Метод частотного разделения каналов. Многоканальная телефонная связь и методы разделения каналов

Временное разделение каналов

Принцип временного разделения каналов (ВРК) состоит в том, что групповой тракт предоставляется поочередно для передачи сигналов каждого канала многоканальной системы (рисунок 6.5). В зарубежных источниках для обозначения принципа временного разделения каналов используется термин Time Division Multiply Access (TDMA).

Рисунок 6.5 – Принцип временного разделения каналов

При передаче используется дискретизация во времени (импульсная модуляция). Сначала передается импульс 1-го канала, затем следующего канала и т.д. до последнего канала за номером N, после чего опять передается импульс первого канала и процесс повторяется периодически. На приеме устанавливается аналогичный коммутатор, который поочередно подключает групповой тракт к соответствующим приемникам. В определенный короткий промежуток времени к групповой линии связи оказывается подключена только одна пара приемник/передатчик.

Это означает, что для нормальной работы многоканальной системы с ВРК необходима синхронная и синфазная работа коммутаторов на приемной и передающей сторонах. Для этого один из каналов занимают под передачу специальных импульсов синхронизации.

На рисунке 6.6, а, б, в приведены графики трех непрерывных аналоговых сигналов S 1 (t ), S 2 (t ) и S 3 (t ) и соответствующие им АИМ-сигналы. Импульсы разных АИМ-сигналов сдвинуты друг относительно друга по времени. При объединении индивидуальных каналов образуется групповой сигнал S г (t ) (рисунок 6.6, г) с частотой следования импульсов в N раз большей частоты следования индивидуальных импульсов. Интервал времени между ближайшими импульсами группового сигнала TK называется канальным интервалом или тайм-слотом (Time Slot ). Промежуток времени между соседними импульсами одного индивидуального сигнала называется циклом передачи ТЦ . От соотношения ТЦ и TK зависит число импульсов, которое можно разместить в цикле, т.е. число временных каналов.

Рисунок 6.6 – Временные диаграммы преобразования сигналов при ВРК

При временном разделении так же как и при ЧРК существуют взаимные помехи, в основном обусловленные двумя причинами. Первая состоит в том, что линейные искажения, возникающие за счет ограниченности полосы частот и неидеальности амплитудно-частотной и фазо-частотной характеристик всякой физически осуществимой системы связи, нарушают импульсный характер сигналов. При временном разделении сигналов это приведет к тому, что импульсы одного канала будут накладываться на импульсы других каналов. Иначе говоря, между каналами возникают взаимные переходные помехи или межсимвольная интерференция . Кроме того, взаимные помехи могут возникать за счет несовершенства синхронизации тактовых импульсов на передающей и приемной сторонах.

В силу данных причин временное разделение каналов на основе АИМ не получило практического применения. Временное разделение широко используют в цифровых системах передачи плезиохронной и синхронной иерархий.

В общем случае для снижения уровня взаимных помех приходится вводить "защитные" временные интервалы, что соответствует некоторому расширению спектра сигналов. Так, в системах передачи полоса эффективно передаваемых частот F =3100 Гц; в соответствии с теоремой Котельникова минимальное значение частоты дискретизации f 0 =1/Т Д =2F =6200 Гц. Однако в реальных системах частоту дискретизации выбирают с некоторым запасом: f 0 =8 кГц. При временном разделении каналов сигнал каждого канала занимает одинаковую полосу частот, определяемую в идеальных условиях согласно теореме Котельникова из соотношения (без учета канала синхронизации) Dt K =T 0 /N= 1/(2NF)= 1/(2F ОБЩ), где F ОБЩ =FN , что совпадает с общей полосой частот системы при частотном разделении.

Хотя теоретически временное и частотное разделения позволяют получить одинаковую эффективность использования частотного спектра, тем не менее, системы временного разделения уступают системам частотного разделения по этому показателю. Вместе с тем, системы с временным разделением имеют неоспоримое преимущество, связанное с тем, что благодаря разновременности передачи сигналов разных каналов отсутствуют переходные помехи нелинейного происхождения. Кроме того, аппаратура временного разделения значительно проще, чем при частотном разделении, где для каждого индивидуального канала требуются соответствующие полосовые фильтры.

