Что значит резервные копии. Зачем делать бэкап? Виды резервного копирования. Ручное создание резервных копий

Основное назначение источника бесперебойного питания (ИБП) - временно обеспечить питание аппаратуры при перебоях в подаче электроэнергии. Подключать через ИБП компьютеры принято повсеместно. Правда, для многих пользователей это является своего рода «правилом хорошего тона», а практический смысл данного ритуала от них ускользает. «Ну, ИБП защищает компьютер от скачков напряжения…». Попробуем разобраться: что, от чего и как защищает источник бесперебойного питания?

По внутреннему устройству и логике работы все ИБП делятся на три класса: пассивные, линейно-интерактивные и ИБП с двойным преобразованием. Соответственно, они в разной мере справляются с происшествиями в электросети и относятся к разным ценовым категориям.

Пассивные (stand-by, VFD, back-UPS, резервные) источники - самые простые и дешевые. В них схема питания от аккумулятора обычно выключена, и запускается только при пропадании напряжения в электросети. Время переключения с работы от сети на работу от батареи составляет десятые доли секунды, а выходной сигнал при работе от аккумулятора заметно отличается от «правильной» синусоиды. Как правило, на входе таких ИБП установлены простейший фильтр помех и быстродействующий предохранитель. Первый частично сглаживает импульсные помехи, а второй должен сработать при значительном повышении напряжения в электросети. Пассивные ИБП предназначены для питания домашних и офисных ПК. Небольшой «провал» выходного напряжения в момент переключения на аккумулятор компьютерным блокам питания не страшен.

Линейно-интерактивные (line-interactive, VI, Smart-UPS) ИБП отличаются тем, что в них схема питания от аккумулятора включена постоянно. При исчезновении напряжения на входе «бесперебойника» его выходные розетки почти моментально переключаются на внутренний преобразователь - для питаемых устройств этот переход практически незаметен. Кроме того, многие линейно-интерактивные ИБП способны автоматически поддерживать выходное напряжение 220 В. Делается это двумя способами.

Пока напряжение сети находится в пределах от 175 до 275 В, срабатывает механизм AVR (Automatic Voltage Regulation, авторегулятор напряжения). При отклонении входного напряжения на величину от 10 до 25% ниже номинала ИБП повышает напряжение на выходе на 15%. При отклонении входного напряжения на величину от 10 до 25% выше номинала ИБП понижает напряжение на 15%. Если напряжение сети выходит за предельные значения, линейно-интерактивный ИБП переключается на питание от аккумулятора. В этом режиме он продолжает работать, пока или напряжение в сети не вернется к норме, или аккумулятор не разрядится. Однако такие ИБП не стоит рассматривать как стабилизаторы напряжения. Режим «стабилизации» у них вынужденный и кратковременный!

В ИБП с двойным преобразованием (double conversion, VFI, Online-UPS) напряжение на выход все время выдается от преобразователя, преобразователь постоянно работает от аккумулятора, а аккумулятор непрерывно заряжается от сети. Фактически вход и выход ИБП гальванически изолированы друг от друга, а на выход поступает стабилизированное напряжение. Это самая надежная, но вместе с тем и неэкономичная схема. Сам ИБП получается дорогим, большим и тяжелым, преобразователь сильно нагревается и требует охлаждения вентилятором, а потери энергии в ходе преобразования составляют десятки процентов.

ИБП с двойным преобразованием используют только для питания серверов и компьютеров в критически важных случаях. В широкую продажу такие модели поступают редко - обычно их поставляют под заказ. Скорее всего, для питания рабочих компьютеров вы приобретете пассивные, максимум, линейно-интерактивные ИБП.

Мощность источников бесперебойного питания принято указывать в вольт-амперах (VA, ВА). Чтобы перевести эти значения в более привычные ватты (Вт), нужно умножить мощность в вольт-амперах на коэффициент 0,6. Например, ИБП с характеристикой мощности 600 ВА обеспечит питанием технику с максимальным потреблением 360 Вт. Если дать большую нагрузку, сработает защита по току, и «бесперебойник» отключится. На практике желательно предусмотреть около 30% запаса по мощности. Таким образом, наиболее распространенные ИБП на 600 или 650 ВА подходят для питания компьютера с реальным потреблением 200-250 Вт и монитора, который забирает еще около 30-60 Вт.

Если расстановка компьютеров в помещении позволяет, выгоднее использовать один мощный ИБП вместо нескольких маленьких. На два офисных компьютера потребуется «бесперебойник» мощностью около 1000 ВА. Для питания трех компьютеров, стоящих рядом, достаточно одного источника мощностью около 1400 ВА.

Так от чего же защищает ИБП?

С ограничением импульсных помех от сети неплохо справляются и фильтры в блоке питания компьютера и монитора. Тем не менее два фильтра лучше, чем один! Защита от перенапряжения тоже важна. Если, например, отгорит нулевой провод в щитке, в розетке может оказаться напряжение почти 380 В. В блоках питания компьютеров и мониторов в таком случае обычно сгорают варисторы и предохранители. Ремонт копеечный, но требует времени. По идее, ИБП должен отреагировать на бросок напряжения раньше, чем сгорят предохранители в подключенной к нему технике.

Однако на первое место выходит защита данных. Если питание компьютера аварийно отключается, вся несохраненная информация пропадает. ИБП позволяет либо сохранить открытые документы и корректно завершить работу, либо перевести компьютер в спящий режим. Вручную сохранить документы проще всего. Переходя на питание от батарей, ИБП начинает громко пищать. Раз услышали такое предупреждение - проверьте, все ли сохранено. Далее смотрите по обстановке: или просто выключите компьютер, или переведите его в спящий режим.

Чтобы задействовать автоматику, необходимо соединить контрольный порт (USB или RS-232, в зависимости от модели) источника бесперебойного питания с компьютером сигнальным кабелем и установить на компьютере необходимое ПО. К сожалению, о такой возможности многие пользователи даже не подозревают! Работой ИБП управляет встроенный микроконтроллер. Его микропрограмма (прошивка) постоянно отслеживает напряжения и токи во внешних цепях, при включении и периодически во время работы выполняет тестирование электроники и батареи. Она же выдает в контрольный порт сведения о текущем режиме работы, состоянии компонентов ИБП. По кабелю эти данные поступают в компьютер, где их обрабатывает программа мониторинга.

