Как паять микросхемы и что означает bga? Как проходит пайка корпусов BGA типа

Если случается отвал контактов между платой и чипом, необходим реболлинг. Данная процедура требует профессионального оборудования и большого опыта. Мне не раз приходилось наблюдать случаи, когда люди проводили данную работу самостоятельно, в домашних условиях не имея представления о всех тонкостях. В итоге, они лишали свою технику возможности к восстановлению, иногда, после реболлинга устройство работало, но лишь несколько дней, после чего, снова ломалось, уже безвозвратно.
Реболлинг чипа проводится только в том случае, если он действительно необходим, что может установить лишь специалист во время диагностики. Нужно убедиться, что произошел отвал пятаков контактов от платы или самого чипа.
Однажды ко мне обратились люди, у которых вышел из строя телевизор немало известной марки samsung, он неожиданно перестал выдавать изображение во время просмотра. Владельцы обращались в специальные сервисы данной компании и мастера установили что требуется провести реболлинг чипа, но цена за него оказалась астрономической. Тогда эти люди отправились на поиски частного мастер в интернете и наткнулись на мой сайт. Обговорив все условия и согласовав стоимость работы я принялся за дело.
Реболлинг чипа проходит следующим образом.
С платы телевизора снимаются все наклейки и пластмассовые разъемы и радиатор, т.к. эти детали мешают равномерному разогреву. Далее плату нагревают до 200 градусов и помещают под чип флюс, разогревая термовоздушной станцией с температурой 250 градусов, затем, поддевают его пинцетом, снимают и дают остыть. Затем удаляются остатки припоя и площадка зачищается оплеткой, создавая ровную поверхность пятаков без заусенцев. Затем, участков зачищается растровом flux-off.
Установив чип в тески контактами вверх, снимаем припой жалом паяльника, затем, смазываем флюсом подготовленное место и устанавливает трафарет. Закрепив все это в станке для реболлинга, рассыпаем шарики припоя по лункам трафарета, затем нагреваем феном до 240 градусов и наблюдаем плавление каждого шарика. Аккуратно снимаем шаблон, проверяем наличие всех припаявшихся пятаков и снова разогреваем феном до 250 градусов. Очищаем от флюса с помощью растворителя.
Снова разогреваем плату телевизора до 200 градусов, заливаем флюс на площадку для установки, и распределив все тонким слоем по поверхности контактов, помещаем чип на участок обозначенный ограничительными контурами. Настраиваем фен на 230 градусов и прогреваем чип до тех пор, пока тот не начнет еле заметно садиться. Подталкиваем его пинцетом чуть в сторону, если он возвращается в исходное положение, можно понять, что все контакты припаялись. Когда все остынет, можно снять остатки флюса растворителем.
Установив плату обратно в телевизор, я убедился, что тот снова выводит изображение, что говорит об успешном реболлинге чипа.

BGA-микросхемы – необходимые элементы современных устройств, будь то компьютер, ноутбук, смартфон или игровая приставка. BGA (от англ. Ball Grid Array – массив шариков) представляют собой шарики из припоя, нанесенные на контактную поверхность. Если эти шарики повреждаются или отваливаются, то микросхема перестает выполнять свою функцию, что отрицательно влияет на работу устройства вплоть до его полного выхода из строя. В этом случае возникает необходимость в мастере, который смог бы починить отвалившийся или поврежденный шарик, то есть качественно припаять его, вернув целостность BGA-микросхеме. Процесс восстановления таких шариковых выводов называется «реболлинг» (от англ. „reballing“).


Признаки повреждения BGA-компонентов:

После включения устройства дисплей остается черным, хотя индикаторы включения горят;

Устройство самостоятельно отключается через несколько минут или секунд после начала работы;

Устройство самостоятельно неоднократно перезагружается;
изображения нет;
устройство включается не с первого раза.



Причины повреждения шариковых выводов могут быть самыми разными: от повреждения микросхемы в процессе демонтажа до ее заводского брака. Бывает, что причиной повреждения шариковых выводов становится и простое механическое воздействие. Например, устройство уронили или по нему ударили в процессе транспортировки.
В связи с этим операция реболлинга является достаточно востребованной, но далеко не самой простой. Главная ее особенность заключается в том, что качественный реболлинг не сделать, как говориться, «голыми руками». Помимо опыта и соответствующих навыков мастер должен иметь специальное оборудование и уметь пользоваться им.