Для разделения сигналов могут использоваться не только такие очевидные признаки, как частота, время и фаза. Общим признаком сигналов является форма. Различающиеся по форме сигналы могут передаваться одновременно и иметь перекрывающиеся частотные спектры, и тем не менее, такие сигналы можно разделить, если выполняется условие их ортогональности. В зарубежных источниках для обозначения данного принципа применяется понятие кодового разделения каналов Code Division Multiply Access (CDMA ). В последние годы успешно развиваются цифровые методы разделения сигналов по их форме, в частности, в качестве переносчиков различных каналов используются дискретные ортогональные последовательности в виде функций Уолша, Радемахера и другие. Широкое развитие методов разделения по форме сигналов привело к созданию систем связи с разделением "почти ортогональных" сигналов, представляющих собой псевдослучайные последовательности, корреляционные функции и энергетические спектры которых близки к аналогичным характеристикам "ограниченного" белого шума. Такие сигналы называют шумоподобными (ШПС).

В основе временного разделения каналов лежит теорема В.А. Котельникова о том, что непрерывный сигнал, спектр которого ограничен максимальной частотой Fc макс полностью определяется его дискретными отсчетами, взятыми через интервалы времени

При этом в промежутках между отсчетами одного канала можно передать отсчеты сигналов других каналов. Таким образом, сигналы от разных источников подключаются к общей линии поочередно, не перекрываясь друг с другом (рисунок 3.4). Такие сигналы удовлетворяют условиям линейной независимости и ортогональности.

T Д - время дискретизации, Т к - канальное время, СИ - синхроимпульс


Рисунок 3.4 - Иллюстрация принципа временного разделения каналов

На рисунке 3.5 показана структурная схема многоканальной измерительной системы с временным разделением каналов и линией связи в виде радиолинии. Вместо радиолинии в ряде случаев может быть использована проводная линия связи.

Для образования разделяемых измерительных каналов работа устройств управления (УУ) ключевыми элементами (КУ) на передающей и приемной стороне должно быть синхронная и синфазная. Поэтому один из каналов отводится для передачи синхроимпульса, существенно отличающийся по одному из параметров от информационных импульсов (отсчетов сигналов) (СИ на рисунке 3.4 имеет амплитуду, большую, чем максимальное значение отсчета измерительного сигнала). СИ выделяется на приемной стороне селектором синхроимпульса (СС), и устанавливает счетчик каналов на приемной стороне в начальное состояние, с которого начинается счет каналов, т.е. обеспечивает синфазность УУ.

Селектор канальных импульсов (СКИ) формирует из принимаемого группового сигнала синхронный канальный импульс, который поступает на счетный вход УУ и осуществляет переключение счетчика каналов в темпе поступления отсчетов соседних каналов.

Как видно из схемы, первичное преобразование измерительных сигналов в СВРК всегда есть преобразование непрерывных сигналов в дискретные, то есть дискретизация. Соответственно, в первой ступени модуляции осуществляется, как правило, АИМ-1.


D - датчик, КУ - ключевое устройство, УУ - устройство управления,

М - модулятор, Г - генератор, ПР - приемник, ДМ - демодулятор,

УВ - устройство восстановления, РУ - регистрирующее устройство,

СС - селектор синхроимпульсов,

СКИ - селектор канальных имульсов

Рисунок 3.5 - Структурная схема измерительной системы с временным разделением каналов

Групповой сигнал с выхода коммутатора каналов может подвергаться вторичному преобразованию. Если пропорционально модулирующему сигналу (сигналу датчика) изменяется ширина канального импульса ф К, то получаем широтно-импульсную модуляцию (ШИМ).

Если по закону изменения сигнала датчика меняется положение переднего фронта импульса относительно начала отсчета (обычно начало канального интервала), то получим время-импульсную модуляцию (ВИМ).

Сигнал с выхода коммутатора каналов может также преобразовываться в цифровой сигнал, т. е. в код. В телеметрии такой вид преобразования называют кодо-импульсной модуляцией (КИМ).

Во второй ступени модуляции последовательности импульсов, образующих сигналы с АИМ, ШИМ или ВИМ, может модулировать несущую по амплитуде (АМ), частоте (ЧМ) или фазе (ФМ).