Для работы с ИБП целесообразно использовать ту программу, которую предлагает его производитель. Например, для APC (www.apc.com) это программа Power-Chute, для Ippon (www.ippon.ru) - WinPower2009 и Ippon Monitor и т. д. Программу можно установить с диска, идущего в комплекте, но лучше скачать наиболее свежую ее версию с сайта производителя.

В настройках приложения нужно задать параметры автоматического выключения. Как правило, на выбор предлагается два варианта: или выключить компьютер через определенное время после перехода на резервное питание, или сделать это за какое-то время до предполагаемого полного разряда батарей.

Сколько времени «бесперебойник» способен проработать от аккумулятора?

Это зависит от емкости батареи и потребляемой мощности. В большинстве массовых моделей установлен один аккумулятор напряжением 12 В и емкостью 7 Ач. Теоретически ИБП с таким аккумулятором обладает запасом энергии около 80 Ватт-часов. Попросту говоря, он должен питать нагрузку мощностью 80 Вт примерно 1 час, 160 Вт - полчаса, 300 Вт - примерно 15 мин и т. д. Реально, с учетом потерь на преобразование, это время примерно вдвое меньше.

В источниках мощностью более 800 ВА обычно установлены два таких же аккумулятора или один, но большей емкости. Таблицы или калькуляторы для определения времени автономной работы при различной нагрузке для различных моделей приводятся на сайтах производителей. Однако «навскидку» можно принять, что любая модель сможет питать нагрузку номинальной для себя мощности в течение примерно 5-15 мин. Если нужно обеспечить достаточно долгое питание компьютера от аккумуляторов, лучше взять ИБП большой мощности с емкими батареями. Работать он будет всего на треть или четверть номинальной мощности. Зато такую нагрузку, низкую для себя, он сможет снабжать энергией полчаса и дольше.

Сетевому оборудованию (коммутаторам, маршрутизаторам, NAS) бесперебойное питание тоже полезно. В противном случае при отключении энергии сеть сразу же «упадет», а документы, открытые из сетевых папок, сохранить не удастся. Запитать коммутатор вы можете от ИБП ближайшего к нему рабочего места, хотя правильнее поставить для этого отдельный «бесперебойник» небольшой мощности.

Срок службы аккумулятора ограничен. По мере работы его емкость неуклонно снижается и через 3-5 лет эксплуатации падает почти до нуля. Еще до того, как индикатор на ИБП сигнализирует о необходимости замены батареи, становится заметно, что аккумулятор перестает «держать заряд». С каждым разом время автономной работы сокращается. В принципе, для сохранения документов и корректного выключения компьютера достаточно пары минут. Когда ИБП начинает отключаться еще раньше, батарею однозначно пора менять.

Заменить батарею несложно. В популярных ИБП марки APC и некоторых других аккумулятор находится под съемным лючком или крышкой. Чтобы добраться до аккумулятора в ИБП марки Ippon, SVEN и подобных им по конструкции, необходимо вывернуть четыре винта на днище и разъединить половинки корпуса. В инструкции и на официальном сайте вы вряд ли встретите описание самостоятельной разборки и замены: как и производители принтеров, изготовители ИБП значительную долю доходов получают от продажи «оригинальных» батарей с установкой их в авторизованных СЦ.

Тем не менее почти во всех компьютерных магазинах продаются герметичные свинцово-кислотные аккумуляторы наиболее ходовых типоразмеров. Марка и производитель роли не играют: это вполне стандартные изделия. Предварительно откройте свой «бесперебойник» и выясните, какая батарея в нем установлена. Для большинства ИБП «офисного класса» (500-700 ВА) подходят батареи с маркировкой 12V 7Ah размерами 151×94×65 мм. Устанавливая новый аккумулятор, постарайтесь плотно одеть клеммы на контактные лепестки батареи. Если клеммы ослабли, их можно аккуратно поджать плоскогубцами.

После установки батареи ИБП желательно откалибровать, чтобы его микропрограмма оценила и запомнила параметры нового аккумулятора. Полностью зарядите батарею в течение суток. После этого извлеките вилку из розетки, чтобы ИБП перешел на автономное питание. Дайте батарее полностью разрядиться, пока «бесперебойник» не отключится сам. В качестве нагрузки лучше использовать не компьютер (хотя в крайнем случае и это допустимо), а несколько лампочек общей мощностью порядка 300 Вт. Затем вновь подключите к сети и включите ИБП - пусть батарея зарядится, а устройство продолжит работу в штатном режиме. Кроме калибровки устройства в целом такая процедура является и «тренировкой» аккумулятора. После полного цикла «разряда - заряда» батарея начинает максимально использовать свою емкость.

Зачем на многих ИБП сделаны телефонные (RJ-11) и сетевые (RJ-45) розетки?

Ни телефон, ни локальная сеть «бесперебойникам» не нужны по определению. Просто в качестве «бонуса» в одном корпусе с устройством установлены проходные фильтры импульсных помех для телефонной линии и сети. Соедините одно гнездо с телефонной розеткой на стене, а в другое включите телефонный аппарат. Если в телефонной линии возникнет высоковольтная наводка, например, во время грозы, фильтр сгладит бросок напряжения и защитит телефон.

Промышленное решение: ИБП, вместе с защищаемым оборудованием, смонтирован в 19-дюймовую стойку

Источники бесперебойного электропитания развивались параллельно с компьютерами и другими высокотехнологическими устройствами для надежного питания этого оборудования, чего стандартные сети электроснабжения обеспечить не могут. :128 Наиболее широко распространены конструкции в качестве отдельного устройства, включающего в себя аккумулятор и преобразователь постоянного тока в переменный. Также в качестве резервного источника могут применяться маховики и топливные элементы. В настоящее время мощность ИБП находится в диапазоне 100 Вт … 1000 кВт (и более), возможны различные величины выходных напряжений. :142

Причины использования

Кратковременные нарушения нормальной работы электрической сети являются неизбежными. Причиной большинства кратковременных нарушений электроснабжения являются короткие замыкания. Полностью защитить электрическую сеть от них практически невозможно или, во всяком случае, это стоило бы очень дорого. :с. 6 Кратковременные перерывы питания случаются значительно чаще, чем длительные. Длительного перерыва питания возможно избежать используя автоматический ввод резерва (АВР) . При этом кратковременные перерывы питания будут не только при коротком замыкании на любой из питающих АВР линий, но и на линиях, питающих соседних потребителей. :с. 8

Бесперебойное от гарантированного электропитания отличается тем, что в случае гарантированного электропитания допускается перерыв на время ввода в действие резервного источника. В случае бесперебойного электропитания требуется «мгновенный» ввод в действие резервного источника. Это важное требование ограничивает круг пригодных к применению в источниках бесперебойного питания резервных источников. На практике обычно может быть применен только один такой источник - аккумуляторная батарея.