Перед началом работ нужно позаботиться о безопасности.


Личная безопасность

  • Работы нужно проводить в хорошо вентилируемом помещении, так как испарения флюса при пайке могут причинить вред.
  • В процессе реболлинга используются химикаты. Необходимо позаботиться о средствах личной защиты.


Безопасность компонентов

  • Особую опасность для компонентов представляет статический заряд. Необходимо использовать антиэлектростатические вещества.
  • Также следует помнить, что компонентам может нанести вред высокий уровень влажности, перепад температур и любое непредвиденное механическое воздействие.


Извлекаем объект работ

Прежде всего, необходимо извлечь микросхему, которая находится в устройстве. Корпус нужно вскрыть аккуратно, чтобы ни в коем случае не повредить его. В ремонте нуждаются самые разные устройства: телефон, ноутбук, планшет, телевизор – поэтому хорошо бы иметь универсальный набор инструментов, который поможет осторожно вскрыть корпус любого из перечисленных устройств. Неудобно и ненадежно каждый раз выискивать что-то острое и подходящее из подручных средств, поэтому обратите внимание на специальные .




Демонтаж микросхемы
Реболлинг начинается с демонтажа микросхемы с платы. Ведь именно микросхема является объектом работы мастера. Демонтаж выполняется с помощью паяльной станции .



Выбор паяльных станций на рынке достаточно велик, и здесь можно растеряться. В идеале это должна быть с предметным столом, но на деле такой перфекционизм стоит достаточно дорого, и далеко не каждый мастер может позволить себе приобрести такую паяльную станцию. Поэтому чаще покупают что-то менее дорогое, но не менее эффективное. Например, можно остановиться на термовоздушной паяльной станции .



В ней есть все необходимое для выполнения качественной работы. В частности, в процессе пайки мастер сможет отслеживать текущую температуру паяльника и термофена на светодиодном дисплее.
Для паяльника предусмотрены жала двух типов, а термофен имеет три круглые насадки с разным диаметром сопел, что позволит изменять площадь обогреваемой поверхности.



В общем, эта паяльная станция достаточно популярна как среди любителей, так и среди профессионалов. Такая популярность вызвана, прежде всего, оптимальным соотношением цены и качества.


После того, как определились с паяльной станцией, можно приступать к демонтажу.


Во время демонтажа микросхема может потерять еще часть шариков, но этого может и не произойти. В принципе количество поврежденных шариков уже не важно, потому что следующий этап – это снятие шариковых выводов (деболлинг). Все оставшиеся шарики должны быть убраны, то есть мастер готовит место для нанесения новых шариков. Шариковые выводы удаляются с помощью паяльника. И здесь очень важно не повредить микросхему и не перегреть ее. Поэтому используя паяльную станцию , не забывайте поглядывать на дисплей, на котором отображается текущая температура.




Кроме паяльника с температурным контролем, Вам понадобится паяльный флюс, изопропиловые салфетки, плетенка, антистатический коврик, микроскоп и защитные очки.


Деболлинг
После того, как паяльник разогрет, и все необходимые меры защиты приняты, можно приступать к деболлингу.
Положив BGA-микросхему на антистатический коврик, равномерно нанесите на нее флюс. Важно, чтобы количество флюса было оптимальным. Если его будет недостаточно, то это затруднит процесс снятия шариков.
На флюс кладется плетенка, через нее паяльник прогревает и расплавляет шарики. Ни в коем случае не следует давить паяльником на шарики. Такими действиями можно повредить микросхему. Как только площадка для новых шариков готова, ее необходимо очистить изопропиловыми салфетками.


Проверка
Перед тем как наносить новые шарики, нужно проверить, не осталось ли каких-то частей от старых шариков, не возникли ли повреждения на микросхеме и хорошо ли очищена она после произведенных операций. Такая проверка должна выполняться с помощью микроскопа.