Лекция 4. Достоинства и недостатки многоканальных измерительных систем с частотным и временным разделением каналов

Измерительные системы с частотным разделением каналов

Достоинства

  • 1) Одновременная (параллельная) передача сигналов от каждого датчика, независимо друг от друга. Благодаря этому практически отсутствует задержка получения измерительных сигналов на приемной стороне (если не учитывать время распространения сигнала в линии связи, которое увеличивается при увеличении дальности передачи).
  • 2) «Живучесть» системы, которая обеспечивается опять же независимой передачей сигналов по каждому измерительному каналу.

Недостатки

1) Ограниченное число измерительных каналов.

Нелинейностью характеристик общего тракта передачи сигналов в СЧРК вызывает ограничение максимального количества каналов, которое может быть реализовано.

Пусть нелинейность характеристики общего тракта СЧРК описывается нелинейным уравнением:

U ВЫХ - сигнал с выхода группового тракта, U - сигнал на выходе сумматора. (Нелинейным элементом, в частности может являться модулятор несущей).

Сигнал U (t ) образуется суммированием сигналов всех поднесущих в сумматоре:

Пусть для всех поднесущих амплитуды Е к =1.

Подставляя (4.2) в (4.1) получим в выходном сигнале следующие составляющие:

Проведем замену.

Таким образом, сигнал на выходе группового тракта, а соответственно на входах всех разделительных полосовых фильтров на приемной стороне, содержит не только составляющие входного сигнала, но и большой набор комбинационных частот типа. Чем больше число каналов N , тем больше комбинационных частот появляется в спектре сигнала.

При малом числе каналов (N 6) еще можно подобрать поднесущие частоты F 1 , F 2 ,…, F N так, чтобы комбинационные частоты не попадали в полосы пропускания разделительных фильтров. С увеличением числа каналов этого сделать уже не удается.

Если ограничиться тремя слагаемыми в выражении (4.1), то число комбинационных частот вида щ 1 ±щ 2 ±щ 3 равно 480 при числе каналов N =10 и 1820 при N =15. Эти комбинационные частоты попадают в полосу пропускания канальных полосовых фильтров и создают помехи, которые называют перекрестными помехами. При большом числе каналов перекрестные помехи по своему характеру приближаются к флуктуационным шумам. Поэтому и бороться с этими помехами надо теми же способами, как и при борьбе с шумами. Один их путей - применение широкополосных видов модуляции, т. е. в поднесущих надо применять не АМ, а ЧМ. Применение ЧМ позволяет снизить требования к линейности характеристик общего тракта, поэтому в СЧРК наиболее широко применяется ЧМ поднесущих.

При временном разделении каналов (ВРК) сигналы каждого канала дискретизируются и их мгновенные значения передаются последовательно во времени. Таким образом, каждое сообщение передается короткими импульсами - дискретами. По одной линии связи за определенный промежуток времени - период повторения, который отводится для передачи, можно передать соответствую­щее число таких сообщений.

Структурная схема системы передачи информации с ВРК. На рис. 4.3 представлена упрощенная структурная схема системы с ВРК. Сообщение, например, при телефонной связи в виде зву­ковых сигналов, поступает во П вх, где звуковые колебания пре­образуются в электрические. Распределители передающей Р1 и приемной Р2 сторон должны работать синхронно и синфазно. Пе­реключение распределителей осуществляется от импульсов, посту­пающих от ГТИ. В конце каждого цикла в линию связи поступает фазирующий импульс для обеспечения синфазности работы обоих распределителей. Синхронность их работы обеспечивается стабиль­ностью частоты ГТИ передающей и приемной сторон.

Распределитель последовательно подключает цепи для переда­чи сообщений по соответствующему каналу. Поскольку для передачи сообщений отводится незначительное время, то по линии связи будут следовать короткие импульсы, длительность которых определяется временем подключения распределителем данной цепи. На приемной стороне вследствие синхронной и синфазной работы распределителей, короткие импульсы поступают на П ВЫ х, где происходит обратное преобразование электрических сигналов в звуковые.

При ВРК между сигналами каждого канала, передаваемыми последовательно во времени по линии связи, вводится защитный временной интервал (рис. 4.4), который необходим для устра­нения взаимного влияния (перекрытия) каналов. Последнее воз­никает из-за наличия фазочастотных искажений в линии связи, чем вызывается неравномерность времени распространения сигна­лов различных частот.

Число каналов при ВРК зависит от длительности канальных импульсов и частоты их повторения, которая при передаче не­прерывных сообщений определяется теоремой Котельникова о преобразовании непрерывных сигналов в дискретные .