Основной функцией ИБП является обеспечение непрерывности электропитания посредством использования альтернативного источника энергии. Кроме того, ИБП повышает качество электропитания, стабилизируя его параметры в установленных пределах. В ИБП в качестве накопителя энергии обычно используются химические источники тока. Кроме них могут применяться и иные накопители. :п. 1.1 В качестве первичного источника может использоваться электропитание, поступающее от электросети или генератора. :п. 3.1.3

Промышленность

Сложное технологическое оборудование современного промышленного производства не может нормально функционировать, если электроснабжение не бесперебойное. Для многих промышленных предприятий перерыв питания на несколько секунд или даже на десятые доли секунды ведет к нарушению непрерывного технологического процесса и к остановке производства. :с. 5

Если допустимое время перерыва питания меньше 0,2 с возможно только использование источников бесперебойного питания, защита автоматическими выключателями цепи с коротким замыканием для уменьшения времени перерыва питания в таком случае невозможна или неэффективна. Если допустимое время более 0,2 с возможно использование защит электросети или использование источников бесперебойного питания. При допустимом времени 5…20 с возможно отказаться от источников бесперебойного питания и использовать АВР. :с. 61

Для электродвигателей провалы напряжения в сети 0,4 кВ длительностью 0,3…0,5 с могут привести к тому, что векторы остаточной ЭДС электродвигателей могут оказаться в противофазе с векторами напряжения сети. В результате при восстановлении питания произойдет срабатывание электромагнитных расцепителей автоматических выключателей и окончательное отключение электродвигателей. При этом провалы напряжения длительностью менее 0,3 с не представляют опасности, поэтому для электродвигателей борьба с провалами напряжения обычно направлена на предотвращение отключения контакторов в цепи главного питания 0,4 кВ. Одной из таких мер является питание цепей управления контактора от источника бесперебойного питания. :с. 251

Восприимчивость промышленных контролёров на логических микросхемах к провалам напряжения аналогична восприимчивости компьютеров. :160

Нарушение работы контакторов и реле может произойти при прерывании напряжения 5…10 мс и 80…120 мс. Разница в работе одного и того же устройства возникает из-за разницы в мгновенной величины напряжения переменного тока, когда начался провал напряжения. При прохождении напряжения через ноль устойчивость более чем в 10 раз больше. :165

В быту и офисах

Наиболее распространенное в быту и офисах применение - выключение компьютера без потери данных при отключении электроэнергии. При провалах напряжения длительностью 0,2 с происходит остановка процедур чтения/записи компьютера; 0,25 c - блокировка операционной системы; 0,4 c - перезагрузка. :158

Аварийное

Источники питания, которые используются в случае перерыва нормального питания делятся на резервные и источники питания для систем безопасности.

Регулирование

Международной электротехнической комиссией принята группа стандартов:

Международная классификация ИБП

История электронных ИБП переменного тока начинается с изобретения в 1957 году тиристоров . В 1964…1967 гг. были созданы ИБП с резервированием мощностью до 500 кВА. К настоящему времени основное изменение в конструкции состоит в замене тиристоров на IGBT транзисторы. :130

Резервная схема

Недостатки: в режиме «от сети» не выполняет функцию фильтрации пиков, и обеспечивает только крайне примитивную стабилизацию напряжения (обычно 2-3 ступени автотрансформатора, переключаемые релейно, функция называется «AVR»).

В режиме «от батарей» некоторые, особенно дешёвые, схемы выдают на нагрузку частоту куда выше 50 Гц, и осциллограмму переменного тока, имеющую мало общего с синусоидой. Это связано с применением классического трансформатора крупного размера в схеме (вместо инвертора на полупроводниковых ключах). В связи с тем, что трансформатор данного габарита имеет (в связи с возникновением гистерезиса в сердечнике) ограничение на передаваемую мощность, которое линейно растет с частотой, данного трансформатора (занимает 1/3 объёма всего ИБП) хватает для питания цепи зарядки батарей на 50 Гц в режиме «от сети». Но, в режиме «от батарей», через этот трансформатор нужно пропустить уже сотни ватт мощности, что возможно только путём повышения частоты.

Это приводит к невозможности питания приборов, использующих, например, асинхронные двигатели (почти вся бытовая техника , включая отопительные системы).

По сути, от такого ИБП можно питать только приборы, нетребовательные к качеству питания, то есть, например, все приборы с импульсными БП, где питающее напряжение немедленно выпрямляется и фильтруется. То есть компьютеры и значительная часть современной бытовой электроники. Также можно питать осветительные и обогревательные приборы.

Схема двойного преобразования

Режим двойного преобразования (англ. online , double-conversion, онлайн) - используется для питания нагруженных серверов (например, файловых), высокопроизводительных рабочих станций локальных вычислительных сетей, а также любого другого оборудования, предъявляющего повышенные требования к качеству сетевого электропитания. Принцип работы состоит в двойном преобразовании (double conversion) рода тока. Сначала входной переменный ток преобразуется в постоянный , затем обратно в переменный ток с помощью обратного преобразователя (инвертора). При пропадании входного напряжения переключение нагрузки на питание от аккумуляторов не требуется, поскольку аккумуляторы включены в цепь постоянно (т. н. буферный режим работы аккумулятора) и для этих ИБП параметр «время переключения» не имеет смысла. В маркетинговых целях может использоваться фраза «время переключения равно 0», правильно отражающая основное преимущество данного вида ИБП: отсутствие промежутка времени между пропаданием внешнего напряжения и началом питания от батарей. ИБП двойного преобразования имеют невысокий КПД (от 80 до 96,5 %) в режиме on-line, из-за чего отличаются повышенным тепловыделением и уровнем шума. Однако у современных ИБП средних и высоких мощностей ведущих производителей предусмотрены разнообразные интеллектуальные режимы, позволяющие автоматически подстраивать режим работы для повышения КПД вплоть до 99 %. В отличие от двух предыдущих схем, способны корректировать не только напряжение, но и частоту (VFI по классификации МЭК).