Лучше всего подойдет USB-микроскоп со стеклянными линзами, например, . Основная его особенность – сменный длиннофокусный объектив, который позволяет увеличить расстояние от линзы до микросхемы.





У многих других USB-микроскопов такого преимущества нет, а соответственно и нет такой высокой точности, позволяющей избежать искажений передаваемого на экран изображения. Этот микроскоп предназначен специально для пайки.
Но можно рассмотреть модель и подешевле, например, .



Это многофункциональный цифровой микроскоп, с помощью которого тоже можно эффективно проконтролировать состояние микросхемы.
Если после проверки были обнаружены остатки флюса на микросхеме, то от них обязательно нужно избавиться. Для этого можно использовать деионизованную (без ионов) воду и небольшую щетку. Потрите загрязненные места щеткой, промойте их, а потом просушите сухим воздухом. С помощью микроскопа выполните повторную проверку микросхемы.


Реболлинг
После того как изображение, передаваемое на экран компьютера с микроскопа, подтвердило, что все элементы шариковых выводов удалены, что микросхема не повреждена и полностью очищена, можно продолжить работы по ее восстановлению.
Для этого Вам понадобятся BGA-трафарет, держатель для трафарета, микроскоп, флюс, шарики припоя, пинцет и принадлежности для очистки (щетка, поддон). Трафарет – элемент в реболлинге необходимый.



Конечно, он должен подходить конкретно под данную микросхему. Поэтому, если Вы собираетесь заниматься реболлингом, то нужно приобрести сразу , который позволит Вам выбрать то, что нужно для каждого конкретного случая.




К ее преимуществам относится надежность фиксации и хороший обзор микросхемы. Фактически микросхема в ней видна как на ладони. По специальной выемке выполняется движение двух упоров и пружины. Также конструкцией предусмотрены винты, которые обеспечивают ровную и надежную фиксацию трафарета. Ведь если трафарет помят и согнут, то качественно нанести на него шарики не получится.
Распределите по чистой поверхности микросхемы с помощью шприца флюс. Флюс наносится тонким слоем по всей контактной поверхности. Обратите внимание, чтобы слой флюса не был слишком толстым. При нагревании флюс начинает кипеть, и если его слишком много, то он просто выдавит шарики из трафарета. Если же флюса нанести слишком мало, то нормальной припайки не произойдет. Для равномерного распределения флюса используйте кисточку. Наложите трафарет на микросхему. Теперь все готово для нанесения шариков.



Продаются в банках. Обычно по 25 000 штук. Это оловянно-свинцовые шарики, которые и должны заменить удаленные и поврежденные. В каждый просвет трафарета помещается один шарик. Это важно и здесь нельзя ошибиться. Если случайно забыть припаять один шар, то потом это сделать будет очень трудно. Если же в одно отверстие трафарета попадет два шара, то они расплавятся и соединяться с соседними шарами, испортив всю работу.
Лучше всего действовать следующим образом. Всыпьте нужное количество шариков на трафарет и слегка раскачивайте его, пока шарики займут свои места. Шарикам, не вставшим на свои места, можно осторожно помочь с помощью зубочистки. После того как шарики установились на предназначенные для них места, полезно проконтролировать каждый шар и просвет под микроскопом.



Далее выполните пайку с помощью паяльной станции. Проверьте, чтобы все шарики расплавились. Аккуратно с помощью тонкого пинцета снимите трафарет с микросхемы. Для этого есть несколько секунд (не более 15 секунд с момента прекращения пайки), пока флюс не застыл. Если же опоздать, то придется разогревать микросхему вновь, чтобы добиться размягчения флюса. Далее микросхема моется, сушится и ее можно помещать на плату. Не забудьте, что после мойки опять нужен микроскоп, чтобы убедиться: все шары на своих местах, никаких царапин и повреждений, микросхема полностью очищена. После этого можно констатировать, что реболлинг прошел успешно.

