.29, gemini сравнивает идентификатор сети (140.252) и идентификатор подсети (1), и если они идентичны, отправляет ARP запрос в верхний Ethernet (на рисунке 4.6) на IP адрес 140.252.1.29. Маршрутизатор netb распознает этот IP адрес как принадлежащий одному из dialup хостов и отвечает, отправив аппаратный адрес этого Ethernet интерфейса в кабель 140.252.1. Хост gemini посылает IP датаграмму в netb по Ethernet, а netb направляет датаграмму в sun по SLIP каналам с дозвоном (dialup). Это делает его прозрачным для всех хостов подсети 140.252.1, так как хост sun действительно находится "позади" маршрутизатора netb.

    Если мы запустим команду arp на хосте gemini после общения с хостом sun, то увидим, что оба эти адреса принадлежат подсети 140.252.1 (netb и sun) и что им соответствует один аппаратный адрес. Как правило, это основная причина, по которой используется уполномоченный агент ARP.

    gemini % arp -a
    появится много строк про хосты из подсети 140.252.1
    netb (140.252.1.183) at 0:80:ad:3:6a:80
    sun (140.252.1.29) at 0:80:ad:3:6a:80

    Еще одна деталь на рисунке 4.6, которую необходимо объяснить, это отсутствие IP адреса под квадратиком, который обозначает маршрутизатор netb (SLIP канал). Почему на обоих концах SLIP канала нет IP адреса, как между bsdi и slip? В разделе главы 3, из вывода команды ifconfig, мы заметили, что адрес назначения SLIP канала 140.252.1.183. NetBlazer не требует наличия IP адресов на каждом конце SLIP канала. (Это позволяет сэкономить несколько столь ценных в настоящее время IP адресов.) Он определяет какой хост посылает пакет в зависимости от того по какому последовательному интерфейсу прибыл пакет, поэтому нет необходимости каждому хосту на SLIP канале использовать уникальный IP адрес для своего канала с маршрутизатором. Все dialup хосты используют адрес 140.252.1.183 в качестве адреса назначения для своих SLIP каналов.

    Уполномоченный агент ARP обеспечивает доставку датаграмм к маршрутизатору sun, однако как это делают другие хосты из подсети 140.252.13? Для направления датаграмм в другие хосты должна использоваться маршрутизация. Где-либо в сети 140.252 должны быть сделаны записи в таблице маршрутизации, поэтому все датаграммы, направляющиеся в подсеть 140.252.13 или в указанные хосты этой подсети, будут направляться на маршрутизатор netb. Этот маршрутизатор знает, как доставить датаграммы в их конечный пункт назначения, отправляя их через маршрутизатор sun.

    Уполномоченный агент ARP также называется смешанным (promiscuous ARP) или расщепленным (ARP hack). Эти имена появились благодаря другому использованию уполномоченных агентов ARP: они применялись для того, чтобы спрятать друг от друга две физические сети между которыми находился маршрутизатор. В этом случае обе физические сети использовали один и тот же идентификатор сети, так как маршрутизатор, находящийся между ними, был сконфигурирован как уполномоченный ARP агент, чтобы отвечать на ARP запросы из одной сети к хостам в другой сети. Эта техника использовалась в прошлом, чтобы спрятать группу хостов с более старой версией TCP/IP на отдельном физическом кабеле. Две причины, по которым приходилось отделять эти "устаревшие" хосты, заключались в том, что, во-первых, они не могли поддерживать разделение на подсети и, во-вторых, использовали старые широковещательные адреса (идентификатор хоста состоял из всех нулевых бит вместо современного стандарта, при котором идентификатор хоста состоит из единичных битов).

    "Беспричинный" ARP

    Другая характеристика ARP, которую стоит рассмотреть - "беспричинный" ARP (gratuitous ARP). Он проявляется, когда хост посылает ARP запрос, основываясь на собственном IP адресе. Обычно это делается, когда интерфейс конфигурируется во время загрузки.

    Если мы запустим tcpdump на хосте sun при загрузке хоста bsdi, то увидим пакет, показанный на рисунке 4.7.

    1 0.0 0:0:c0:6f:2d:40 ff:ff:ff:ff:ff:ff arp 60:
    arp who-has 140.252.13.35 tell 140.252.13.35

    Рисунок 4.7 Пример "беспричинного" ARP.