Достоинства:

  • отсутствие времени переключения на питание от батарей;
  • синусоидальная форма выходного напряжения, то есть возможность питать любую нагрузку, в том числе отопительные системы (в которых есть асинхронные двигатели).
  • возможность корректировать и напряжение, и частоту (более того, такой прибор одновременно является и самым лучшим из возможных стабилизаторов напряжения).

Недостатки:

  • Низкий КПД (80-94 %), повышенная шумность и тепловыделение. Практически всегда прибор содержит вентилятор компьютерного типа, и потому не бесшумен (в отличие от line-interactive ИБП).
  • Высокая стоимость. Примерно вдвое-втрое выше, чем line-interactive.

ИБП постоянного тока

Характеристики ИБП

Конструкция

Устройства хранения электроэнергии

Химические

Реализация основной функции достигается работой устройства от аккумуляторов , установленных в корпусе ИБП, под управлением электрической схемы, поэтому в состав любого ИБП, кроме схемы управления , входит зарядное устройство , которое обеспечивает зарядку аккумуляторных батарей при наличии напряжения в сети, обеспечивая тем самым постоянную готовность к работе ИБП в автономном режиме. Для увеличения времени автономного режима работы можно оснастить ИБП дополнительной (внешней) батареей.

В источниках бесперебойного электропитания могут быть использованы химические источники тока (ХИТ):

Динамические

Конденсаторы

При использовании АВР постоянного тока с использованием релейной схемы можно использовать для исключения перерывов питания на время переключения конденсатор большой ёмкости. :с. 229

Байпас

Байпасом называется один из составляющих ИБП блоков. Режим байпас (англ. Bypass , «обход») - питание нагрузки отфильтрованным напряжением электросети в обход основной схемы ИБП. Переключение в режим Bypass выполняется автоматически или вручную (ручное включение предусматривается на случай проведения профилактического обслуживания ИБП или замены его узлов без отключения нагрузки). Может делать т. н. фазануль («сквозной нуль»). Применяется в online-схемах, более того, выключенный кнопкой OFF online UPS остаётся в режиме байпаса, то же самое происходит при разрушении силовых компонентов схемы, определённом управляющими цепями, а также при аварийном отключении схемы по перегрузке выхода. В line-interactive UPS режим работы «от сети» и есть байпас.

Стабилизатор переменного напряжения

Используется в ИБП, которые работают по интерактивной схеме. Часто ИБП оснащается только повышающим «бустером» (англ. booster ), который имеет всего лишь одну либо несколько ступенек повышения, но есть модели, которые оснащены универсальным регулятором, работающим и на повышение (boost), и на понижение (buck) напряжения. Использование стабилизаторов позволяет создать схему ИБП, способную выдержать долгие глубокие «подсадки» и «проседания» входного сетевого напряжения (одной из наиболее распространённых проблем отечественных электросетей) без перехода на аккумуляторные батареи, что позволяет значительно увеличить срок «жизни» аккумуляторной батареи.

Инвертор

Инвертор - устройство, которое преобразует род напряжения из постоянного в переменное (аналогично переменное в постоянное). Основные типы инверторов:

  • инверторы, которые генерируют напряжение прямоугольной формы;
  • инверторы с пошаговой аппроксимацией;
  • инвертор с широтно-импульсной модуляцией (ШИМ) .
  • преобразователь с импульсно-плотностной модуляцией (ИПМ, англ. Pulse-density modulation )

Показатель, который характеризует степень отличия формы напряжения или тока от идеальной синусоидальной формы - коэффициент нелинейных искажений (англ. ). Типовые значения:

  • 0 % - форма сигнала полностью соответствует синусоиде;
  • порядка 3 % - форма, близкая к синусоидальной;
  • порядка 5 % - форма сигнала, приближенная к синусоидальной;
  • до 21 % - сигнал имеет трапецеидальную или ступенчатую форму (модифицированный синус или меандр);
  • 43 % и свыше - сигнал прямоугольной формы (меандр).

Для уменьшения влияния на форму напряжения в питающей электросети (если входным узлом ИБП, построенного по схеме с двойным преобразованием, является тиристорный выпрямитель, элемент нелинейный и потребляющий большой импульсный ток, такой ИБП становится причиной появления гармоник высшего порядка) во входной цепи ИБП устанавливается специальный THD-фильтр . При использовании транзисторных выпрямителей коэффициент нелинейных искажений (англ. Total Harmonic Distortion, THD ) составляет порядка 3 %, и фильтры не используют.

Трансформатор

Гальваническую развязку между входом и выходом (как правило, в ИБП таковая не делается вообще из принципиальных соображений пропуска «сквозного нуля» на нагрузку, то есть отсутствия любой коммутации провода нейтрали от входа UPS до его выхода) осуществляет установленный во входной цепи ИБП (между электросетью и выпрямителем) входной изолирующий трансформатор . Соответственно, в выходной цепи ИБП между преобразователем и нагрузкой размещён выходной изолирующий трансформатор , который обеспечивает гальваническую развязку между входом со схемы ИБП и выходом на подключенную нагрузку.

Интерфейс

Для расширенного мониторинга состояния самого ИБП (например, уровень заряда батарей, параметры электрического тока на выходе) применяются различные интерфейсы : для подключения к компьютеру - последовательный (COM) порт или USB , при этом производителем ИБП поставляется фирменное программное обеспечение , которое позволяет, проанализировав ситуацию, определить время работы и дать оператору возможность безопасно выключить компьютер, завершив работу всех программ. Для наблюдения за состоянием источников бесперебойного питания и другого оборудования через локальную вычислительную сеть используется протокол SNMP и специализированное программное обеспечение.

Для того, чтобы повысить надёжность всей системы в целом, применяется резервирование - схема, которая состоит из двух или более ИБП.

