Оптимальная частота кадров для съемки видео на YouTube канал. Еще раз о частоте кадров

Кинопоказ с высокой частотой 48, 60 кадров в секунду

Почему 24 кадра в секунду устарели? История

По сути, скорость съемки и демонстрации 24 кадра в секунду берет свою историю с первой половины 20 века. Именно в момент перехода от формата немого кино на звуковое возникла такая потребность. Немое кино снималось с частотой 16 кадров в секунду. Прибавку 8 кадров в секунду зритель получил не от доброты производителей кинооборудования, это связанно чисто с техническими проблемами. Просто при частоте съемки 16 кадров в секунду невозможно было записать звуковую дорожку приемлемого качества. И 16 и 24 кадра в секунду не обеспечивают необходимую плавность движения. Почему же производители с самого начала не предложили более высокую скорость съемки и демонстрации кинофильмов? Здесь загадок нет просто пленка дорого стоит, а на заре кинематографа это была чуть ли не основная статья расходов. Фильмокопия современной киноленты требовала бы 10000-13000 метров кинопленки (вместо 5000). По этим причинам уже почти век мы смотрим кино в формате 24 кадра в секунду. Т.е. 24 кадра в секунду это компромисс между плавностью картинки и расходом плёнки.

Необходимость перехода на 48, 60 кадров в секунду

Не для кого не является секретом тот факт, что при просмотре динамичной сцены на большом экране зритель может наблюдать эффект стробирования изображения, объекты на киноэкране двигаются рывками. Этот эффект связан низкой частотой смены кадров в современном кинематографе, всего 24 кадра в секунду. Эффект очень заметен как в 3D так и в 2D картинах. Простым доказательством того, что наш мозг воспринимает информацию гораздо быстрее служит демонстрация 3D контента в режиме триплфлэш (каждый кадр демонстрируется поочередно три раза для левого и правого глаза). Это является стандартом для современных кинотеатров и по сути проверено на миллионах зрителей. Опытным путем было доказано, что именно демонстрация 3D 24 кадра в секунду с разбивкой 2х72 Гц позволяет практически полностью уменьшить утомляемость для подавляющего числа зрителей. К сожалению, данный режим снимает только утомляемость от переключения между изображениями для левого и правого глаза, но не делает движения плавными.

Скрытые причины для перехода на 48, 60 кадров в секунду

Естественно эффект стробирования проявлялся бы в полной мере если бы о нем не знали кинопроизводители. Просто при кинопроизводстве избегаются нежелательные режимы (или минимизируются) съемки в которых данный эффект проявляется особенно заметно. Здесь не факультет кинооператоров и мы не будем углубляться в данную тему. Просто нужно принять как факт 24 кадра в секунду не позволяют нам насладится плавностью и четкостью движений в динамичной сцене, а кинопроизводителю реализовать свои замыслы в полной мере.

Наглядный пример.

Современное оборудование для демонстрации с частотой 48, 60 fps

Итак, основная причина использования частоты 24 кадра в секунду это кинопленка. В мире цифрового кинематографа таких ограничений практически нет. Уже сегодня ведущие мировые производители кинооборудования, как для кинопроизводства, так и для кинопроката, в состоянии обеспечить качественный кинопоказ с частотой 60 кадров в секунду для 2D и 3D контента. Все цифровые кинопроекторы Barco второй серии позволяют произвести их апгрейд для демонстрации с высокой частотой смены кадров. Также современные серверы GDC и DoReMi обеспечивают такую возможность. Фактически, для массового перехода на демонстрацию с высокой частотой смены кадров нужна сильная рука и похоже такая рука уже нашлась.

Именно Джеймс Кэмерон является движущей силой в технологическом продвижении кинематографа,именно после его показа фильма Аватар в 3D формате началась эра показа фильмов в 3D,его можно сравнить с ледоколом за которым все идут,и он не боится ставить эксперементы.Его фильм Аватар стал самым кассовым за всю историю кинематографа.