В современной радиоэлектронной аппаратуре,такой, как мобильные телефоны, компьютеры и пр. , широко применяются радиоэлементы в корпусе типа BGA (в дальнейшем BGA-элемент). Данный тип корпуса позволяет значительно экономить место на печатной плате за счет размещения выводов на нижней поверхности элемента и выполнения этих выводов в виде плоских контактов, с нанесенным припоем в виде полусферы. В корпусе такого типа выполняют полупроводниковые микросхемы, элементы ВЧ тракта (фильтры, селекторы, коммутаторы). Пайка такого элемента осуществляется нагревом непосредственно корпуса элемента и зачастую подогрева печатной платы, при помощи горячего воздуха и инфракрасного излучения.

Оборудование для пайки BGA

Пайка BGA-элементов имеет определенные сложности и зачастую для нее применяется весьма сложное и дорогостоящее оборудования. Данная статья описывает пайку с применением минимума средств. Минимум, который необходим для пайки: фен, пинцет, микроскоп, флюс безотмывочный, жидкость для удаления флюса, вата х/б, шило монтажное (лучше стоматологический зубной зонд) для коррекции элемента на плате, фольга с клеевым слоем для теплозащиты.

Процесс пайки BGA

Случай, когда требуется заменить BGA элемент, является более общим, а потому его и рассмотрим. Первое, что нужно сделать- это оценить, не будут ли повреждены близко расположенные элементы потоком горячего воздуха. Микросхемы, залитые компаундом, элементы, имеющие пластиковые детали (микропереключатели, SIM-ридеры) необходимо закрыть фольгой для сведения к минимуму теплового воздействия. Если есть близкорасположенные микробатарейки, микроаккумуляторы, их лучше всего демонтировать, а затем поставить на место при помощи паяльника. Приняв необходимые меры предосторожности, располагаем плату на столе так, чтобы демонтируемый BGA- элемент легко было поднять пинцетом, когда припой расплавится. Имеется в виду, что для захвата пинцетом должно быть необходимое пространство и пинцет при захвате должен располагаться в руке удобно и естественно, иначе очень высока вероятность сдвинуть соседние элементы, так как припой, закрепляющий их, будет тоже расплавлен. Лучше всего плату надежно закрепить в горизонтальном положении и повернуть ее в горизонтальной плоскости под удобным углом. Затем начинаем греть элемент феном, который держим в левой руке, периодически пытаясь приподнять элемент пинцетом (примерно через каждые 30 секунд). Время нагрева сильно зависит от условий в помещении: температуры воздуха, наличия сквозняков, открытых форточек и т.д. Если элемент приподнялся с одного края, то насильно отдирать его нельзя, а нужно отпустить и еще погреть 15-30 секунд. Прикосновение холодным пинцетом сильно остужает элемент, это тоже нужно иметь в виду. Неплохо во время нагрева держать пинцет рядом со снимаемым элементом, для подогрева пинцета. После снятия элемента дальнейшие операции лучше проводить с еще горячей платой. (Если при прогреве элемент подпрыгнул, в буквальном смысле, то это свидетельствует о расслоении печатной платы в результате заводского дефекта. Такая плата ремонту не подлежит!!!) Когда микросхема снята, необходимо удалить лишний припой с платы. Для этого наносим пастообразный флюс и собираем припой паяльником, периодически удаляя припой с жала. Необходимо учитывать, что большие «горки» припоя затруднят позиционирование нового элемента. А если пятаки(контакты на плате) будут не облужены, то получившийся контакт может быть не надежен. Следует обратить внимание на целостность пятаков. Если отвалились пустые пятаки, то ничего страшного, если отвалился пятак, имеющий контакт, то можно попробовать облудить металлизацию в отверстии и сформировать капельку припоя на месте пятака. Затем удаляем грязь и остатки флюса с платы. Глядя в микроскоп, необходимо проконтролировать результат и исправить недостатки. Недостатки могут быть следующего характера: плохо облуженные пятаки, на пятаках слишком много припоя, замыкания между пятаками, повреждения паяльной маски, поврежденные пятаки, отслоившиеся проводники. Если дефект устранить не удается, то изделие неремонтопригодно. Затем наносим пастообразный флюс. Флюс необходимо наносить на всю поверхность под элементом, даже если контакты расположены только по периметру. Иначе воздух из пустоты в середине при нагреве расширится и значительно сместит элемент. Важно количество флюса. Его должно быть достаточно для смачивания нижней поверхности элемента, но если элемент будет плавать в «луже», то его будет трудно позиционировать. Я предпочитаю флюс, нанесенный на плату, прогреть феном до жидкого состояния, перед помещением BGA-элемента на плату. Так как при пайке он все равно нагреется и элемент может значительно сместиться.