Таким образом, общее число каналов при ВРК

(4.1)

где Т п - период повторения;
- длительность синфазирующего импульса; - длительность защитного промежутка; - дли­тельность канального импульса.

Полоса частот, необходимая для организации п каналов при ВРК, определяется минимальной длительностью канального им­пульса
, которая зависит от числа организуемых каналов связи и характера сообщения, определяется из выражения

(4.2)

где К п - коэффициент, зависящий от формы импульса (для прямо­угольного импульса К п ~0,7).

Определим полосу частот, необходимую, например, для органи­зации 12 телефонных каналов при ВРК. Длительность импульса при организации по линии связи 12 телефонных каналов опреде­лится из следующих соображений. Период повторения Т п =1/f п, где f п - частота повторения, которая определяется выражением f п = 2f max = 2 3400 = 6800 Гц. Здесь f max = 3400 Гц - максимальная частота при передаче телефонных сообщений. Для передачи прини­мают f п = 8000 Гц. Тогда f п =1/8000=125 мкс.

Из выражения (4.1)

Подставив в последнее выражение значения Т п = 125 мкс и n=12, получим
1 мкс. Зная длительность канального импульса
и принимая K п = 0,7 из выражения (4.2), находим

Таким образом, полоса частот для организации 12 телефонных каналов при ВРК значительно превышает полосу частот, требуе­мую для организации такого же числа каналов при ЧРК, которая равна 48 кГц (12(3400 + 600) =48000 Гц, где 600 Гц -полоса ча­стот, отводимая на расфильтровку соседних каналов).

Следовательно, использование ВРК для передачи аналоговых сообщений (например, телефонных, факсимильных, телевизионных) имеет ряд ограничений. В то же время передача дискретных сообщений (телеграфных, телемеханики, передачи данных) при ВРК дает существенные преимущества. Это объясняется тем, что дискретные сигналы при данных видах сообщений имеют значи­тельную длительность, а спектр частот таких сигналов распола­гается в нижней части частотного диапазона, следовательно, дли­тельность и период повторения канальных импульсов могут быть сравнительно большими, что значительно снижает требуемую по­лосу частот.

При ВРК для согласования сообщения с каналом связи могут использоваться различные виды канальной модуляции.

К недостаткам ВРК следует отнести сравнительно широкую полосу частот, требуемую для передачи сообщений; сложность коммутационного оборудования (распределителей) при организа­ции значительного числа каналов связи и необходимость коррекции фазочастотных характеристик линии связи для устранения взаим­ного влияния каналов связи.

При временном разделении каналов (ВРК) сигналы каждого канала дискретизируются и их мгновенные значения передаются последовательно во времени. Таким образом, каждое сообщение передается короткими импульсами - дискретами. По одной линии связи за определенный промежуток времени - период повторения, который отводится для передачи, можно передать соответствую­щее число таких сообщений.

Структурная схема системы передачи информации с ВРК. На рис. 4.3 представлена упрощенная структурная схема системы с ВРК. Сообщение, например, при телефонной связи в виде зву­ковых сигналов, поступает во П вх, где звуковые колебания пре­образуются в электрические. Распределители передающей Р1 и приемной Р2 сторон должны работать синхронно и синфазно. Пе­реключение распределителей осуществляется от импульсов, посту­пающих от ГТИ. В конце каждого цикла в линию связи поступает фазирующий импульс для обеспечения синфазности работы обоих распределителей. Синхронность их работы обеспечивается стабиль­ностью частоты ГТИ передающей и приемной сторон.

Распределитель последовательно подключает цепи для переда­чи сообщений по соответствующему каналу. Поскольку для передачи сообщений отводится незначительное время, то по линии связи будут следовать короткие импульсы, длительность которых определяется временем подключения распределителем данной цепи. На приемной стороне вследствие синхронной и синфазной работы распределителей, короткие импульсы поступают на П ВЫ х, где происходит обратное преобразование электрических сигналов в звуковые.

При ВРК между сигналами каждого канала, передаваемыми последовательно во времени по линии связи, вводится защитный временной интервал (рис. 4.4), который необходим для устра­нения взаимного влияния (перекрытия) каналов. Последнее воз­никает из-за наличия фазочастотных искажений в линии связи, чем вызывается неравномерность времени распространения сигна­лов различных частот.