Аватар 2 в формате 3D 60 кадров в секунду

В своем интервью Wall St. Journal Джеймс Кэмерон заявил: "Я буду добиваться, чтобы в кинопроекции произошли радикальные изменения. Прежде всего, мы будем снимать свой фильм с частотой 48, а может и 60 кадров в секунду. Это позволит наконец избавиться от раздражающих глаз артефактов, которые и вызывают болезненные ощущения у многих зрителей. Это все из-за пресловутых 24 кадров в секунду, 3D к этому не имеет никакого отношения". В настоящее время команда Кэмерона активно продвигает идею перехода на демонстрацию с высокой частотой кадров. По всему миру проводятся презентации новой технологии. Для этого в студийных условиях были сняты ролики с частотой 24, 48, 60 и 120 кадров в секунду. В съемках принимали участие профессиональные актеры. Все делалось как на съемках настоящего кинофильма. Данные демонстрационные материалы наглядно демонстрируют преимущества и недостатки той или иной технологии. Учитывая всю серьезность данной компании можно с уверенностью прогнозировать, что Аватар 2 выйдет в 2014 году именно в формате 60 кадров в секунду.

Пример:фрагмент фильма Аватар 48,60 FPS

Уже состоялся показ фильма Hobbit с частотаой кадров 48 fps ,некоторыми он был воспринят не однозначно,оно и понятно,ведь все привыкли к определённым стандартам и новое всегда кажется необычным и непривычным,однако большая чатота кадров позволяет увеличить плавность и чёткость картинки особенно в динамических сценах ещё и в 3D ,просто потрясающе смотрятся фильмы о природе и спортивные передачи где важна каждая деталь.
Если показ Аватра 2 с большей чаcтотой кадров будет принят также хорошо как показ первого Аватра в 3D то возможно кинемотограф сделает качественный скачёк в технологиях.

Здравствуйте, уважаемые читатели этой статьи.

Оговорюсь сразу, что на Хабре уже было упоминание того, о чем я буду вещать ниже, но было это вскользь и не слишком заметно. Поэтому, думаю, не будет хуже, если я все разжую и попытаюсь привлечь к этой теме больше людей. Потому что это действительно круто!

Сидя вечером в начале этой недели я случайно, сразу на нескольких сайтах столкнулся с интересной новостью, гласящей «Кэмерон снимет продолжения «Аватара» со скоростью 60 кадров в секунду».
Кэмерон человек далеко не глупый, оттого мне стало интересно, что он хочет извлечь из этих 60 кадров, ведь человеческий глаз различает лишь 24-25 кадров за секунду.
В ходе моих раскопок выяснилось следующее (очевидное, конечно, но о таком мало кто задумывается): на видео в 24 кадра в секунду изображение движущихся объектов получается смазанным из-за того, что выдержка видео объектива на каждый кадр составляет 1/24 секунды. Соответственно, если делать выдержку меньше, то картинка получается в разы четче. Благодаря моему другу и его классному фотоаппарату - вот видео для демонстрации разницы видео на 24 кадрах в секунду и на 60-ти.

Я побоялся заливать видео через youtube или как-то еще, кроме файлообменника, чтобы это не отразилось на качестве, так что вот ссылка
Так же в качестве демонстрации - нарезка из художественного фильма «Аватар» снятых на 60-ти кадрах в секунду .

Видео это я нашел случайно, по ходу разбора информации о сабже, как я понимаю оно является доп материалом к лицензионному диску с фильмом.
Впечатлились? Я тоже. После этого видео я задал закономерный вопрос, есть ли фильмы снятые в аналогичном качестве? Я не нашел ничего, что бы меня так же порадовало как этот ролик из Аватара. НО.

Я нашел очень интересный плагин для видео плееров. Называется он SmoothVideo Project (SVP). Это программа творит необычайную магию - она разбирает кадры видео и добавляет новые, на основе тех что уже есть в видео, да еще и в реальном времени! Таким образом видео можно довести до 60 и больше кадров в секунду.
Скептики, циники, ваши возгласы напрасны - это работает! Но при условии, что у вас достаточно мощный компьютер, что логично.
Как это можно попробовать? Сейчас расскажу.

1. Идем на сайт svp-team.com , где скачиваем полную версию пакета (в нем есть все что необходимо).

2. Устанавливаем все необходимые программы, которые содержатся в полном пакете (просто не меняем настроек при установке и жмем стандартные Далее-Далее-Готово)

3. Настраиваем. О том как настроить сказано в русскоязычном Hеlp к программе, но раз уж обещал разжевать, то разжую.