Извлекаем элемент из контейнера и ставим на плату, соблюдая ориентацию «ключа». Точное позиционирование выполняем под микроскопом по маркерам при помощи монтажного шила. При позиционировании следует учитывать шаг между контактами. Не обязательно добиваться идеального расположения, достаточно небольшого соприкосновения между «шарами» припоя на BGA-микросхеме и пятаками на плате. Оценивать точность позиционирования необходимо с учетом шага контактов и их размера.

На Рис.1 приведен пример правильного позиционирования микросхемы на плате, на Рис.3 и Рис.4 приведены примеры неправильного позиционирования элемента на плате. На Рис.3 «шары» припоя одновременно соприкасаются с двумя пятаками, при этом при расплавлении припоя микросхема может встать неправильно, или могут возникнуть замыкания. На Рис.4 шары совсем не соприкасаются с пятаками, при этом сколько бы мы ни грели элемент, его пайка не произойдет. Обычно имеется взаимосвязь между линейными размерами маркера и шагом выводов на элементе. Если имеются сложности с позиционированием, то иногда имеет смысл прогреть примерно установленный элемент феном, для выпаривания флюса. После выпаривания флюс будет вязким и элемент можно установить более точно.

Собственно пайка.

Для пайки необходимо отрегулировать расход воздуха под конкретную форсунку. Элемент не должно сдувать. Если элемент сдувает, то подачу воздуха нужно уменьшить. Температура на индикаторе паяльной станции зачастую не соответствует температуре воздуха, выходящего из форсунки. Нормально, если индикатор будет показывать 500-550 гр.С. Предварительно прогревают элемент, для этого нужно держать фен на расстоянии 2-3 см; через 30-60 секунд приближают фен на расстояние 5-10 мм от поверхности элемента для расплавления припоя. Плавными движениями прогревают поверхность элемента и пространство непосредственно рядом с ним. Примерно через 60-180 сек. элемент заметно осядет и выровняется по маркерам (оседание видно, если смотреть сбоку), что свидетельствует о расплавлении припоя. После оседания элемент следует погреть 10-15 секунд. Большая микросхема может оседать частями, сначала с одной стороны. В этом случае нужно продолжать греть всю поверхность, обращая особое внимание на непропаянную часть. После этого нужно дать остыть плате в течении 15-60 секунд, жидкостью для снятия флюса, снять избытки флюса и просушить плату. Качество пайки можно контролировать по следующим признакам: расположение элемента относительно маркеров; лучше сравнивать с такой же платой или запомнить расположение элемента, маркеры не всегда расположены идеально ровно и может возникать впечатление, что элемент не совсем правильно встал на место, глядя на элемент сбоку, можно оценить, на всех ли контактах образовалось качественное соединение; если рядом с BGA-элементом расположен крупногабаритный элемент, то с одной из сторон пайка может быть затруднена вследствии неудачного распределения воздушных потоков, и элемент с одной из сторон не пропаяется. Глядя при помощи микроскопа на форму капель припоя, можно оценить качество пайки. Обратите внимание. Если при прогреве элемент подпрыгнул, то это свидетельствует о расслоении печатной платы в результате заводского дефекта. Такое изделие ремонту не подлежит. Ничего страшного, если элемент с небольшим количеством выводов встал криво, не на место. Как правило, возможно его аккуратно поднять и припаять правильно без стандартной накатки шаров. При определенном навыке возможно снять и вновь поставить BGA-элемент и с очень большим количеством выводов и очень мелким шагом выводов, без накатки шаров. Некоторые жидкости для снятия флюса могут вызывать сбои при работе телефона. Поэтому плату после промывки необходимо хорошо просушивать в течении 3-4 часов. Примерный паяльный профиль для паяльной станции типа Martin: 240 гр.--80 сек. 320 гр. --110 сек. Повторная пайка снятого BGA-элемента возможна, но она в данной статье не рассматривается, так как применяется весьма редко. Паяльная маска- это изолирующий состав, которым покрывается печатная плата для предотвращения повреждений проводникв и коротких замыканий между проводниками. Маркеры – это метки на печатной плате, показывающие, как правильно должен стоять элемент; зачастую элемент может быть в корпусах разного размера и на одном посадочном месте, в этом случае на плате будет много маркеров. Если видны вспучивания платы под микроскопом, то это свидетельствует о заводском дефекте; такая плата ремонту не подлежит. Как правило, удается оценить подачу воздуха феном, направляя поток на руку, с расстояния 20-30 см, на время 0,5-1 секунду. Данный прием небезопасен и требует определенного опыта.