Производители

Распределение продаж ИБП по производителям (2017 г., «IT Research»).

Системы бесперебойного питания в настоящее время становятся очень востребованными. Неважно, где живёт современный человек, - в городской квартире, в загородном доме, в его жизнь прочно вошли различные бытовые приборы, цифровая компьютерная техника, системы жизнеобеспечения.

Назначение и категории ИБП

Возрастают требования к качеству электропитания всех этих устройств. Качество питания внешних электрических сетей не всегда удовлетворяет население. Случаются резкие перепады напряжения как в сторону понижения, так и повышения его величины. Это очень неблагоприятно сказывается на работе бытового оборудования, а иногда приводит к выходу её из строя. Защитить себя от таких неприятностей помогает установка бесперебойных блоков питания , от которых питаются устройства, наиболее чувствительные к таким внезапным перепадам.

В зависимости от схемных решений, которые определяют основные характеристики источников бесперебойного питания, их можно разделить на несколько категорий. Каждая из них обеспечивает бесперебойную работу определённой группы потребителей.

Резервные бесперебойники

Они могут защитить только простую технику для дома и настольные компьютеры.

Если сетевое напряжение соответствует норме - потребители подключаются непосредственно к ней. При колебаниях напряжения в сети аппаратура переключается на питание от аккумулятора, который является составной частью ИБП. Частично подавляются шумы и высокочастотные импульсы, напряжение поддерживается на заданном уровне, производится подзарядка аккумуляторной батареи. Стабилизация сетевого напряжения, питающего подключённую к его выходу аппаратуру, у бесперебойных блоков питания этой категории не производится.

Необходимость перехода на работу от аккумулятора в каждой модели бесперебойного блока питания определяется по-своему. Пределы работы от сети определяются разработчиком данной модели. Они устанавливаются исходя из условий нормального функционирования аппаратуры потребителя.

Аккумуляторный режим работы продолжится до тех пор, пока показатели напряжения в сети не придут в норму. После этого происходит переключение в обратную сторону. Аккумулятор источника должен обеспечить не менее чем пятиминутный запас по времени при работе от него. Этого хватает для сохранения данных на компьютере и безаварийного выключения аппаратуры потребителя.

К недостаткам источников бесперебойного питания этой категории следует отнести следующие:

  1. Отсутствие стабилизатора сетевого напряжения.
  2. Большое время переключения (~20 мс).
  3. Ступенчатая форма выходного напряжения.
  4. Наличие высокочастотных помех.

Переключение на автономный режим питания происходит при любом незначительном отклонении параметров сетевого напряжения от нормы. Это приводит к быстрому износу аккумулятора.

Линейно-интерактивные источники

Модели этой категории оснащены стабилизаторами напряжения сети, которые выполнены по схеме автотрансформатора. Переключение его обмоток в зависимости от величины входного сетевого напряжения происходит ступенчато по командам встроенного в схему бесперебойника ИБП микропроцессора. Таким образом, удается поддерживать на выходе блока напряжение близкое к норме (220−230) В. Дополнительно в схеме имеется фильтр, защищающий потребителя от сетевых помех.

Подключение аккумулятора и отключение от сети происходит тогда, когда параметры напряжения на входе блока выходят за границы порогов стабилизации. Количества выводов автотрансформатора не хватает для поддержания на выходе номинального напряжения. Существуют допуски и на форму входного сигнала. При больших искажениях также осуществляется переход на аккумуляторный режим питания аппаратуры потребителя.

Процесс перехода на питание от аккумуляторной батареи проходит довольно гладко для большинства потребителей и занимает время не более 4 мс.

Таким образом, сравнивая источники этой категории с резервными ИБП можно заметить их преимущества:

  1. Стабилизация сетевого напряжения имеет ступенчатый характер.
  2. Форма выходного напряжения близка к синусоиде.
  3. Фильтрация сетевых помех.
  4. Экономия ресурса аккумуляторной батареи за счёт меньшего количества включений её в работу.

Феррорезонансные блоки питания

По своей сути они являются линейно-активными источниками. Стабилизатором сетевого напряжения в них служит феррорезонансный трансформатор. Он может накапливать энергию магнитного поля, которая поддерживает напряжение во вторичной обмотке трансформатора в моменты переключения. Переходный процесс длится не более (8−16) мс. Это допустимо для большинства потребителей. Форма напряжения на его выходе синусоидальная, защищённая от сетевых помех. Свои функции источник выполняет по командам собственного блока анализа сети и управления.

Линейные бесперебойные устройства

К этой категории относятся ИБП с двойным преобразованием. В своём составе они имеют преобразователь переменного тока в постоянный (выпрямитель) и преобразователь постоянного тока в переменный (инвертор). Выходное напряжение инвертора используется для питания аппаратуры, подключённой в качестве нагрузки. Напряжение выпрямителя используется для подзарядки внутреннего аккумулятора. Он включён в цепь выпрямителя и постоянно находится в активном режиме, который зависит от качества входного переменного напряжения.

К положительным качествам ИБП этой категории относятся:

  1. Стабильность выходного напряжения.
  2. Возможность замены аккумуляторной батареи без отключения ИБП.

К недостаткам можно отнести:

  1. Низкий коэффициент полезного действия (КПД).
  2. Ресурс аккумулятора снижается из-за его постоянной работы.

Аппараты этой категории применяются для работы оборудования больших организаций, на серверах которых хранятся важные данные. Они должны быть сохранены при любых перепадах в сети и любых нарушениях в её работе.

Основные характеристики

При приобретении ИБП необходимо тщательно понять, какие требования к нему предъявляются. Надо выбрать модель, наиболее удовлетворяющую критерию «цена - качество».

При выборе бесперебойного источника питания большое внимание надо уделить сравнению характеристик разных моделей. К ним относятся следующие:

  • мощность ИБП.
  • время автономной работы.
  • время переключения на работу от аккумулятора и обратно.
  • диапазон изменения входного напряжения.
  • границы изменения частоты напряжения сети.

Мощность рассчитывается из суммарной нагрузки источника. Её величина должна быть больше мощности потребителей минимум в полтора раза. Оптимальной мощностью блока, установленного в квартире, считается мощность 1000 VA (1000 вольт-ампер).