    (Мы использовали флаг -n программы tcpdump, чтобы напечатать адреса в цифровом десятичном виде вместо имен хостов.) В терминах полей ARP запроса, адрес протокола отправителя и адрес протокола назначения идентичны: 140.252.13.35 (что соответствует хосту bsdi). Адрес источника в заголовке Ethernet, 0:0:c0:6f:2d:40 как показано программой tcpdump, эквивалентен аппаратному адресу отправителя (из рисунка 4.4).

    "Беспричинный" ARP предоставляет две характеристики.

    1. Он позволяет хосту определить, существует ли другой хост с тем же самым IP адресом. Хост bsdi не ожидает отклика на свой запрос, однако если отклик принят, на консоли возникает сообщение об ошибке "обнаружен дублирующий IP адрес с Ethernet адресом: a:b:c:d:e:f". Это предупреждение системному администратору о том, что одна из систем неправильно сконфигурирована.
    2. Если хост, посылающий "беспричинный" ARP, только что изменил свой аппаратный адрес (может быть потому, что хост был выключен, удалена интерфейсная плата и затем хост был перезагружен), этот пакет заставляет другой хост на кабеле, который имеет запись в своем кэше для старого аппаратного адреса, обновить ARP кэш соответствующим образом. Малоизвестный факт о протоколе ARP заключается в том, что если хост получает ARP запрос для IP адреса, который он уже имеет в кэше, содержимое кэша обновляется аппаратным адресом отправителя (Ethernet адресом) из запроса ARP. Это делается для любого запроса ARP, полученного хостом. (Повторим, что ARP запросы широковещательные, поэтому такие действия осуществляются всеми хостами в сети каждый раз при появлении ARP запроса.) описывает приложения, которые используют эту характеристику ARP. Она позволяет запасному (backup) файл-серверу занять место вышедшего из строя сервера с использованием "беспричинного" ARP запроса с запасным аппаратным адресом, однако с тем же IP адресом, который имел вышедший из строя хост. При этом все пакеты, направляемые серверу, вышедшему из строя, будут посланы на запасной сервер, а пользовательские приложения не будут знать о том, что основной сервер вышел из строя.
    К сожалению, авторы затем отказались от этого подхода, так как он зависит от корректности реализации ARP на всех типах клиентов. Существуют различные типы ARP, которые не поддерживают эту спецификацию.

    Наблюдения за всеми системами в подсети, используемой в этой книге, показывает, что SunOS 4.1.3 и 4.4BSD используют "беспричинный" ARP при загрузке, а SVR4 не поддерживает эту характеристику.

    Команда arp

    Мы использовали эту команду с флагом -a, чтобы отобразить все записи ARP кэша. Существуют и другие опции.

    Суперпользователь может использовать опцию -d, чтобы удалить запись из ARP кэша. (Это было сделано перед запуском некоторых примеров, чтобы показать изменения ARP.)

    Записи могут быть добавлены с использованием опции -s. При использовании этой опции необходимо указать имя хоста и Ethernet адрес, IP адрес, соответствующий имени хоста, и Ethernet адрес добавляются в кэш. Подобная запись делается на постоянной основе (она не будет удалена из кэша по тайм-ауту), если только в конце командной строки не будет использовано ключевое слово temp.

    Ключевое слово pub в конце командной строки с опцией -s приведет к тому, что система будет функционировать как ARP агент для этого хоста. Система будет отвечать на ARP запросы для IP адресов, соответствующих имени хоста, при этом ответ будет содержать указанный Ethernet адрес. Если объявленный адрес это адрес самой отвечающей системы, это означает, что система работает как уполномоченный агент ARP для указанного имени хоста.

    Краткие выводы

    ARP это основной протокол, который используется практически во всех реализациях TCP/IP. Обычно его функционирование не зависит от используемых приложений или воли системного администратора. ARP кэш является фундаментом этой работы. Мы использовали команду arp, чтобы просмотреть или модифицировать кэш. Каждая запись в кэше имеет таймер, который используется для удаления незавершенных или завершенных записей. Команда arp отображает модифицированные записи в ARP кэше.

