VGA-разъем: распиновка, назначение. Описание VGA-разъема. Переходник DVI-D VGA: рассказываем об особенностях, видах и возможных проблемах, которые могут возникнуть при использовании

На вопрос Народ объяснте что значит qVGA и просто VGA дисплей? заданный автором Дмитрий лучший ответ это Quarter Video Graphics Array (так же известен как Quarter VGA или QVGA). Популярный термин для компьютерных мониторов с разрешением 320 × 240. QVGA дисплеи часто можно увидеть в сотовых телефонах, КПК и карманных игровых приставках. Чаще всего они используются в режиме «портрет» (противоположный ему «альбомный») и упоминаются как 240 × 320, поскольку дисплеи больше в высоту, чем в ширину. Название получено из того факта, что данный режим представляет собой 1/4 часть от 640 × 480 - максимального разрешения оригинального видеоадаптера IBM VGA, который стал фактическим промышленным стандартом в конце 1980-ых.
Термин QVGA так же применяется в цифровом видео в режимах для более экономной записи, типичен для многофункциональных устройств, таких как цифровые камеры (например как Fujifilm FinePix S602) или сотовые телефоны (такие как Pantech PH-L4000V, Samsung SGH-D600). Каждый кадр есть изображение 320 × 240 пикселей. Для QVGA видео типична скорость в 15 или 30 кадров в секунду. Режим QVGA относится только к используемому разрешению, а не к формату видеофайлов.
В высоких разрешениях «Q» префикс иногда означает «Quad» или учетверенная разрешающая способность (например, QXGA с разрешением 2048 × 1536).
VGA (англ. Video Graphics Array) - стандарт мониторов и видеоадаптеров. Выпущен IBM в 1987 году для компьютеров PS/2 Model 50 и более старших . VGA являлся последним стандартом, которому следовало большинство производителей видеоадаптеров.
Видеоадаптер VGA подключается как к цветному, так и к монохромному монитору, при этом доступны все стандартные видеорежимы. Частота обновления экрана во всех стандартных режимах, кроме 640×480, - 70 Гц, в режиме 640×480 - 60 Гц. Видеоадаптер имеет возможность одновременно выводить на экран 256 различных цветов, каждый из которых может принимать одно из 262 144 различных значений (по 6 битов на красный, зелёный и синий компоненты). Объём видеопамяти VGA - 256 кБ.
Видеоадаптер VGA, в отличие от предыдущих видеоадаптеров IBM (MDA, CGA, EGA), использует аналоговый сигнал для передачи цветовой информации. Переход на аналоговый сигнал был обусловлен необходимостью сокращения числа проводов в кабеле. Также аналоговый сигнал давал возможность использовать VGA-мониторы с последующими видеоадаптерами, которые могут выводить большее количество цветов .
Официальным последователем VGA стал стандарт IBM XGA, фактически же он был замещен различными расширениями к VGA, известными как SVGA.
Термин VGA также часто используется для обозначения разрешения 640×480 независимо от аппаратного обеспечения для вывода изображения, хотя это не совсем верно (так, режим 640х480 с 16-, 24- и 32-битной глубиной цвета не поддерживаются адаптерами VGA, но могут быть сформированы на мониторе, предназначенном для работы с адаптером VGA, при помощи SVGA-адаптеров). Также этот термин используется для обозначения 15-контактного D-subminiature разъёма VGA для передачи аналоговых видеосигналов при различных разрешениях.

Приветствую своих читателей, и мы продолжаем обсуждать различные типы коннекторов, используемых для передачи видеосигнала. Предметом нашей беседы сегодня будет VGA разъем, который хорошо известен многим по запоминающейся синей расцветке.

Некоторые считают изобретателем данного разъема компанию IBM, которая в 1987 году предложила использовать его для подключения мониторов к своим компьютерам PS/2 .

Тогда, с помощью такого коннектора, получившего название Video Graphics Array (видео-графический массив) передавалось изображение размером 640х480 пикселей (ставшее так же именоваться VGA форматом).

Но фактически прародителем разъемов такого типа является подразделение корпорации ITT, предложившая в 1952 году концепцию компактных коннекторов с многочисленным количеством штырьковых контактов, расположенных внутри экрана.

Его форма напоминала перевернутую буку D, что обеспечивало соединение только правильным способом. Благодаря литере эти разъемы стали маркировать D-sub (субминиатюрные).

Пятнадцать важных контактов

Но вернемся на 30 лет назад, когда VGA разъем получил повсеместное распространение в компьютерной индустрии (видеокартах, мониторах). Его особенностью было построчная передача аналогового видео. Каждый из 15-и его контактов отвечал за определенные параметры:

  • отдельные RGB сигналы;
  • способы синхронизации;
  • прочие контрольные каналы

Более детально стандартная распиновка контактов выглядит вот так:

Показатели яркости определялись изменением напряжения сигнала в пределах 0,7-1 В.