Число каналов при ВРК зависит от длительности канальных импульсов и частоты их повторения, которая при передаче не­прерывных сообщений определяется теоремой Котельникова о преобразовании непрерывных сигналов в дискретные .

Таким образом, общее число каналов при ВРК

(4.1)

где Т п - период повторения;
- длительность синфазирующего импульса; - длительность защитного промежутка; - дли­тельность канального импульса.

Полоса частот, необходимая для организации п каналов при ВРК, определяется минимальной длительностью канального им­пульса
, которая зависит от числа организуемых каналов связи и характера сообщения, определяется из выражения

(4.2)

где К п - коэффициент, зависящий от формы импульса (для прямо­угольного импульса К п ~0,7).

Определим полосу частот, необходимую, например, для органи­зации 12 телефонных каналов при ВРК. Длительность импульса при организации по линии связи 12 телефонных каналов опреде­лится из следующих соображений. Период повторения Т п =1/f п, где f п - частота повторения, которая определяется выражением f п = 2f max = 2 3400 = 6800 Гц. Здесь f max = 3400 Гц - максимальная частота при передаче телефонных сообщений. Для передачи прини­мают f п = 8000 Гц. Тогда f п =1/8000=125 мкс.

Из выражения (4.1)

Подставив в последнее выражение значения Т п = 125 мкс и n=12, получим
1 мкс. Зная длительность канального импульса
и принимая K п = 0,7 из выражения (4.2), находим

Таким образом, полоса частот для организации 12 телефонных каналов при ВРК значительно превышает полосу частот, требуе­мую для организации такого же числа каналов при ЧРК, которая равна 48 кГц (12(3400 + 600) =48000 Гц, где 600 Гц -полоса ча­стот, отводимая на расфильтровку соседних каналов).

Следовательно, использование ВРК для передачи аналоговых сообщений (например, телефонных, факсимильных, телевизионных) имеет ряд ограничений. В то же время передача дискретных сообщений (телеграфных, телемеханики, передачи данных) при ВРК дает существенные преимущества. Это объясняется тем, что дискретные сигналы при данных видах сообщений имеют значи­тельную длительность, а спектр частот таких сигналов распола­гается в нижней части частотного диапазона, следовательно, дли­тельность и период повторения канальных импульсов могут быть сравнительно большими, что значительно снижает требуемую по­лосу частот.

При ВРК для согласования сообщения с каналом связи могут использоваться различные виды канальной модуляции.

К недостаткам ВРК следует отнести сравнительно широкую полосу частот, требуемую для передачи сообщений; сложность коммутационного оборудования (распределителей) при организа­ции значительного числа каналов связи и необходимость коррекции фазочастотных характеристик линии связи для устранения взаим­ного влияния каналов связи.

Временное разделение каналов (временное уплотнение линии связи)

Метод временного уплотнения используется в многоканальных линиях связи с временным разделением каналов. По таким линиям связи передаются импульсные сигналы, в то время как непрерывные сигналы типичны для линий связи с частотным разделением. При медленно изменяющихся телеметрических данных сигнал будет узкополосным (например, данные о температуре можно передавать с малой скоростью; скажем, один раз в 10 с), и крайне неэкономно за­нимать таким сигналом всю линию радиосвязи. Для увеличения эф­фективности передачи эту же линию связи можно использовать для передачи других измерений в паузах между передачей значений температуры. Ясно, что эффективное использование линии связи может быть достигнуто за счет временного разделения канала связи между несколькими измеряемыми параметрами, каждый из которых передается с частотой, соответствующей скорости его изменения. При таком временном разделении каждой измеряемой величине отводится свой повторяющийся временной интервал. В нашем при­мере в течение 10 с должно быть передано некоторое число разнооб­разных групп данных. Значения различных измеряемых величин. передаются одна за другой через одну и ту же линию связи, каждая величина в свои промежутки времени. Приемное устройство должно быть в состоянии разделить поток значений по каналам так, чтобы в каждом из каналов образовались последовательности значений, соответствующие первичной измеряемой величине. Для этого необ­ходимо обеспечить временную синхронизацию или метить каждый временной промежуток для того, чтобы на приемном конце можно было распознать каждый источник данных. На рис. 16 показаны временное уплотнение каналов и функциональная схема типичной телеметрической системы с разделением каналов по времени.