Время переключения напрямую зависит от величины нагрузки, подключённой в данный момент к выходу источника. Чем больше потребляемый ею ток, тем меньше время работы аккумуляторной батареи. Ёмкость установленной батареи также определяет длительность работы.

Любые модели ИБП имеют элементы визуальной сигнализации. Это могут быть лампочки различных цветов, светодиодные индикаторы, которые определяют состояние бесперебойника в текущий момент.

Горящие постоянно зелёные индикаторы являются признаком нормальной работы блока. Если светодиод работает в импульсном режиме (прерывистое его свечение), то возможны или уже возникли проблемы. Это предупредительная сигнализация, привлекающая внимание.

Постоянное свечение красного индикатора сигнализирует о возникновении аварийной ситуации. Её возникновение сопровождается предупреждающими звуковыми сигналами в виде прерывистых гудков.

Правила эксплуатации

Правильная эксплуатация оборудования - залог её долгой и надёжной работы. К основным правилам, которые надо выполнять при эксплуатации бесперебойного источника питания относятся:

  • Необходимость постоянного наблюдения за световой индикацией и звуковой сигнализацией блока.
  • Подключение потребителей, действительно требующих бесперебойного питания.
  • Заземление ИБП при помощи розетки с тремя гнёздами для подключения вилки прибора.

Если произошло отключение электричества, необходимо выключить всё включённое на этот момент оборудование. ИБП желательно оставить включённым в розетку для возможной подзарядки аккумулятора после устранения неисправности сети. Работа блока с разряженной батареей приводит к быстрому выходу её из строя. Ресурс аккумулятора ограничен и составляет не более 5 лет.

Соблюдение этих нехитрых, но необходимых правил продлит жизнь всему оборудованию, для работы которого требуется бесперебойное питание, а главное, позволит сохранить важную информацию на жёстких дисках компьютеров, которая могла бы быть безвозвратно потеряна в случае внезапных неисправностей в электрических сетях.

По мере своего развития цивилизация начинает потреблять все больше энергии, в частности, электрической — станки, заводы, электронасосы, фонари на улицах, лампы в квартирах… Появление радио, телевизоров, телефонов, компьютеров дало человечеству возможность ускорить обмен информацией, однако, еще сильнее привязало его к источникам электроэнергии, поскольку теперь, во многих случаях, пропадание электричества равносильно потере канала доставки информационного потока. Наиболее критична такая ситуация для ряда наиболее современных отраслей, в частности, там, где основным инструментом производства являются компьютерные сети.

Давно подсчитано, что через пару-тройку месяцев работы стоимость информации, хранящейся на компьютере, превышает стоимость самого ПК. Уже давно информация стала разновидностью товара — ее создают, оценивают, продают, покупают, накапливают, преобразуют… и порой теряют по самым разнообразным причинам. Разумеется, до половины проблем, связанных с потерей информации, возникает из-за программных или аппаратных сбоев компьютерами. Во всех остальных случаях, как правило, проблемы связаны с некачественным электроснабжением компьютера.

Обеспечение качественного питания компонентов ПК — залог стабильной работы любой компьютерной системы. От формы и качественных характеристик сетевого питания, от удачного выбора компонентов питания порой зависит судьба целых месяцев работы. Исходя из этих соображений, была разработана изложенная ниже методика исследования, призванная в дальнейшем стать основой тестирования качественных характеристик бесперебойных блоков питания.

  1. Положения ГОСТ
  2. Классификация ИБП (описание, схема)
    • Оффлайновые
    • Линейно-интерактивные
    • Онлайновые
    • Основные типы по мощностям
  3. Физика
    • a. Виды мощности, формулы расчета:
      • Мгновенная
      • Активная
      • Реактивная
      • Полная
  4. Тестирование:
    • Цель тестирования
    • Общий план проведения
    • Параметры для проверки
  5. Оборудование, использованное при тестировании
  6. Библиография
Положения ГОСТ

Все, что связано с электрическими сетями, в России регламентируется положениями ГОСТ 13109-97 (принят Межгосударственным Советом по стандартизации, метрологии и сертификации взамен ГОСТ 13109-87). Нормативы этого документа полностью соответствуют международным стандартам МЭК 861, МЭК 1000-3-2, МЭК 1000-3-3, МЭК 1000-4-1 и публикациям МЭК 1000-2-1, МЭК 1000-2-2 в части уровней электромагнитной совместимости в системах электроснабжения и методов измерения электромагнитных помех.

Стандартными показателями для электросетей в России, установленными ГОСТ, являются следующие характеристики:

  • напряжение питания — 220 В±10%
  • частота — 50±1 Гц
  • коэффициент нелинейных искажений формы напряжения — менее 8% в течение длительного времени и 12% — кратковременно

Оговорены в документе и типичные проблемы электроснабжения. Чаще всего нам приходится сталкиваться со следующими из них:

  • Полное пропадание напряжения в сети (отсутствие напряжения в сети на время более 40 секунд из-за нарушений в линиях подачи электроэнергии)
  • Проседания (кратковременное снижение напряжения в сети до величины менее 80% от номинального значения на время более 1 периода (1/50 секунды) являются следствием включения мощных нагрузок, внешне проявляется как мерцание ламп освещения) и всплески (кратковременные повышения напряжения в сети на величину более 110 % от номинального на время более 1 периода (1/50 секунды); появляются при отключении большой нагрузки, внешне проявляются как мерцание ламп освещения) напряжения разной продолжительности (характерно для больших городов)
  • Высокочастотный шум — радиочастотные помехи электромагнитного или другого происхождения, результат работы мощных высокочастотных устройств, коммуникационных устройств
  • Отклонение частоты за пределы допустимых значений
  • Высоковольтные выбросы — кратковременные импульсы напряжения величиной до 6000В и длительностью до 10 мс; появляются при грозах, как результат статического электричества, из-за искрения переключателей, внешних проявлений не имеют
  • Выбег частоты — изменение частоты на 3 и более Гц от номинального (50 Гц), появляются при нестабильной работе источника электроэнергии, внешне могут и не проявляться.