Такая компоновочная схема вместе со стабильно работающим компонентным видеоинтерфейсом обеспечивали довольно приличное качество изображения с быстрой частотой обновления. Потенциал, заложенный в данную систему, позволял переназначать задачи для отдельных контактов и обеспечивать передачу сигналов для боле совершенного оборудования. Дополнительным преимуществом разъема являлась система его фиксации с помощью двух винтов, обеспечивающая высокую надежность соединения.

Разъем с большим потенциалом

Если сначала D-sub VGA разъемом подсоединялись мониторы с ЭЛТ, то со временем он стал использоваться и в современных жидкокристаллических экранах с разрешением 1280×1024 и частотой кадров до 75 Гц. Фактически с помощью такого кабеля передавался цифровой сигнал, который проходил двойную конвертацию (в аналог и обратно). При соответствующем качестве соединительного провода, наличия экранирующей оплетки и небольшой длины соединения передаваемая картинка была довольно неплохая.

Со временем появилась и уменьшенная версия – mini VGA, которая применялась в компактном оборудовании и ноутбуках.

А основной типоразмер коннектора, в силу своей высокой надежности, стал востребованным в системах промышленной автоматизации. Так же появились многочисленные переходники для подключения VGA штекера к разъемам других типов (RCA DVI-I, HDMI).

Кроме того аналоговый сигнал позволяет одновременно транслировать изображение на два монитора. Как выглядит кабель VGA сплиттер, для такой коммутации вы можете увидеть на картинке

Конечно, сегодня для видео с максимальным разрешением возможностей аналогового VGA уже недостаточно и нужно переходить на цифровую трансляцию потока с помощью , а еще лучше HDMI или , обладающий наибольшей скоростью передачи данных. Такую идею активно продвигают Intel и AMD, официально заявившие, что с 2015 года их продукция не будет поддерживать работу с VGA.

Вот и вся информация о VGA разъемах. Напоследок я хочу порекомендовать вам провести ревизию используемого монитора и ТВ на предмет отказа от аналоговых кабелей в пользу цифровых, и я уверен, что такая возможность найдется.

На этом все, до скорых встреч на страницах моих новых статей.

Мониторы для ПК и многие другие электронные видеоустройства могут функционировать в таких режимах, как VGA и SVGA. В чем их особенности? Чем отличается VGA от SVGA?

Факты о VGA

VGA - стандарт воспроизведения цифровой картинки, поддерживаемый компьютерными мониторами, а также графическими адаптерами. При этом дисплей и видеокарта взаимодействуют в рамках режима VGA в неразрывной связке: если графический адаптер передает сигнал в стандарте VGA на монитор, то он должен воспроизвести картинку, полностью соответствующую заданным параметрам.

Передача данных с графического адаптера на дисплей в таком случае осуществляется посредством аналогового канала. Чаще всего используется специальный разъем VGA с 15 металлическими контактами - DE-15.

Стандарт VGA - это комплексная технология, представленная совокупностью нескольких аппаратных компонентов. Главный из них - графический контроллер видеокарты. Подобный девайс отвечает за обеспечение обмена цифровыми данными между процессором ПК и видеопамятью. В свою очередь, в соответствующих модулях ОЗУ временно размещаются данные, которые посредством аналогового преобразования выводятся на компьютерный монитор. Еще один важный аппаратный компонент, задействуемый в стандарте VGA, - это синхронизатор. Он способствует повышению стабильности воспроизведения цветовых слоев.

Видеоадаптер, поддерживающий VGA, может формировать картинку, состоящую из 256 различных цветов. Данный показатель мог считаться относительно приличным для ПК 80-х годов - когда и был, собственно, разработан стандарт VGA. Однако для стремительно растущего рынка компьютерной индустрии в 90-х годах он, очевидно, являлся более чем скромным. И потому инженеры ведущих мировых брендов разработали усовершенствованный стандарт воспроизведения цифровой картинки - SVGA.

Факты об SVGA

Стандарт SVGA , или Super VGA, стал результатом дальнейшего совершенствования аппаратных компонентов, формирующих технологию VGA. В принципе, он также представляет собой комплекс аппаратных решений, схожих по функциям с теми, что реализованы в VGA, но гораздо более производительных.

Благодаря более высокой технологичности видеоадаптеры и мониторы, способные работать в режиме SVGA, могут отображать огромное количество цветов - до 16 млн. Это позволяет воспроизводить на дисплее компьютера практически любые изображения в полноцветном режиме, делать реалистичные игры, редактировать фотографии и видео.

Следует отметить, что сигнал в стандарте SVGA от видеоадаптера к монитору может передаваться при использовании того же 15-контактного разъема, что и в случае с применением технологии VGA.

В чем принципиальная разница между VGA и SVGA?