    Мы посмотрели обычное функционирование ARP и специализированные версии: уполномоченный агент ARP (когда маршрутизатор отвечает на ARP запросы для хостов, находящихся на другом интерфейсе маршрутизатора) и "беспричинный" ARP (посылающий ARP запросы для своего собственного IP адреса, обычно во время загрузки).

    Упражнения

    1. Вернемся к команде, которую мы исполнили, чтобы получить вывод, показанный на рисунке 4.4. Что произойдет, если после того как мы проверили локальный ARP кэш и он оказался пустым, мы введем команду

      bsdi % rsh svr4 arp -a

      чтобы проверить, что ARP кэш также пуст на хосте назначения? (Эта команда исполнит команду arp -a на хосте svr4.)

    2. Опишите тест, который позволит определить, корректно ли обрабатывает определенный хост "беспричинные" ARP запросы.
    3. Шаг номер 7 в разделе может занять определенное время (миллисекунды), потому что пакет отправлен и ARP ожидает ответа. Как Вы думаете, обработает ли ARP несколько датаграмм, которые прибыли от IP на тот же адрес назначения в течение этого периода времени?
    4. В конце раздела мы упомянули, что RFC Host Requirements и Berkeley реализации отличаются с точки зрения обработки тайм-аутов для активных записей ARP. Что произойдет, если клиент Berkeley постарается установить контакт с сервером, который был выключен и из него была удалена плата Ethernet? Изменится ли что-нибудь, если сервер выдаст "беспричинный" ARP запрос при загрузке?

    Утилита командной строки ARP.EXE присутствует во всех версиях Windows и имеет один и тот же синтаксис. Предназначена для просмотра и изменения записей в кэш ARP (Address Resolution Protocol - протокол разрешения адресов), который представляет собой таблицу соответствия IP-адресов аппаратным адресам сетевых устройств. Аппаратный адрес - это уникальный, присвоенный при изготовлении, 6-байтный адрес сетевого устройства, например сетевой карты. Этот адрес также часто называют MAC-адресом (Media Access Control - управление доступом к среде) или Ethernet-адресом. В сетях Ethernet передаваемые и принимаемые данные всегда содержат MAC-адрес источника (Source MAC) и MAC-адрес приемника (Destination MAC).

    Два старших бита аппаратного адреса используются для идентификации типа:

    Первый бит - одиночный (0) или групповой (1) адрес.

    Второй бит - признак универсального (0) или локально администрируемого (1) адреса.

    Следующие 22 бита адреса содержат специальный код производителя, обозначаемый как MFG или OUI - универсальный код организации.

    Таким образом, в сетях Ethernet, любое сетевое устройство имеет аппаратный адрес, состоящий из двух частей, значение которых зависит от производителя оборудования и конкретного экземпляра устройства. Старшая часть MAC - адреса, централизованно выделяется по лицензии каждому производителю сетевого оборудования. Например, 00:E0:4C - для сетевых устройств REALTEK SEMICONDUCTOR CORP. Крупным производителям сетевого оборудования обычно принадлежит несколько диапазонов OUI . Младшая часть MAC-адреса формируется при производстве сетевого устройства, и уникальна для каждого экземпляра.

    Отображение IP-адресов (формируемых программным путем), в аппаратные адреса, выполняется с помощью следующих действий:

    В сеть отправляется широковещательный запрос (ARP-request), принимаемый всеми сетевыми устройствами. Он содержит IP и Ethernet адреса отправителя, а также, целевой IP-адрес, для которого выполняется определение MAC-адреса.

    Каждое устройство, принявшее запрос проверяет соответствие целевого IP-адреса, указанного в запросе, своему собственному IP-адресу. При совпадении, отправителю передается ARP-ответ (ARP-Reply), в котором содержатся IP и MAC адреса ответившего узла. Кадр с ARP-ответом содержит IP и MAC адреса как отправителя, так и получателя-составителя запроса.

    Информация, полученная в ARP-ответе, заносится в ARP-кэш и может использоваться для обмена данными по IP-протоколу для данного узла. ARP-кэш представляет собой таблицу в оперативной памяти, каждая запись в которой содержит IP, MAC и возраст их действительности (от нескольких секунд, до нескольких часов). Возраст записи учитывается для того, чтобы обеспечить возможность повторного выполнения процедуры ARP при каком либо изменении соответствия адресов.