Общим методом опознавания каждого временного промежутка является отсчет его положения по отношению к синхронизующим импульсам, которые имеются в начале цикла передаваемых значе­ний данных, -«тактовые импульсы». На рис. 17,а показаны более подробные функциональные схемы коммутатора и декоммутатора.

Рис. 16.

а-распределение временных интервалов (10 каналов); б-упрощенная функциональная схема системы.

Коммутатор собирает множество входных каналов от источников сигналов в одну линию передачи. Счетчик задает каждый временной промежуток и, следовательно, место в цикле для каждого источника данных. Например, пятый канал данных в приведенной схеме под­ключен к линии радиосвязи в то время, когда счетчик находится в положении 5, или при счете 5. На рис. 17,б показана упрощенная схема коммутации и декоммутации. Когда переключатель коммута­тора находится в положении 1, в том же положении находится и переключатель декоммутатора, роль которого играет коммутатор, работающий в обратном направлении. Следовательно, данные пер­вого канала передаются и принимаются.Оба переключателя работа­ют синхронно.

Рис. 17.

а - функциональная схема; б - схема взаимодействия. Синхронизирующий сигнал в приемном устройстве может быть извлечен из передаваемых по линии связи синхроимпульсов или образован местным генератором.

Тактовый синхроимпульс обеспечивает точную синхронизацию начала цикла, гарантирующего согласованные переключения ком­мутатора и декоммутатора. Отметим, что в коммутаторе и декоммутаторе используется одинаковая аппаратура; различие заключается лишь в направлении движения данных.

Так как коммутация и декоммутация управляются фиксированной частотной синхронизацией, частота переключений также стабиль­на и длительность каждого временного промежутка одинакова. Однако это может быть невыгодным в случаях, когда для различных источников данных требуются существенно разные полосы частот. Для того чтобы понять связь между полосой частот и частотой пере­ключении, необходимо рассмотреть процесс выборки данных.

Как отмечалось ранее, синусоида может быть восстановлена из последовательности выборок ее мгновенных значений. Для воспроизведения синусоиды частоты 1 кГц с высокой верностью (искажения менее 1%) требуется по меньшей мере 5 выборок из каждого периода сигнала. Следовательно, сигнал с частотой 1 кГц должен быть подвергнут дискретизации со скоростью 5000 значений в секунду, т. е. 5 выборок на период измеряемой величины. Если мы предполагаем коммутировать сигналы от 10 источников данных (имеющих полосы частот по 1 кГц), для каждого из которых требует­ся скорость дискретизации 5000 выборок в секунду, то необходима скорость коммутации 10×5000 выборка/с = 50000 выборка/с. Ком­мутатор должен переключаться от источника к источнику с частотой 50 кГц (через 20 мс), так что каждый источник сигналов будет опро­шен один раз за каждые 10 переключений, т. е. один раз каждые 20 мс, но с частотой 5 кГц. Частота тактов, т. е. число тактов в секун­ду, будет равна 5000 такт/с. Частота переключений равна тактовой частоте, умноженной на число источников данных в системе, или тактовой частоте, умноженной на число импульсов в такте (5000×10=50000 имп./с). Линия связи должна быть в состоянии передавать импульсные данные с такой высокой частотой (50000 имп./с) без ощутимых искажений. Это означает, что необходима система связи. с шириной полосы пропускания гораздо больше 50000 Гц.

Выборки данных от различных источников в системе, показанной на рис. 16,б, непосредственно модулируют несущую. Наряду с такой непосредственной модуляцией часто бывает, что выборки данных используются для модуляции поднесущей, которая в свою ечередь модулирует несущую, как это показано штриховыми лини­ями на рис. 16,б. Выборки данных от группы источников переда­ются, таким образом, на одной из поднесущих в системе с частотным уплотнением каналов. Это позволяет применять оба метода уплот­нения каналов в одной линии связи. Сами по себе выборки данных это не что иное, как импульсные значения сигнала при амплитудно-импульсной модуляции (АИМ), т.е. информация является амплитудно-нмпульсно-модулированной. Так как такие АИМ-сигналы модулируют поднесущую (например, путем ЧМ), которая затем мо­дулирует несущую (к примеру, также путем ЧМ), то в результате получается АИМ/ЧМ/ЧМ-система.

Теперь рассмотрим пример, демонстрирующий влияние дискре­тизации сигнала на ширину полосы частот системы связи.