В Hеlp есть примеры настроек для нескольких видео плееров. Общая суть настройки заключается в принуждении плеера использовать сторонний кодек, с которым как раз работает SVP. Кодек, а вернее декодер, этот стандартный, скорее всего у вас уже установлен, называется он ffdShow.
Рассмотрим настройку плеера на пример идущего в комплекте Media Player Classic:

Открываем плеер, идем в настройки: это либо меню Вид>Настройки, либо просто нажать латинскую «o»

В настройках идем в раздел встроенные фильтры и отключаем все галки в разделе Декодеры:

Далее идем в раздел Внешние фильтры и жмем Добавить. Добавляем фильтр ffdShow raw Video Filter

После добавления фильтра нужно кликнуть на него, а потом поставить точку у надписи Предпочесть.

Чтобы смотреть видео с плавностью, должен висеть в панели уведомлений значок программы SVP Manager. Если треугольник горит зеленым, то все нормально:

Смотрите и наслаждайтесь!

P.S. При нажатии правой кнопкой на значок, вы получается доступ к разным настройкам и профилям проигрывания видео. Так вот у меня лучше всего работает видео, если в режиме эксперта в настройке профиля в строке «Изменение частоты кадров» ставить «24->60 (2.5x)».

UPD2:
Отличный пример различных фреймрейтов привел пользователь Turbo.

Здравствуйте, уважаемые читатели этой статьи.

Оговорюсь сразу, что на Хабре уже было упоминание того, о чем я буду вещать ниже, но было это вскользь и не слишком заметно. Поэтому, думаю, не будет хуже, если я все разжую и попытаюсь привлечь к этой теме больше людей. Потому что это действительно круто!

Сидя вечером в начале этой недели я случайно, сразу на нескольких сайтах столкнулся с интересной новостью, гласящей «Кэмерон снимет продолжения «Аватара» со скоростью 60 кадров в секунду».
Кэмерон человек далеко не глупый, оттого мне стало интересно, что он хочет извлечь из этих 60 кадров, ведь человеческий глаз различает лишь 24-25 кадров за секунду.
В ходе моих раскопок выяснилось следующее (очевидное, конечно, но о таком мало кто задумывается): на видео в 24 кадра в секунду изображение движущихся объектов получается смазанным из-за того, что выдержка видео объектива на каждый кадр составляет 1/24 секунды. Соответственно, если делать выдержку меньше, то картинка получается в разы четче. Благодаря моему другу и его классному фотоаппарату - вот видео для демонстрации разницы видео на 24 кадрах в секунду и на 60-ти.

Я побоялся заливать видео через youtube или как-то еще, кроме файлообменника, чтобы это не отразилось на качестве, так что вот ссылка
Так же в качестве демонстрации - нарезка из художественного фильма «Аватар» снятых на 60-ти кадрах в секунду .

Видео это я нашел случайно, по ходу разбора информации о сабже, как я понимаю оно является доп материалом к лицензионному диску с фильмом.
Впечатлились? Я тоже. После этого видео я задал закономерный вопрос, есть ли фильмы снятые в аналогичном качестве? Я не нашел ничего, что бы меня так же порадовало как этот ролик из Аватара. НО.

Я нашел очень интересный плагин для видео плееров. Называется он SmoothVideo Project (SVP). Это программа творит необычайную магию - она разбирает кадры видео и добавляет новые, на основе тех что уже есть в видео, да еще и в реальном времени! Таким образом видео можно довести до 60 и больше кадров в секунду.
Скептики, циники, ваши возгласы напрасны - это работает! Но при условии, что у вас достаточно мощный компьютер, что логично.
Как это можно попробовать? Сейчас расскажу.

1. Идем на сайт svp-team.com , где скачиваем полную версию пакета (в нем есть все что необходимо).

2. Устанавливаем все необходимые программы, которые содержатся в полном пакете (просто не меняем настроек при установке и жмем стандартные Далее-Далее-Готово)

3. Настраиваем. О том как настроить сказано в русскоязычном Hеlp к программе, но раз уж обещал разжевать, то разжую.