    Формат командной строки ARP:

    ARP -s inet_addr eth_addr

    ARP -d inet_addr

    ARP -a [-N if_addr] [-v]

    Параметры командной строки ARP:

    -a -отображает текущие ARP-записи, опрашивая текущие данные протокола. Если задан параметр inet_addr , то будут отображены IP и физические адреса только для заданного компьютера. Если ARP используют более одного сетевого интерфейса, то будут отображаться записи для каждой таблицы.

    -g - то же, что и параметр -a .

    -v - отображает текущие ARP-записи в режиме подробного протоколирования. Все недопустимые записи и записи в интерфейсе обратной связи будут отображаться.

    inet_addr - определяет IP-адрес.

    -N if_addr - отображает ARP-записи для заданного в if_addr сетевого интерфейса.

    -d - удаляет узел, задаваемый inet_addr . Параметр inet_addr может содержать знак шаблона * для удаления всех узлов.

    -s - добавляет узел и связывает адрес в Интернете inet_addr c физическим адресом eth_addr . Физический адрес задается 6 байтами (в шестнадцатеричном виде), разделенными дефисом. Эта связь является постоянной

    eth_addr - определяет физический адрес.

    if_addr - если параметр задан, он определяет адрес интерфейса в Интернете, чья таблица преобразования адресов должна измениться. Если параметр не задан, будет использован первый доступный интерфейс.

    В IP-сетях существует три способа отправки пакетов от источника к приемнику:

    Одноадресная передача (Unicast );

    Широковещательная передача (Broadcast );

    При одноадресной передаче поток данных передается от узла-отправителя на индивидуальный IP-адрес узла-получателя.

    Широковещательная передача предусматривает доставку потока данных от узла-отправителя множеству узлов-получателей, подключенных к данному сегменту локальной сети, с использованием широковещательного IP-адреса.

    Многоадресная рассылка обеспечивает доставку потока данных группе узлов на IP-адрес группы многоадресной рассылки. Узлы группы могут находиться в данной локальной сети или в любой другой. Узлы для многоадресной рассылки объединяются в группы при помощи протокола IGMP (Internet Group Management Protocol, межсетевой протокол управления группами). Пакеты, содержащие в поле назначения заголовка групповой адрес, будут поступать на узлы групп и обрабатываться. Источник многоадресного трафика направляет пакеты многоадресной рассылки не на индивидуальные IP-адреса каждого из узлов-получателей, а на групповой IP-адрес.

    Групповые адреса определяют произвольную группу IP-узлов, присоединившихся к этой группе и желающих получать адресованный ей трафик. Международное агентство IANA (Internet Assigned Numbers Authority, "Агентство по выделению имен и уникальных параметров протоколов Интернета"), которое управляет назначением групповых адресов, выделило для многоадресной рассылки адреса IPv4 класса D в диапазоне от 224.0.0.0 до 239.255.255.255.

    Примеры использования ARP :

    arp -a - отобразить таблицу соответствия IP и MAC адресов для данного компьютера.

    arp -a | more - то же, что и в предыдущем случае, но с отображением информации в постраничном режиме.

    arp -a > macaddr.txt - отобразить таблицу соответствия IP и MAC адресов для данного компьютера с выводом результатов в текстовый файл macaddr.txt .

    Пример содержимого таблицы ARP:

    Интерфейс: 127.0.0.1 --- 0x1

    224.0.0.22                                                     статический
    224.0.0.251                                                   статический
    239.255.255.250                                           статический

    Интерфейс: 192.168.1.133 --- 0x1c

    Адрес в Интернете Физический адрес Тип

    192.168.1.1                c8-2b-35-9a-a6-1e   динамический
    192.168.1.132            00-11-92-b3-a8-0d   динамический
    192.168.1.255            ff-ff-ff-ff-ff-ff            статический
    224.0.0.22                  01-00-5e-00-00-16   статический
    224.0.0.251                01-00-5e-00-00-fb   статический
    224.0.0.252                01-00-5e-00-00-fc   статический
    239.255.255.250        01-00-5e-7f-ff-fa     статический