Главное отличие VGA от SVGA - в количестве цветов, поддерживаемых стандартами. Формат VGA позволяет отображать на экране до 256 цветов, SVGA - до 16 млн. Подобная разница, конечно же, предопределяется уровнем технологий, реализованных в данных стандартах. Очевидно, что SVGA еще и несопоставимо технологичнее. При этом, однако, сигнал в стандарте SVGA, как мы отметили выше, может передаваться через те же аппаратные интерфейсы, что и VGA. В них, таким образом, изначально был заложен определенный ресурс для обеспечения прироста производительности ПК в части формирования цифровой картинки.

Сравнительная таблица

Узнав то, в чем разница между VGA и SVGA, отобразим соответствующие ей критерии в небольшой таблице.

Звоните или прямо на сайте! Наши специалисты с удовольствием помогут Вам!

Наше поколение живет в эпоху научно-технической революции, но поскольку мы находимся «внутри процесса», то не замечаем стремительной смены поколений окружающих нас технических устройств. Если раньше бытовая техника могла служить десятилетиями, то сейчас за два-три года она безнадежно устаревает – появляются новые идеи, новые технологии и материалы, которые позволяют эти идеи реализовать.

С момента создания первых искровых передатчиков радиоэлектронная аппаратура была аналоговой. Однако после Второй мировой войны, когда был изобретен биполярный и полевой транзистор, были разработаны первые интегральные микросхемы, цифровые технологии начали завоевывать себе место под солнцем. С точки зрения схемотехники цифровая аппаратура сложнее аналоговой, однако ее функциональные возможности гораздо шире, а некоторые из них принципиально недостижимы при аналоговой обработке сигнала. Несмотря на это, в области современных телевизионных технологий аналоговые видеосигналы применяются весьма широко и не собираются уходить в прошлое.

Проблема цифрового представления видеосигнала состоит в том, что ширина его спектра во много раз больше ширины спектра такого же видеосигнала, но в аналоговой форме. Современные системы цифрового телевидения, на которые постепенно переходят во всем мире, не способны работать с несжатым сигналом. Его приходится кодировать с помощью алгоритма MPEG, а это, как известно, алгоритм с потерей качества. Вот и выходит, что несмотря на развитие и совершенствование цифровых технологий, проще и дешевле для передачи видеосигнала на большие расстояния пользоваться аналоговыми видеоформатами: и ширина спектра сигнала вполне приемлема, и парк оборудования обширен, да и технологии отработаны до совершенства.

Цифровые интерфейсы DVI и его развитие HDMI – это, в общем, интерфейсы хоть недалекого, но будущего, да и предназначены они для решения других задач.

Аналоговый видеосигнал, используемый в современных телевизионных системах, может быть композитным и компонентным.

Композитный CV (composite video) – это простейший вид аналогового видеосигнала, в котором информация о яркости, цвете и синхронизации передается в смешанном виде. На ранних этапах развития видеотехники именно композитный сигнал передавался по коаксиальному кабелю, соединявшему видеомагнитофоны или видеоплееры с телевизорами.

Более совершенным вариантом композитного сигнала является сигнал S‑Video . Этот вид аналогового видеосигнала обеспечивает раздельную передачу сигнала яркости (Y) и двух объединённых сигналов цветности (C) по независимым кабелям, из-за чего этот сигнал называют еще YC. Поскольку сигналы яркости и цветности передаются раздельно, сигнал S-Video занимает значительно более широкую полосу частот, чем композитный. По сравнению с композитным видеосигналом, S-Video обеспечивает заметный выигрыш в чёткости и устойчивости изображения, в меньшей степени – в цветопередаче. S-Video широко используется в полупрофессиональной аппаратуре, вещательными студиями, а также при записи на 8-мм пленку в стандарте Hi-8 фирмы Sony.

Для телевидения высокой четкости и компьютерного видео эти интерфейсы не подходят, поскольку не обеспечивают необходимого разрешения изображения.

Компонентные видеосигналы

Для достижения максимального качества изображения и создания видеоэффектов в профессиональном оборудовании видеосигнал разделяется на несколько каналов. Например, в системе RGB видеосигнал делится на красный, синий и зеленый компоненты, а также сигнал синхронизации. Такой сигнал еще называют сигналом RGBS, наибольшее распространение он получил в Европе.


В зависимости от способа передачи сигналов синхронизации сигнал RGB имеет несколько разновидностей. Если синхроимпульсы передаются в канале зеленого цвета, то сигнал называют RGsB, а если сигнал синхронизации передается во всех цветовых каналах, то RsGsBs.


Для подключения сигнала RGBS используют кабели с четырьмя разъемами BNC или разъем SCART.


Кабель для видеосигнала RGBS с разъемами BNC.