Рассмотрим несущую с частотой 100 МГц, которая модулируется (ЧМ) поднесущей с центральной частотой 70 кГц. Информация пере­носится с помощью частотной модуляции поднесущей 70 кГц. Таким образом, имеем ЧМ/ЧМ-канал связи. Чтобы соответствовать стан­дартам, необходимо ограничить девиацию частоты поднесущей до ±15%. Это означает, что при индексе модуляции 5 ширина полосы информации ограничена до 2100 Гц, т. е. получается гораздо уже полосы 50000 Гц, необходимой для предложенной системы с уплот­нением каналов. Если число выборок в такте было бы сокращено до одной, что означает оставление одного из источников данных, то потребовалась бы частота переключений 5 кГц, т. е. по-прежнему шире полосы 2100 Гц, которой располагает поднесущая 70 кГц. Отметим, что в случае одного источника данных не требуется ника­кого уплотнения каналов и, следовательно, возможна прямая непре­рывная передача (без выборки). В этом случае ширина полосы 2100 Гц в два раза больше полосы, необходимой для сигнала от одного источника (1 кГц в предыдущем примере). Такое ухудшение эффективности использования полосы частот (при дискретизации требуется полоса 5 кГц, без дискретизации - только 1 кГц) обус­ловлено свойствами самой дискретизации сигнала. При форми­ровании пяти выборок мгновенных значений сигнала на каждый пе­риод непрерывного сигнала мы расширяем полосу частот сигнала более чем в пять раз, а следовательно, и требуемую полосу канала. Хотя при использовании одной поднесущей для передачи сигналов от большого числа источников полоса частот используется неэффек­тивно, но это имеет и свои достоинства, проявляющиеся при узкополосных сигналах от источников. Поэтому временное разделение, требующее дискретизации сигнала, в основном используется в при­ложениях с низкими требованиями к полосе частот. Однако широкополосные сигналы тоже.могут быть переданы с использованием дли­тельных выборок. Длительность каждой выборки в таком методе го­раздо больше, чем период ннформации, и составляет 5 и более ее периодов. Это просто означает, что выборка содержит не одно мгно­венное значение, а конечный отрезок значений сигнала, передавае­мый в данный тактовый интервал времени. При таком методе необ­ходимо быть уверенным в отсутствии потерь данных за время пере­рыва передачи ниформацин от определенного источника.

Выше предполагалось, что способом передачи является ЧМ/ЧМ. Следовательно, в каждый отдельный интервал времени изменяю­щаяся частота поднесущей представляет собой значение измеряе­мой величины, подвергнувшейся выборке в это время. В течение этого интервала времени отклонение частоты от центра поднесущей соответствует напряжению выборки, которое модулирует частоту поднесущей. Ширина этих временных интервалов фиксирована, а такт их последовательности задается синхроимпульсом. Синхроим­пульс вызывает максимальное отклонение частоты и имеет длитель­ность, равную удвоенному обычному временному промежутку. Уширение необходимо для выделения импульса синхронизации из им­пульсов выборок сигналов.

Установление стандартов и контроль характеристик линий пе­редачи осуществляются различными государственными или между­народными органами (в зависимости от характера линий: спутнико­вая телеметрия - международными соглашениями, промышленная телеметрия - органами государственного контроля и т.д.). На­пример, тактовая частота должна поддерживаться постоянной с точностью ±5% (долговременная стабильность); длина такта огра­ничена не более 128 временными интервалами и т.д. (IRIG , «Стан­дарты телеметрии»). Отметим еще, что при высоких частотах поднесущих полоса часто оказывается шире; значит, частота переключении может быть выше.

Для повышения эффективности иногда полезно иметь неодина­ковую частоту выборки для разных источников.

Источник широкополосной информации должен опрашиваться чаще, чем узкополосный. Это легко достигается простыми изменения­ми во внутренних соединениях коммутатора и декоммутатора. На­пример, если мы соединим положения 1 и 5 в десятиточечном комму­таторе (уплотнителе каналов), то источник данных, соединенный с положениями 1 и 5, будет опрошен дважды за один такт, т. е. с уд­военной частотой. Возможно также произвести подкоммутацию, т.е. выделить один или более временных интервалов, длительность которых разбивается на части для передачи данных от дополнитель­ного ряда источников. Длительность интервала основного такта становится при этом подтактом для подкоммутатора.

Эти методы позволяют легко приспособить систему к широкому диапазону требований к полосе частот.




Top