    В данном примере присутствуют записи ARP для петлевого интерфейса 127.0.0.1 и реального 192.168.1.133 . Петлевой интерфейс не используется для реальной передачи данных и не имеет привязки к аппаратному адресу. Таблица ARP реального интерфейса содержит записи для узлов с адресами 192.168.1.1 и 192.168.1.132 , а также записи для широковещательной (MAC-адрес равен ff-ff-ff-ff-ff-ff) и групповых рассылок (MAC-адрес начинается с 01-00-5e). МАС-адрес групповой рассылки всегда начинается с префикса, состоящего из 24 битов - 01-00-5Е. Следующий, 25-й бит равен 0. Последние 23 бита МАС-адреса формируются из 23 младших битов группового IP-адреса.

    arp -s 192.168.1.1 00-08-00-62-F6-19 - добавить в таблицу ARP запись, задающую соответствие IP адреса 192.168.1.1 и физического адреса 00-08-00-62-F6-19

    arp -d 192.168.1.1 - удалить из таблицы ARP запись для IP-адреса 192.168.1.1

    arp -d 192.168.1.* - удалить из таблицы ARP записи для диапазона IP-адресов 192.168.1.1 - 192.168.1.254

    Некоторые замечания по практическому использованию команды ARP:

    Разрешение адресов по протоколу ARP выполняется только при операциях передачи данных по протоколу IP .
    - время жизни записей в таблице ARP ограничено, поэтому, перед просмотром ее содержимого для конкретного адреса нужно выполнить ping на этот адрес.
    - если ответ на ping не приходит, а запись для данного IP-адреса присутствует в таблице ARP, то этот факт можно интерпретировать как блокировку ICMP-пакетов брандмауэром пингуемого узла.
    - невозможность подключения к удаленному узлу по протоколам TCP или UDP при наличии записей в таблице ARP для целевого IP, может служить признаком отсутствия служб обрабатывающих входящие подключения, или их блокировки брандмауэром (закрытые порты).
    - ARP протокол работает в пределах локального сегмента сети. Поэтому, если выполнить ping на внешний узел (например ping yandex.ru), то в таблице ARP будет присутствовать запись для IP - адреса маршрутизатора, через который выполняется отправка пакета во внешнюю сеть.

    В TCP/IP не рассматриваются технологии канального и физического уровней, при реальной передаче данных все равно приходится отображать IP адрес на адрес канального уровня.

    В сети Ethernet для идентификации источника и получателя информации используются IP и MAC адреса. Информация, пересылаемая от одного компьютера другому по сети, содержит в себе физический адрес отправителя, IP-адрес отправителя, физический адрес получателя и IP-адрес получателя. ARP-протокол обеспечивает связь между этими двумя адресами, поскольку эти два адреса никак друг с другом не связаны.

    ARP - протокол разрешения адресов (Address Resolution Protocol) является протоколом третьего (сетевого) уровня модели OSI, используется для преобразования IP-адресов в MAC-адреса, играет важную функцию в множественном доступе сетей. ARP была определена RFC 826 в 1982 году.

    Непосредственно связь между IP адресом и MAC адресом осуществляется с помощью так называемых ARP-таблиц, где в каждой строке указывается соответствие IP адреса MAC адресу.

    Пример ARP-таблицы в ОС Windowsпредставлен на рисунке.

    В ARP-таблице, помимо IP и MAC адреса, еще указывается тип связи, существует два типа записей:

    • Статические записи создаются вручную, они существуют до тех пор, пока компьютер или маршрутизатор остается включенным.
    • Динамические записи должны периодически обновляться. Если запись не обновлялась в течении определенного времени (приблизительно 2 минуты), то она исключается из таблицы. В ARP-таблице содержаться записи не обо всех узлах сети. А только те, которые активно участвуют в сетевых операциях. Такой способ хранения называется ARP-кэшем.

    В IPv6 функциональность ARP обеспечивает протокол NDP (Neighbor Discovery Protocol Протокол Обнаружения Соседей).

    RARP (англ. Reverse Address Resolution Protocol - Обратный протокол преобразования адресов) - протокол третьего (сетевого) уровня модели OSI, выполняет обратное отображение адресов, то есть преобразует аппаратный адрес в IP-адрес.

    Существует четыре типа ARP-сообщений:

    • ARP-запрос(ARPrequest);
    • ARP-ответ(ARP reply);
    • RARP-запрос(RARP-request);
    • RARP-ответ(RARP-reply).