Очень часто мы сталкиваемся с проблемой при замене или прогреве микросхемы с контактами, размещенными под ее корпусом. Такой способ размещения контактов называется BGA . Например, нужно прогреть или заменить чип видеокарты, северного моста и т. д. Такие детали обычным паяльником выпаять невозможно. Рассмотрим проверенные способы пайки чипов BGA:

1. Пайка при помощи фирменной инфракрасной станции .

Достоинства :

Надежна в эксплуатации, так как сделана фирмой;

Практична при работе;

После прогрева текстолит не деформируется;

Применяется специальный инфракрасный спектр (2–7 мкм), позволяющий расплавлять припой без существенной термической деформации чипа;

С помощью программного обеспечения можно четко определять время расплавления припоя под микросхемой;

Двухсторонний прогрев радиодетали.

Недостатки :

Высокая стоимость станции;

Дорогая в обслуживании;

Занимает достаточно много места;

Иногда проблемно найти комплектующие детали.

2. Пайка при помощи обычного прожектора с галогеновой лампой.

Достоинства :

Низкая цена;

Легко найти комплектующие элементы;

Можно как отпаять, так и припаять чип с выводами BGA.

Недостатки :

После 2–4 нагревов происходит деформация текстолита толщиной 1,5 мм (платы стационарных компьютеров), а после 1 прогрева деформируется текстолит 1–0,75 мм (платы ноутбука);

Сильно нагреваются детали, расположенные по всей площади излучения;

Прогрев припоя чипа происходит снизу.

3. Пайка при помощи самодельно станции с лампой инфракрасного излучения (используемая для обогрева домашних птиц).

Достоинства :

Дешевый вариант качественного инструмента для пайки микросхем;

Прогрев детали происходит сверху;

Применяется почти такой же инфракрасный диапазон излучения, что и у фирменной станции (3,5–5 мкм);

Несущественно подвергает текстолит деформации;

Ресурс лампы 6500 часов;

Можно использовать для прогрева чипа.

Недостатки :

От частых включений и перепадов напряжения вольфрамовая нить лампы быстро выходит из строя (этот недостаток можно устранить, если в цепь подсоединить диммер);

Перед прогреванием чипа нужно обязательно защищать фольгой рядом размещенные радиодетали от перегрева.

4. Пайка при помощи фена.

Достоинства :

Сравнительно дешевый способ пайки.

Недостатки :

Из-за применения высокой температуры горячего воздуха (350–400 °C) плавятся пластмассовые части радиодеталей, происходит деформация текстолита, возможна поломка радиодеталей;

Неравномерное припаивание чипа по всей поверхности из-за неравномерного нагрева;

Выдувает флюс из-под микросхемы.

5. Прогрев чипа при помощи утюга.

Когда нет возможности прогреть микросхему одним из вышеописанных способов можно использовать утюг. Для этого необходимо очистить чип от термопасты и положить на верхнюю часть чипа раскаленную поверхность утюга. Выдержать в течении 1–3 мин. После этого убрать утюг и дать возможность чипу остыть до 35–20 °C.


Алгоритм отпаивания и припаивания чипов BGA.

Если чип оборудован радиатором тогда перед его демонтажем или прогревом необходимо очистить с охлаждаемой поверхности термопасту, зафиксировать или установить в специальные крепления плату с чипом. Поместить плату над или под температурным излучателем. Установить, если есть в наличии, как можно ближе к месту пайки термопару .