В Hеlp есть примеры настроек для нескольких видео плееров. Общая суть настройки заключается в принуждении плеера использовать сторонний кодек, с которым как раз работает SVP. Кодек, а вернее декодер, этот стандартный, скорее всего у вас уже установлен, называется он ffdShow.
Рассмотрим настройку плеера на пример идущего в комплекте Media Player Classic:

Открываем плеер, идем в настройки: это либо меню Вид>Настройки, либо просто нажать латинскую «o»

В настройках идем в раздел встроенные фильтры и отключаем все галки в разделе Декодеры:

Далее идем в раздел Внешние фильтры и жмем Добавить. Добавляем фильтр ffdShow raw Video Filter

После добавления фильтра нужно кликнуть на него, а потом поставить точку у надписи Предпочесть.

Чтобы смотреть видео с плавностью, должен висеть в панели уведомлений значок программы SVP Manager. Если треугольник горит зеленым, то все нормально:

Смотрите и наслаждайтесь!

P.S. При нажатии правой кнопкой на значок, вы получается доступ к разным настройкам и профилям проигрывания видео. Так вот у меня лучше всего работает видео, если в режиме эксперта в настройке профиля в строке «Изменение частоты кадров» ставить «24->60 (2.5x)».

UPD2:
Отличный пример различных фреймрейтов привел пользователь Turbo.

Кадровая частота , частота кадросмен (англ. Frames per Second (FPS), Frame rate , Frame frequency ) - количество сменяемых кадров за единицу времени в компьютерных играх, телевидении и кинематографе. Понятие впервые использовано фотографом Эдвардом Майбриджем , осуществлявшим эксперименты по хронофотографической съёмке движущихся объектов несколькими фотоаппаратами последовательно. Общепринятая единица измерения - кадры в секунду .

Кадровая развёртка - вертикальная составляющая телевизионной развёртки, применяющейся для разложения изображения на элементы и его последующего воспроизведения. Развёртка может быть механической или электронной. В более узком смысле кадровая развёртка - часть электронной схемы передающей камеры, телевизионного приёмника или монитора компьютера, осуществляющая разложение изображения или его воспроизведение в вертикальном направлении. Чаще всего это понятие употребляется применительно к устройствам, использующим электронно-лучевую трубку для формирования последовательности кадров телевизионного изображения с заданной частотой. Однако, понятие кадровой развёртки применимо и к устройствам с полупроводниковыми матрицами и экранами. Выражается в Герцах (Гц, Hz).

Никогда не путайте два этих понятия т.к. это немного разные вещи. Чтобы вы еще чётче смогли понять разницу – вот упрощение: Вы сможете посмотреть видеофайл с частотой кадров 60fps и на экране с развёрткой 50Гц.

Чтобы глубже понять в чём различия Кадровой частоты и Кадровой развёртки окунёмся в историю.
Давным-давно, когда телевидение было аналоговым, а экраны телевизора небольшими сигнал изображения передавался по воздуху или проводам. И был придуман эффективный и простой способ уменьшить затраты на его передачу.

Чересстрочная развёртка - метод телевизионной развёртки, при котором каждый кадр разбивается на два полукадра (или поля), составленные из строк, выбранных через одну. В первом поле развёртываются и воспроизводятся нечётные строки, во втором - чётные строки, располагающиеся в промежутках между строками первого поля.

Поэтому Кадровая развертка (или, что более точнее отражает суть “частота мерцания экрана”) это сколько таких кадров или полукадров ваш экран может отобразить за секунду. Но это было давно и актуально уже только для устаревших типов экранов ЭЛТ и с некоторым натяжением для плазменных экранов.

В современном мире господствуют жидкокристаллические экраны, поэтому они наиболее близко подошли к частоте смены кадров: частота обновления ЖК экрана это частота с которой на матрицу монитора подаются сигналы об изменении цвета пикселей. Если опять же упрощать: видеофайл с частотой кадров 60fps на экране 50 Гц будет показан с потерями.


Или обратный пример: современные видеокарты способны выдавать картинку до 400 Гц. Представьте: вы купили ПК вот с такой картой. А монитор у вас выдает максимум 75Гц. Получается Ваш монитор передаёт вам далеко не всё что на него передаёт видеокарта.