Все эти факторы могут привести к выходу из строя достаточно «тонкой» электроники, и, как это часто бывает, к потере данных. Впрочем, люди давно научились защищаться: фильтры сетевого напряжения, «гасящие» скачки, дизель-генераторы, обеспечивающие подачу электроэнергии системам при пропадании напряжения в «глобальном масштабе», наконец, источники бесперебойного питания — основной инструмент защиты персональных ПК, серверов, мини-АТС и др. Как раз о последней категории устройств и пойдет речь.
Классификация ИБП

«Разделять» ИБП можно по разным признакам, в частности, по мощности (или сфере применения) и по типу действия (архитектуре/устройству). Оба этих метода тесно связаны друг с другом. По мощности ИБП делятся на

  1. Источники бесперебойного питания малой мощности (с полной мощностью 300, 450, 700, 1000, 1500 ВА, до 3000 ВА — включая и on-line)
  2. Малой и средней мощности (c полной мощностью 3–5 кВА)
  3. Средней мощности (с полной мощностью 5–10 кВА)
  4. Большой мощности (с полной мощностью 10–1000 кВА)

Исходя из принципа действия устройств, в литературе в настоящее время используется два типа классификации источников бесперебойного питания. Согласно первому типу, ИБП делятся на две категории: on-line и off-line , которые, в свою очередь, делятся на резервные и линейно-интерактивные .

Согласно второму типу, ИБП делятся на три категории: резервные (off-line или standby), линейно-интерактивные (line-interactive) и ИБП с двойным преобразованием напряжения (on-line).

Мы будем пользоваться вторым типом классификации.

Рассмотрим для начала разницу типов ИБП. Источники резервного типа выполнены по схеме с коммутирующим устройством, которое в нормальном режиме работы обеспечивает подключение нагрузки непосредственно к внешней питающей сети, а в аварийном — переводит ее на питание от аккумуляторных батарей. Достоинством ИБП такого типа можно считать его простоту, недостатком — ненулевое время переключения на питание от аккумуляторов (около 4 мс).

Линейно-интерактивные ИБП выполнены по схеме с коммутирующим устройством, дополненной стабилизатором входного напряжения на основе автотрансформатора с переключаемыми обмотками. Основное преимущество таких устройств — защита нагрузки от повышенного или пониженного напряжения без перехода в аварийный режим. Недостатком таких устройств также является ненулевое (около 4 мс) время переключения на аккумуляторы.

ИБП с двойным преобразованием напряжения отличается тем, что в нем поступающее на вход переменное напряжение сначала преобразуется выпрямителем в постоянное, а затем — с помощью инвертора — снова в переменное. Аккумуляторная батарея постоянно подключена к выходу выпрямителя и входу инвертора и питает его в аварийном режиме. Таким образом, достигается достаточно высокая стабильность выходного напряжения независимо от колебаний напряжения на входе. Кроме того, эффективно подавляются помехи и возмущения, которыми изобилует питающая сеть.

Практически, ИБП данного класса при подключении к сети переменного тока ведут себя как линейная нагрузка. Плюсом данной конструкции можно считать нулевое время переключения на питание от аккумуляторов, минусом — снижение КПД за счет потерь при двукратном преобразовании напряжения.


Физика

Во всех справочниках по электротехнике различаются четыре вида мощности: мгновенная , активная , реактивная и полная . Мгновенная мощность вычисляется как произведение мгновенного значения напряжения и мгновенного значения тока для произвольно выбранного момента времени, то есть

Так как в цепи с сопротивлением r u=ir, то

Средняя за период мощность P рассматриваемой цепи равна постоянной слагающей мгновенной мощности

Среднюю за период мощность переменного тока называют активной . Единица активной мощности вольт-ампер называется ватт (Вт).

Соответственно и сопротивление r называют активным. Так как U=Ir, то


Обычно именно активную мощность понимают под потребляемой мощностью устройства.

Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля. Для синусоидального тока равна произведению действующих тока и напряжения на синус угла сдвига фазы между ними.

Полная мощность — потребляемая нагрузкой суммарная мощность (учитываются как активная, так и реактивная ее составляющие). Вычисляется как произведение среднеквадратичных значений входного тока и напряжения. Единица измерения — ВА (вольт-ампер). Для синусоидального тока равна

Практически на любом электрическом приборе находится этикетка с указанием либо полной мощности устройства, либо активной мощности.
Тестирование

Основная цель тестирования — продемонстрировать поведение тестируемых ИБП в реальных условиях, дать представление о дополнительных характеристиках, которые не находят отражения в общей документации на устройства, на практике определить влияние различных факторов на работу ИБП и, возможно, помочь определиться с выбором того или иного источника бесперебойного питания.

Несмотря на то, что рекомендаций по выбору ИБП в настоящее время существует великое множество, в ходе тестирования мы рассчитываем, во-первых, рассмотреть ряд дополнительных параметров, которыми стоит поинтересоваться перед покупкой оборудования, во-вторых, по необходимости скорректировать набор выбранных методов и параметров тестирования и выработать базу для будущего анализа всего тракта питания систем.

Общий план проведения тестирования выглядит следующим образом:

  • Указание класса устройства
  • Указание заявленных производителем характеристик
  • Описание комплектности поставки (наличие руководства, дополнительных шнуров, ПО)
  • Краткое описание внешнего вида ИБП (функции, вынесенные на контрольную панель и перечень разъемов)
  • Тип аккумуляторов (с указанием емкости аккумуляторов, обслуживаемые/необслуживаемые, наименование, возможно — взаимозаменяемость, возможность подключения дополнительных аккумуляторных блоков)
  • «Энергетическая» составляющая тестов

В процессе тестирования планируется проверить следующие параметры:

  • Диапазон входного напряжения, при котором ИБП работает от сети, не переключаясь на аккумуляторы. Больший диапазон входного напряжения уменьшает количество переходов ИБП на батарею и увеличивает срок ее службы
  • Время переключения на питание от аккумулятора. Чем меньше время переключения, тем меньше риск выхода из строя нагрузки (устройства, подключенного через ИБП). Длительность и характер процесса переключения во многом определяют возможность нормального продолжения работы оборудования. Для компьютерной нагрузки допустимое время прерывания питания 20-40 мс.
  • Осциллограмма переключения на аккумулятор
  • Время переключения с аккумулятора на внешнее питание
  • Осциллограмма переключения с аккумулятора на внешнее питание
  • Время работы в автономном режиме. Этот параметр определяется исключительно емкостью батарей, установленных в ИБП, которая, в свою очередь, увеличивается при росте максимальной выходной мощности ИБП. Для обеспечения автономным питанием двух современных компьютеров SOHO типичной конфигурации в течение 15-20 мин, максимальная выходная мощность ИБП должна быть порядка 600-700 ВА.
  • Параметры выходного напряжения при работе от батарей
  • Форма импульса в начале разряда аккумулятора
  • Форма импульса в конце разряда аккумулятора
  • Диапазон выходного напряжения ИБП при изменении входного напряжения. Чем этот диапазон уже, тем меньше влияние изменения входного напряжения на питаемую нагрузку
  • Стабилизация выходного напряжения
  • Фильтрация выходного напряжения (если она есть)
  • Поведение ИБП при перегрузке на выходе
  • Поведение ИБП при пропадании нагрузки
  • Вычисление КПД ИБП. Определяется как отношение выходной мощности устройства к потребляемой мощности от источника питания
  • Коэффициент нелинейных искажений, характеризующий степень отличия формы напряжения или тока от синусоидальной
    • 0% — синусоида
    • 3% — искажения не заметны на глаз
    • 5% — искажения заметны глазом
    • до 21% — трапецеидальная или ступенчатая форма сигнала
    • 43% — сигнал имеет прямоугольную форму
Оборудование

При тестировании мы будем пользоваться не реальными рабочими станциями и серверами, а эквивалентными нагрузками, которые имеют стабильный характер потребления и коэффициент использования мощности, близкий к 1. В качестве основного оборудования, которое будет использоваться при проведении тестирований, в настоящее время рассматривается следующий комплект:

Библиография
  1. ГОСТ 721-77 Системы энергоснабжения, сети, источники, преобразователи и приемники электрической энергии. Номинальные напряжения свыше 1000 В
  2. ГОСТ 19431-84 Энергетика и электрификация. Термины и определения
  3. ГОСТ 21128-83 Системы энергоснабжения, сети, источники, преобразователи и приемники электрической энергии. Номинальные напряжения до 1000 В
  4. ГОСТ 30372-95 Совместимость технических средств электромагнитная. Термины и определения
  5. Теоретическая электротехника, изд. 9-е, исправленное, М.-Л., издательство "Энергия", 1965
  6. Рекламные материалы компании
  7. Интернет-ресурс

Индивидуальный блок питания (ИБП) - аппарат технически довольно сложный, но в практическом использовании вроде бы достаточно простой. Включил его в сеть, подключил к нему те компьютеры, которые при внезапном исчезновении электроэнергии могут потерять важные данные - и... все? К сожалению - нет, не все... Правильное использование ИБП тоже связано с некоторыми тонкостями и соблюдением кое-каких правил... Каких же именно?

Начнем с самого элементарного - подключения ИБП к сети. Прежде чем подключать компьютеры к сети через ИБП, нужно соблюсти несколько обязательных условий, а именно:

  • нельзя сразу включать аппарат, если его принесли в помещение с холода - образовавшийся на холодном металле конденсат может стать причиной короткого замыкания.
  • корпус ИБП должен располагаться так, чтобы на него не попадали прямые лучи от солнца. Рядом с ним не должно быть и отопительных устройств, и сам ИБП своим корпусом не должен закрывать вентиляционные отверстия.
  • кабель, подключающий ИБП к электросети должен быть подключен к розетке с заземлением.

Эти правила касаются просто расположения ИБП. С подключением его в рабочий режим все еще хитрее. Если поробовать включить бесперебойник сразу в работу, то ничего хорошего из этого не выйдет: система диагностики начнет пищать, сообщая об ошибке. В некоторых моделях ИБП писк будет сопровождаться сообщением на дисплее о том, что батарея неисправна и требует замены.

Пугаться этого не надо - все происходит из-за того, что аккумуляторы ИБП еще не заряжены. Достаточно оставить ИБП без нагрузки включенным в сеть на 24 часа - и тогда все станет нормально (нужно только помнить, что первая зарядка аккумуляторных батарей в ИБП займет времени больше, чем обычная, 6-8-часовая).

После того, как ИБП зарядится и сможет быть включен в нормальный рабочий режим, нужно будет подключить к нему именно тех потребителей, которым бесперебойное питание и в самом деле необходимо. Если, к примеру, у вас на рабочем столе есть монитор, системный блок, принтер и сканер, то нет никакой надобности все эти дивайсы подключать к ИБП.

Внезапное отключение электричества, конечно, отключит принтер и сканер - ну так и что? Никакие ценные данные от этого не пропадут - поэтому для сканера с принтером хватит и обычного сетевого фильтра.

Кроме того, при эксплкатации ИБП нужно иметь в виду несколько правил, а именно:

Правило 1.

Следует позаботиться о правильной настройке ИБП. Если верхний и нижний пороги перехода на питание от ИБП будут настроены предельно строго (например - нижний уровень установлен в 210 вольт, а верхний - в 230), то ИБП придется переходить в рабочий режим по нескольку раз в день, что будет очень плохо сказываться на емкости аккумуляторов. В результате может статься, что как раз при реальном отключении энергии их не хватит на штатное отключение компьютеров.

Корректировку параметров включения можно произвести вручную (через панель управления ИБП), либо использовать специализированное компьютерное приложение apcupsd (но это не на всякой модели ИБП возможно).

Правило 2.

Устройство ИБП не должно нагреваться свыше +30 по Цельсию. В документации у большинства приборов указана рабочая температура до +40, но не надо обольщаться: такая температура тоже отрицательно скажется на емкости аккумуляторов. Так что держите ИБП поближе к кондиционеру и почаще его тестируйте на емкость аккумуляторов.

Правило 3.

Включать и выключать ИБП тоже надо правильно - то есть кнопкой на лицевой панели, а не выдергиванием шнура из розетки. Во втором случае, конечно, все отключается предельно надежно и пожаробезопасно, но такой прием все-таки следует использовать только когда электроприборы надолго остаются без присмотра (например - если они стоят у вас дома, а вы уезжаете в отпуск).
Во всех прочих случаях лучше отключить именно нагрузку ИБП - и не мешать прибору заряжать аккумуляторы.




Top