Затем если используется способ верхнего прогрева, защитить близлежащие детали, которые будут подвергаться тепловому излучению фольгой. Чип по периметру обработать жидким флюсом . Включить излучатель тепла и при температуре 90–130 °C убрать компаунд, фиксирующий чип.

Если для пайки применяется прожектор, тогда место пайки лучше накрыть листом бумаги для быстрого достижения нижеописанных температур.

В данной статье разговор пойдет на основе двух видео-роликов: первый - это диагностика ноутбука HP Pavillion DV6700 , второй - рассмотрение вопроса прогрева, пропайки и реболлинга чипов . В видео о диагностике ноутбука НР я прогревал видеочип и это дало свои результаты, ноутбук запустился. Но это было сделано только в диагностических целях . Ноутбук запустился, но это еще далеко не ремонт – это просто один из методов быстрой диагностики, которые применимы к печально известным чипам от nVidia - их прогревают, чтобы понять в чипе проблема иил нет. Чип нужно менять, без вариантов. Часто педалируется мнение, что раз чип работает, то можно его просто отреболить и все. Это не так, хватило этого прогрева на пару дней и все по новой.

Давайте сначала выясним что именно выходит из строя, а уже потом о методах ремонта. Все это в большей степени касается чипов от nVidia, выпущенных до 2009 года , но не стоит полностью отбрасывать чипы выпущенные и после 2009 года, а также чипы других производителей. Примрно в 2004 году появилась проблема – массово начали дохнуть видеокарты от nVidia, было много соображений почему это происходит, но в 2008 году компания nVidia сама признала свою вину, объяснив что-то о технологических недоработках и плохих материалах применямых при производстве чипов. Видеокарты умирали с разными симптомами: артефакты, зависания, не запускались, нестабильность изображения и т.п. Смерть видеокарты приближала плохая система охлаждения, еще скорее она наступала при разгоне.

Но до того как nVidia признала свою вину в появлении проблем с чипами, ремонтниками ноутбуков и видеокарт было выдвинуто предположение о нарушении контакта (отслоении пайки) между чипом и текстолитом материнской платы или видеокарты, т.к. при пропайке или реболлинге чипы временно восстанавливали свою работоспособность.
Однако дальнейшее рассмотрение проблемы выявило другое нарушение контакта – расслоение ВНУТРИ чипа . В связи с использованием некачественных материалов в производстве микросхем, влага, попавшая внутрь, вызывала окисление контактных площадок шариков припоя и нарушение контакта под кристаллом. Обратимся к схеме: чип, то есть его подложка припаяна BGA шарами к печатной плате и кристалл припаян к подложке тоже BGA шарами, но это микропайка, очень мелкая. Вот тут между кристаллом и подложкой возникает расслоение, появляется оксидная пленка, контакт теряется. Это и объясняет эффект от реболлинга/прогрева/пропайки данных чипов. Мелкие шарики припоя расширяются, разрывают оксидную пленку и на время появляется их нестабильный контакт с площадкой. Но площадка уже окислена и после нескольких разогревов-охлаждений дефект проявится снова.

Давайте теперь разберемся с этими ремонтами.

1. Прогрев
Прогрев чипа феном это не ремонт, как я уже было сказано, это диагностическая мера. Дело в том, что таким прогревом мы временно восстанавливаем исчезнувший контакт не между всем чипом и платой, а между кристаллом и его подложкой. Прогревом мы проверяем что именно случилось. Если прогрев кристалла помог и аппарат запустился, то значит имеет место быть технологический косяк производителя – чип по каким-то причинам отслаивается от подложки, если не помог – то скорее всего просто чип вышел из строя. В любом случае – замена чипа, потому что в первом случае – мы не умеем реболлить кристаллы (хотя может быть кто-то и умеет), а во втором – мы не умеем чинить кристаллы. Кстати стоит заметить, что если прогрев не помог, это еще может означать, что не в исходном чипе проблема, а где-то в другом месте.