Даже если 15 кадров в секунду и достаточно для создания иллюзии движения, то для создания «эффекта погружения» нужно больше кадров. Визуальные исследования показали, что даже если нельзя различить отдельных изображений, частота кадров порядка 60-80 делает видео более реалистичным, усиливая четкость и увеличивая плавность движений.
более высокая частота кадров уменьшает количество визуальных артефактов движения - особенно это заметно при просмотре в кино. Движущиеся объекты могут иметь, например, стробоскопический эффект.

Частоты киносъёмки и кинопроекции

  • 16 - стандартная частота съёмки и проекции немого кинематографа;
  • 18 - стандартная частота съёмки и проекции любительского формата «8 Супер»;
  • 23,976 - частота телекинопроекции в американском стандарте разложения 525/60, применяемая для интерполяции без потерь;
  • 24 - общемировой стандарт частоты киносъёмки и проекции;
  • 25 - частота киносъёмки, применяемая при производстве телефильмов и телерепортажей для перевода в европейский стандарт разложения 625/50;
  • 29,97 - точная кадровая частота цветного телевизионного стандарта NTSC;
  • 30 - частота киносъёмки раннего варианта широкоформатной киносистемы «Tодд-AO»;
  • 48 - частота съёмки и проекции по системе IMAX HD;
  • 50 - частота полукадров европейского стандарта разложения. Используется в электронных камерах для ТВЧ;
  • 59,94 - точная полукадровая частота цветного телевизионного стандарта NTSC;
  • 60 - частота киносъёмки в американском стандарте ТВЧ и системе «Шоускан» (англ. Showscan).

Даже Apple представила мобильные устройства с дисплеями в 120Гц – то наверное не стоит брать телевизор на 50-60Гц когда рядом стоит на 100Гц.

  1. Развертка обеспечивает плавное изображение, четкую раскадровку движущихся объектов.
  2. Разрешение обеспечивает реалистичную прорисовку каждого кадра, когда можно рассмотреть все детали, точно передается цвет, движение воды или людей.
  3. Выбирая, какая модель экрана лучше, стоит анализировать все ключевые характеристики в совокупности, чтобы и разрешение экрана, и частота обновления кадров были на уровне.

Влияние частоты на зрение.

В ЖК мониторах, свет возникает в лампах подсветки, которые в любом случае имеют частоту выше 150 Гц. Для LCD мониторов хоть и указывается частота обновления, она означает скорость смены картинки самой TFT матрицы.
ЖК мониторы с LED подсветкой, в частности дешёвые, для регуляции яркости используют - изменение частоты мерцания диодов посредством ШИМ, что иногда приводит к видимому морганию. Это вызывает дополнительную усталость для глаз. Тут 2 варианта – либо увеличивать яркость в большую сторону, нагружая глаза, либо уменьшать, тоже нагружая глаза морганием. Лучше выбрать золотую середину - максимальное, комфортное значение яркости.

Для активных затворных 3D очков и некоторых пассивных, используются ЖК матрицы с частотой обновления ~120Гц, по 60Гц для каждого глаза. Данные мониторы/TV можно использовать на частоте 120 Гц и без очков, что идеально подойдёт игровым энтузиастам, так как количество реальных кадров в секунду будет в два раза выше стандартных 60 к/c. Также в них используются специальные лампы или диоды с повышенной частотой работы, что значительно меньше нагружает глаза. Встретить мерцание на данных мониторах - практически невозможно, но и запас яркости ламп подсветки они имеют значительный.

Популярные видеохостинги, в том числе YouTube, вводят поддержку потокового воспроизведения видео высокого качества на скорости 60fps. Поэтому убедиться в преимуществах такого типа видео вы можете прямо сейчас:

Резюмируя вышесказанное

Когда впервые появились компакт диски, многие критиковали их за то, что музыка стала слишком чистой и отсутствовал характерный звук виниловой пластики. Это очнеь похоже на ситуацию с высокой частотой кадров (далее: HFR). Проще говоря, низкой частоте кадров всегда найдется применение, но использование HFR предпочтительней т.к. всегда можно вернуться к более низкой частоте. Однако, как уже говорилось выше не везде необходимо использование HFR, так что со временем, технология может просто стать инструментом подобно тому, как сейчас используют угол затвора.
Огромный шаг был сделан и в отношении разрешения - с развитием 4к кино - что тоже заслуживает детального рассмотрения и исследования. Но в конечном счете, наши глаза получают изображение окружающей среды с бесконечным количеством кадров, бесконечным разрешением, в 3D; наш мозг обрабатывает получаемую информацию и превращает либо в видео, либо в отдельные кадры. Более высокая частота, 4к+ разрешение все больше и больше приближают нас к отражению реальности в кино.