    Структура заголовка ARP

    • Hardware type (HTYPE) Каждый канальный протокол передачи данных имеет свой номер, который хранится в этом поле. Например, Ethernet имеет номер 0x0001
    • Protocol type (PTYPE) Код сетевого протокола. Например, для IPv4 будет записано 0x0800
    • Hardware length (HLEN) Длина физического адреса в байтах. Адреса Ethernet имеют длину 6 байт.
    • Protocol length (PLEN) Длина логического адреса в байтах. IPv4 адреса имеют длину 4 байта.
    • Operation Код операции отправителя: 1 в случае запроса и 2 в случае ответа.
    • Sender hardware address (SHA) Физический адрес отправителя.
    • Sender protocol address (SPA) Логический адрес отправителя.
    • Targethardwareaddress (THA) Физический адрес получателя. Поле пусто при запросе.
    • Target protocol address (TPA) Логический адрес получателя.

    Рассмотрим структуру заголовка ARP запроса (request) на примере перехваченного пакета с помощью сетевого анализатора Wireshark

    Рассмотрим структуру заголовка ARP ответа (reply) на примере перехваченного пакета с помощью сетевого анализатора Wireshark

    Протокол ARP работает различным образом в зависимости от того, какой протокол канального уровня работает в данной сети - протокол локальной сети (Ethernet, Token Ring, FDDI) с возможностью широковещательного доступа одновременно ко всем узлам сети, или же протокол глобальной сети (X.25, frame relay), как правило не поддерживающий широковещательный доступ.

    В локальных сетях протокол ARP использует широковещательные кадры протокола канального уровня для поиска в сети узла с заданным IP-адресом.

    Принцип работы:

      Узел, которому нужно выполнить отображение IP-адреса на локальный адрес, формирует ARP запрос, вкладывает его в кадр протокола канального уровня, указывая в нем известный IP-адрес, и рассылает запрос широковещательно.

      Все узлы локальной сети получают ARP запрос и сравнивают указанный там IP-адрес с собственным.

      В случае их совпадения узел формирует ARP-ответ, в котором указывает свой IP-адрес и свой локальный адрес и отправляет его уже направленно, так как в ARP запросе отправитель указывает свой локальный адрес.

    Arp-таблица для преобразования адресов

    Преобразование адресов выполняется путем поиска в таблице. Эта таблица, называемая ARP-таблицей, хранится в памяти и содержит строки для каждого узла сети.

    ARP-таблицы строятся согласно документу RFC-1213 и для каждого IP-адреса содержит четыре кода:

      Ifindex - Физический порт (интерфейс), соответствующий данному адресу;

      Физический адрес - MAC-адрес, например Ethernet-адрес;

      IP-адрес - IP-адрес, соответствующий физическому адресу;

      тип адресного соответствия - это поле может принимать 4 значения: 1 - вариант не стандартный и не подходит ни к одному из описанных ниже типов; 2 - данная запись уже не соответствует действительности; 3 - постоянная привязка; 4 - динамическая привязка;

    Примет таблицы для технологии Ethernet:

    Ethernet-адрес

    08:00:39:00:2F:C3

    08:00:5A:21:A7:22

    08:00:10:99:AC:5

    Принято все байты 4-байтного IP-адреса записывать десятичными числами, разделенными точками. При записи 6-байтного Ethernet-адреса каждый байт указывается в 16-ричной системе и отделяется двоеточием.

    ARP-таблица необходима потому, что IP-адреса и Ethernet-адреса выбираются независимо, и нет какого-либо алгоритма для преобразования одного в другой.

    IP-адрес выбирает менеджер сети. Ethernet-адрес выбирает производитель сетевого интерфейсного оборудования из выделенного для него по лицензии адресного пространства. Когда у машины заменяется плата сетевого адаптера, то меняется и ее Ethernet-адрес.

    Arp кэш.

      Эффективность функционирования ARP во многом зависит от ARP кэша (ARP cache), который присутствует на каждом хосте.

      Стандартное время жизни каждой записи в кэше составляет 20 минут с момента создания записи.

    Порядок преобразования адресов

    В ходе обычной работы сетевая программа, такая как TELNET, отправляет прикладное сообщение, пользуясь транспортными услугами TCP. Модуль TCP посылает соответствующее транспортное сообщение через модуль IP. В результате составляется IP-пакет, который должен быть передан драйверу Ethernet. IP-адрес места назначения известен прикладной программе, модулю TCP и модулю IP. Необходимо на его основе найти Ethernet-адрес места назначения. Для определения искомого Ethernet-адреса используется ARP-таблица.