2. Пропайка – помогает при отвале чипа от платы. Но настоящий отвал чипа от платы бывает очень редко, хотя и бывает. В основном в результате механических воздействий: ударов платы, искривлений, деформаций, например неправильная установка массивной системы охлаждения или перекос при установке платы, а также может быть результатом некачественной пайки бессвинцовым припоем, в невыдежанном температурном режиме и т.д. При пропайке плату с чипом нагревают до плавления шаров припоя, шатают на шарах, чип не снимают, дают остыть и все.
Сейчас многие могут возмутиться и скажут, что чипы таки отпаиваются. Это исключено - чип физически не может отпаяться: он припаивается к плате пи помощи бессвинцового припоя, данный припой обладает температурой плавления 200-230"C. Рабочая температура чипов в ноутбуках, на видеокартах и материнских платах не может быть выше 200"С, 105"С это максимум. При 100 градусах отпаяться чип физически не может. Тут только механическое повреждение пайки, так как бессвинцовый припой хрупкий, и пропайка это лотерея 1 к 100, там могут быть и оторванные пятаки, которые вот так просто не восстановишь, но это уже другая история.

3. Реболл – используется для замены бессвинцовых шаров на свинцовосодержащие при пересадке живого чипа с платы-донора на ремонтируемую, взамен нерабочего чипа. Это вполне допустимая операция. Но просто реболл, когда чип отпаивают, меняют шары и садят обратно ремонтом назвать нельзя, хотя по цене это выгодно. Если вам просто предлагают отреболлить чип без замены, утверждая, что это решает проблему - это обман и выкачка денег.

4. Замена чипа. Я думаю и так понятно, что данный метод и есть полноценный ремонт. И, если новый чип качественный, то видеокарта или ноутбук будут еще долго служить верой и правдой. Но клиента часто пугает цена за ремонт, бывает что ремонт может встать очень дорого, но что поделать – тут или сомнительная экономия или продолжительность работы ноутбука. Но и это всегда дешевле чем новый ноутбук.
Если уж вы решили проигнорировать все призывы не пропаивать и не погревать чипы утверждая, что это ремонт, дело ваше, но делайте это менее агрессивно. Если уж охота прогреть чип – то делайте это без флюса, феном на небольшой температуре 150-200 градусов, минуту максимум и то много. Этого для диагностического прогрева достаточно. Если же охота пропаять чип, то в качестве флюса используйте или флсы типа RMA или что-то предназначенное для БГА, например ТЕ-410, бесканифольный, безотмывочный, после себя оставляет белый налет, который легко убирается спиртиком. Но все это массаж деревянной ноги… это не ремонт, а заблуждение или обман.

Подведем итог: пропайка, прогрев, реболлинг дают эффект на срок от 1 часа или 2-3х включений до полугода (это я задрал, реально где-то 1-3 месяца). Это или диагностика или лохотрон. Хотя есть еще один вариант – прогрев в целью быстро продать ноутбук и пусть новый владелец мучается с проблемой которая вылезет очень скоро. А доказать в этом случае ничего не выйдет, поэтому я очень не рекомендую покупать ноутбуки с рук. Это та еще лотерея.

Ну и пару слов о рынке чипов: сейчас рынок перенасыщен перемаркированными и отреболенными чипами, которые окажутся либо вообще нерабочей туфтой либо в них уже есть деградация кристалла и проработает такой чип недолго. Отличить новый оригинальный чип от хорошо отреболенной б/у-шки иногда достаточно. Поэтому нужно искать проверенных и честных поставщиков. Первым, что может броситься в глаза – это слишком низкая цена, иногда заманчивая дешевка может, и скорее всего окажется, нерабочей подделкой.
Второй проблемой на рынке ремонта рассматриваемых поломок является нечестность некоторых сервисных центров, которые берут с клиента деньги за замену чипа, а сами в лучшем случае делают реболл, а в худшем просто прогревают.

В данном виде я дигностирую при помощи прогрева неисправность ноутбука HP Pavillion DV6700 - нет изображения. Прогрев феном течении минуты при 150 градусах дал ответ - проблема в видеочипе nVidia G86-730-A2, причиной стало недостаточное охлаждение, так как тот, кто обслуживал этот ноутбук до меня, положил между радиатором и кристаллом чипа кусочек мятой фольки о шоколадки, что и привело к перегреву и деградации паки под кристаллом.




Top