Недавно вышел фильм Питера Джэксона «Хоббит», снятый при 48 кадрах в секунду (что в 2 раза больше стандарта киношной съемки в 24). Питер тогда сказал:
«Многие кинокритики холодно отнесутся к отсутствию размытие при движении и стробоскопическим артефактам, но вся наша съемочная команда-многие из которых являются экспертами в кино –после выхода фильма поддерживают меня. К новой частоте кадров быстро привыкаешь и начинаешь воспринимать более естественно. Это похоже на то время, когда CD-диски вытеснили виниловые пластинки. Я считаю что то же самое будет в кино и мы очень быстро приближаемся к тому моменту, когда фильмы с высокой частотой кадров будут выпускаться массово.»

Но есть и другой взгляд на эту ситуацию. Например, Найм Сезерлэнд (Naim Sutherland) так относится к высокой частоте кадров:
«Цель кинематографа не в том, чтобы зеркально отразить нашу реальность или детально показать ее. Я, например, хочу создать небольшую физическую связь между вами и моими фильмами. Я хочу погрузить зрителя в мир самой истории, чтобы он поверил в нее и забыл о себе, своей жизни и был только с фильмом наедине.
Не показывая достаточно информации визуально, мы заставляем мозг работать и самому заполнять пробелы информации… что еще больше погружает зрителя в фильм. И это является частью того, когда зритель смеется, плачет, или пугается.»

Одна из самых злободневных тем, которая постоянно всплывает в игровой и видео-индустрии – какую скорость передачи кадров можно считать оптимальной. По одну сторону баррикад стоят поборники традиций, которые считают, что 24 кадра в секунду для фильмов и 30 кадров в секунду для игр – это магические числа, и превышать эти значения нет никакого смысла. С другой стороны, существует масса объективных свидетельств несостоятельности этой теории, и целая армия квакеров употребляющих seta sv_fps «120».

В этой статье авторства Саймона Кука из Microsoft Xbox Advanced Technology Group мы постараемся объяснить, почему человеческому глазу приятнее более высокая скорость передачи кадров.

Обсуждение этого вопроса может быть немного проблематичным, так как человеческий глаз представляет собой невероятно сложный инструмент, который производит независимую обработку изображения еще до того, как сигнал достигнет мозга. Нам нравится думать, что то, что мы видим, является непреложной истиной, и вся наша визуальная система построена на этом утверждении. Тем не менее, это заблуждение. Чувствительность глаза к цвету, движению, свету и ускорению/замедлению уникальна для каждого человека. Ситуация еще больше осложняется тем фактом, что мы часто сравниваем наши глаза с камерами и говорим о зрении так же, как если бы мы говорили о компьютерной графике, однако ни одна из этих аналогий не описывает истинных процессов, которые позволяют глазам получать и обрабатывать информацию. На сайте представлен короткий ролик , который показывает разницу между 60 и 30 кадрами в секунду при разной скорости движения объекта.

При всем при этом, если человеку предоставляется возможность поиграть в игру с более высокой скоростью передачи кадров, он ей непременно воспользуется. Порой предпочтение отдается скорости передачи кадров даже выше 60 кадров в секунду (60 Гц); все зависит от множества потенциальных причин, включая жанр игры, ее графику, технические особенности и скорость геймплея.

Теория Саймона Кука заключается в том, что подобное предпочтение высокой скорости передачи кадров объясняется одним интересным механическим аспектом нашего зрения: даже если зафиксировать взгляд на одной неподвижной точке, сетчатка все равно не будет полностью неподвижной. Колебания сетчатки, которые в научных кругах называют микротремором глаза, происходят со средней частотой 83,68 Гц, а область сдвига составляет примерно 150-250 нм, что примерно соответствует размеру 1-3 фоторецепторов в сетчатке.

В чем смысл этих колебаний? Кук считает, что ему это известно. Легкое колебание сетчатки помогает вам увидеть одну и ту же сцену с двух немного разных ракурсов. Между тем, в самом глазе существует два разных типа ганглионарных клеток сетчатки: клетки с on-центром, которые откликаются, когда центр рецепторного поля освещен, и клетки с off-центром, которые откликаются, когда центр рецепторного поля не освещен.