    Как же заполняется ARP-таблица? Она заполняется автоматически модулем ARP, по мере необходимости. Когда с помощью существующей ARP-таблицы не удается преобразовать IP-адрес, то происходит следующее:

      По сети передается широковещательный ARP-запрос.

      Исходящий IP-пакет ставится в очередь.

    Каждый сетевой адаптер принимает широковещательные передачи. Все драйверы Ethernet проверяют поле типа в принятом Ethernet-кадре и передают ARP-пакеты модулю ARP. ARP-запрос можно интерпретировать так: "Если ваш IP-адрес совпадает с указанным, то сообщите мне ваш Ethernet-адрес". Пакет ARP-запроса выглядит примерно так:

    Пример ARP-запроса

    Каждый модуль ARP проверяет поле искомого IP-адреса в полученном ARP-пакете и, если адрес совпадает с его собственным IP-адресом, то посылает ответ прямо по Ethernet-адресу отправителя запроса. ARP-ответ можно интерпретировать так: "Да, это мой IP-адрес, ему соответствует такой-то Ethernet-адрес". Пакет с ARP-ответом выглядит примерно так:

    Пример ARP-ответа

    Этот ответ получает машина, сделавшая ARP-запрос. Драйвер этой машины проверяет поле типа в Ethernet-кадре и передает ARP-пакет модулю ARP. Модуль ARP анализирует ARP-пакет и добавляет запись в свою ARP-таблицу.

    Обновленная таблица выглядит следующим образом:

    Если машина обменивается информацией с другим равноценным устройством в одной и той же сети, это соединение требует наличия физического или MAC-адреса. Вместе с тем приложение, отвечающее за связь, требует использования какого-либо механизма, способного связать IP-адрес с MAC-адресом.

    Этот механизм осуществляется с помощью протоколов разрешения адресов (ARP). Благодаря им происходит трансляция IP-адреса узла назначения, который информирует источник MAC-адреса. Таким образом, протоколы ARP способствуют связи двух устройств при их одновременном подключении в сеть.

    Как это работает?

    Это означает, что каждый раз, когда машина А хочет послать пакеты данных машине B, A должна послать пакет ARP для запроса MAC-адреса B. Вместе с тем это неизбежно приведет к увеличению нагрузки на сеть и утяжелению трафика.

    Для того чтобы уменьшить трафик и затраты на сетевые подключения, компьютеры, использующие ARP-протокол, поддерживают кэш недавно приобретенных адресов привязки IP_to_MAC, то есть они не должны использовать ARP повторно.

    Вместе с тем некоторые уточнения ARP возможны: когда машина А хочет послать данные машине B, возможно, что B собирается посылать ответные данные А в ближайшем будущем. Поэтому, чтобы избежать использования ARP для машины B, A должна сохранить его связующий адрес IP_to_MAC в специальном пакете при запросе на MAC-адрес B. Так как A передает свой первоначальный запрос на MAC-адрес B, каждая машина в сети должна извлекать и хранить в своем кэше адрес IP_to_MAC.

    Когда устройство находится в сети (например, если операционная система перезагружается), оно может транслировать адрес связывания так, что все другие машины могут сохранить его в своих настройках. Это позволит не использовать повторно протоколы ARP, которые могли бы понадобиться при подключении других новых устройств.

    Пример отображения использования протокола разрешения адресов

    Можно рассмотреть сценарий, когда компьютер пытается связаться с некоторыми удаленными устройствами, и ранее никакого обмена IP между ними не осуществлялось. Именно поэтому должен быть применен ARP-протокол - чтобы определить MAC-адрес удаленной машины.

    Сообщение запроса ARP (который идет от IP-адреса A.A.A.A к B.B.B.B) транслируется по локальной сети с типом протокола Ethernet. Протоколы ARP исходят от всех машин, кроме целевой, которая направляет ответное сообщение на запрос. Этот ответ содержит в себе IP-адрес B.B.B.B, т.е. аппаратный адрес источника Ethernet, после чего будет налажена связь между устройствами.