Благодаря колебаниям сетчатки свет попадает как на клетки с on-центром, так и на клетки с off-центром, стимулируя оба типа клеток. Кук считает, что это улучшает нашу способность видеть очертания объектов. По словам ученого, все это также как-то связано с эффектом «зловещей долины».

Если теория Кука верна, это значит, что человеческая сетчатка увеличивает разрешение окружающего мира, как и видеокарты и игровые консоли, которые используют внутренние ресурсы для создания более четкой картинки, которую они затем выдают на дисплей. Представленное ниже изображение является примером того, как несколько вариантов изображения из одного источника при объединении дают более качественные результаты.

Но эта возможность извлекать дополнительную информацию из увиденного зависит от того, с какой скоростью нам подается информация. Если частота выборки (30 Гц, 30 кадров в секунду) ниже половины частоты микротремора сетчатки, то изображения не сменяются достаточно быстро, чтобы глаз мог извлечь дополнительную информацию.

Если вы следите за полемикой в области так называемого микро-«заикания» и задержки кадров в играх, то знаете, что одна из причин, по которой микро-«заикание» является менее интуитивным объективным показателем производительности по сравнению со скоростью передачи кадров, – это снижение преимущества более низкого времени смены кадров по мере того, как постоянная скорость передачи кадров приближается к 60 кадрам в секунду. Уменьшение задержки кадров с 33,3 мс (30 кадров в секунду) до 25 мс (40 кадров в секунду) более заметно, чем увеличение количества кадров в секунду с 40 до 60, и это несмотря на то, что во втором случае происходит более значительный сдвиг.

Если Кук прав, этот феномен объясняется тем, что собственная супер-разрешающая способность глаза наиболее эффективно работает на отметке примерно 43 кадра в секунду. Еще одним интересным аспектом наблюдений ученого является то, что более высокая скорость передачи кадров при более низком разрешении может обеспечить лучшие результаты, чем популярный в наши дни показатель 1080p @ 30 fps. Поверят ли в это разработчики или нет – пока что вопрос открытый. Большинство тайтлов для Xbox не смогли добиться показателя 1080p @ 30 fps и предпочли , нежели опускаться до свойственного прошлому поколению показателя 720p.

Если вы хотите увидеть наглядное сравнение картинки при 60 и 30 кадрах в секунду, посетите специальный веб-сайт , где выложено по паре игровых сцен в формате MP4. Это не YouTube-ролики, и мы подтверждаем, что видео слева действительно имеет частоту 30 кадров в секунду, а видео справа – 60 кадров в секунду.

К сожалению, пока нет никаких признаков того, что исследования Кука будут использованы в игровой индустрии, даже если их подвергнут тщательному анализу. Игровая индустрия зациклена на разрешении, а не на скорости передачи кадров, и если показатель 720p @ 60 fps в наше время политически недееспособен, то практически нет надежды на то, что показатель 1080p @ 60 fps ( @ 30 fps) имеет больше шансов на жизнь в будущих игровых продуктах. Конечно, у игр на ПК есть преимущество, так как перечисленные выше режимы там доступны, однако для их использования могут потребоваться довольно мощные видеокарты. ПК-мониторы с активированной вертикальной синхронизацией поддерживают только частоту обновления экрана 60 Гц, но если скорость передачи кадров в игре упадет, то монитор автоматически снизит частоту обновления до 30 Гц или 20 Гц. Таким образом, панели с частотой обновления 120 Гц могут скомпенсировать падение частоты обновления и положительным образом использовать возможности нашей сетчатки.

Подобные исследования и понимание человеческой физиологии могут сыграть важную роль в попытках извлечь максимум из возможностей нашего зрения. Новое поколение умных контактных линз, приборы ночного видения, периферийные устройства типа Oculus Rift – существует масса крупных исследовательских проектов, которые посвящены беспрецедентному взаимодействию технологий и человеческого зрения. Я считаю, что самыми жизнеспособными окажутся те проекты, которые будут максимально приближены к природным навыкам наших глаз и смогут наиболее точно имитировать функции человеческого зрения.




Top