    Протокол ARP и его назначение - выводы

    Как можно увидеть из описания выше, протокол разрешения адресов используется для наладки взаимодействия между различными устройствами в сети. Другими словами, это технология, без которой нормальное подключение не представляется возможным. Но возможна ли работа протокола ARP без других параметров сети? Определенно, невозможна. Поэтому следует рассмотреть другие протоколы, играющие важную роль.

    Протокол восстановления обратного адреса

    RARP является протоколом, по которому физический компьютер в локальной сети может запросить свой IP-адрес из таблицы Address Resolution Protocol или кэш-сервера шлюза. создает таблицу в шлюзе или маршрутизаторе локальной сети, которая отображает физический адрес машины (или адрес управления доступом к среде - MAC) относительно соответствующего протокола. Когда новое устройство подключается в сеть, его RARP-клиент создает на сервере запрос для отправки его IP-адреса. Предполагая, что запись была создана в таблице маршрутизатора, сервер RARP возвращает IP-адрес на машину, которая может хранить его для дальнейшего использования. Таким образом, протокол разрешения адресов ARP непрерывно связан с RARP.

    Детальный механизм

    И машина, которая выдает запрос, и сервер, который отвечает на него - все они используют физические сетевые адреса во время сеанса связи. Как правило, запрашивающая сторона не знает физический адрес. Таким образом, запрос транслируется на все машины в сети. Затем запрашивающая сторона должна идентифицировать себя по отношению к серверу. Для этого может быть использован серийный номер CPU или физический адрес сетевой машины. При этом использование физического адреса в качестве уникального идентификатора имеет два преимущества.

    Эти адреса всегда доступны и не должны быть связаны в коде начальной загрузки.
    Поскольку идентифицирующая информация зависит от сети, а не от поставщика CPU, все машины по данной сети будет иметь уникальные идентификаторы.

    Действие RARP во времени

    Так как RARP использует физическую сеть напрямую, никакое другое программное обеспечение протокола не будет отвечать на запрос или ретранслировать его. Программное обеспечение RARP должно единолично справиться с этими задачами. Некоторые рабочие станции, которые полагаются на RARP для загрузки, могут неоднократно повторять попытку неопределенное время, пока не получат ответ. Другие реализации имеют отказ после нескольких попыток, чтобы избежать перегрузки сети ненужными трансляциями.

    Протоколы IP/ICMP/ARP

    Протокол ICMP связывает механизм, шлюзы и хосты, которые используются для управления соединением или получения отчета об ошибках. Интернет-протокол обеспечивает сигнал, идущий от шлюза к шлюзу, пока не достигнет точки, которая может доставить его непосредственно в конечный пункт назначения. Если шлюз не может направлять или доставлять данные, или же он обнаруживает такое необычное состояние, как перегрузка сети, он должен выдать сообщение об этом, чтобы принять меры, позволяющие избежать или исправить эту проблему.

    Сообщений (ICMP) позволяет шлюзам осуществлять передачу ошибок или управлять сообщениями для других шлюзов или хостов. Таким образом, ICMP обеспечивает связь между протоколами Интернет на обоих соединяемых компьютерах.

    Этот специальный механизм был добавлен разработчиками в дополнение к TCP/IP-протоколам. Он позволяет использовать шлюзы в Интернете, чтобы сообщить об ошибках или предоставить информацию о чрезвычайных обстоятельствах. Сам по себе IP-протокол не содержит ничего, что может помочь проверить связь с отправителем или узнать о сбоях.

    Протоколы TCP/IP

    TCP/IP-протоколы предоставляют средства, способные помочь сетевым администраторам или пользователям идентифицировать проблемы сети. Один из наиболее часто используемых инструментов отладки вызывает запрос ICMP и получает ответное сообщение. В то же время хост или шлюз посылает эхо-сообщение с запросом ICMP на указанный адрес. Любая машина, которая получает эхо-запрос, формулирует отклик и возвращает к исходному отправителю. При этом ответ содержит копию данных, передаваемых в запросе, а также связанный с ними отклик.

    Этот протокол может быть использован для проверки того, доступен ли адресат и возможна ли с ним связь. В свою очередь, протоколы ARP - это используемые в дополнение к TCP/IP и необходимые для осуществления корректной связи между устройствами в сети.



    
    Top