Разъем SCART

Таблица 1. Назначение контактов разъема SCART

Контакт Описание
1. Выход аудио, правый
2. Вход аудио, правый
3. Выход аудио, левый + моно
4. Земля для аудио
5. Земля для RGB Blue
6. Вход аудио, левый + моно
7. Вход RGB Blue (синий)
8. Вход, переключение режима телевизора, в зависимости от типа телевизора – Audio/RGB/16:9, иногда включение AUX (старые телевизоры)
9. Земля для RGB Green
10. Data 2: Clockpulse Out, только в старых видеомагнитофонах
11. Вход RGB Green (зеленый)
12. Data 1 Выход данных
13. Земля для RGB Red
14. Земля для Data, дистанционное управление, только в старых видеомагнитофонах
15. Вход RGB Red (красный) или вход канала С
16. Вход Blanking Signal, переключение режима телевизора (композит/RGB), «быстрый» сигнал (новые телевизоры)
17. Земля композитного видео
18 Земля Blanking Signal (для контактов 8 или 16)
19. Выход композитного видео
20. Вход композитного видео или канал Y (яркости)
21. Защитный экран (корпус)

В системе YUV, получившей распространение в США, используют другой набор компонентов: смешанный сигналы яркости и синхронизации, а также красный и синий цветоразностные сигналы. Для каждой компонентной системы требуется свой тип оборудования, каждая обладает своими достоинствами и недостатками. Для объединения устройств различных видеоформатов необходимы специальные интерфейсные блоки. Разъёмы на концах кабелей обычно бывают RCA или BNC.


Компонентый сигнал YUV


Компонентый сигнал формата RGBHV

Путь формирования видеосигнала таков: изображение раскладывается на сигналы трех первичных цветов: красного (Red – R), зеленого (Green – G) и синего (Blue – В) – отсюда и название «RGB», к которым добавляются сигналы горизонтальной и вертикальной синхронизации (HV), а затем превращается в RGB-сигнал с синхроимпульсами в канале зеленого (RGsB), который далее преобразуется в: компонентный (цветоразностный) сигнал YUV, где Y=0,299R+0,5876G+0,114В; U=R–Y; V= В–Y, преобразуемый затем в сигнал S-Video и композитный видеосигнал. Композитный видеосигнал преобразуется в радиочастотный сигнал, сочетающий аудио- и видеосигналы. Затем он модулируется несущей частотой и превращается в эфирный телесигнал.

На приемной стороне радиочастотный сигнал в результате демодуляции преобразуется в композитный видеосигнал, из которого в свою очередь в результате ряда преобразований получают компоненты RGB и HV.

Компонентный сигнал YPbPr преобразуется в RGB + HV в обход многих цепей видеотракта. Разделение цветоразностных сигналов Pb и Pr по отдельным каналам существенно повышает точность передачи фазы цветовой поднесущей, а настройка цветового тона не требуется.

Сигналы телевидения высокой четкости (ТВЧ, HDTV) 720p и 1080i всегда передаются в компонентном формате, ТВЧ в композитном или s-video форматах не существует.

Когда зарождался формат DVD, было решено, что при оцифровке материала для записи на DVD именно компонентный сигнал будет переводиться в цифровой вид, а затем обрабатываться по алгоритму MPEG-2 сжатия видеоданнных. Сигнал RGB на выходе DVD-плеера получается из компонентного сигнала YUV.

Важно отметить различие между соотношением цветовых компонент в RGB и компонентном сигнале формата YUV (YPbPr). В цветовом пространстве RGB относительное содержание (вес) каждой цветовой компоненты одинаково, тогда как в YPbPr оно учитывает спектральную чувствительность человеческого глаза.


Соотношение компонент в цветовом пространстве RGB

Соотношение компонент в цветовом пространстве YPbPr

Ограничения по расстоянию передачи компонентных разновидностей видеосигнала от источников сигнала к приемникам сведены в таблицу 2 (для сравнения приведены и некоторые цифровые интерфейсы).

Тип сигнала Полоса пропускания, МГц Тип кабеля Расстояние, м
UXGA (компонентный)
HDTV/1080i (компонентный)
170
70
Коаксиальный 75 Ом 5
5-30
Компонентный UXGA (с усилением) 170 Коаксиальный 75 Ом 50-70
Стандарт (цифровой SDI)
HDTV (цифровой SDI)
270
1300
Коаксиальный 75 Ом 50-300
50-80
DVI-D 1500 Витая пара 5
DVI-D (с усилением) 1500 Витая пара 10
IEEE 1394 (Firewire) 400(800) Витая пара 10

Видеосигналы VGA

Одна из широко распространенных разновидностей компонентного сигнала – формат VGA.

Формат VGA (Video Graphics Array) – это формат видеосигналов, разработанный для вывода на компьютерные мониторы.

По разрешающей способности форматы VGA принято классифицировать в соответствии с разрешением видеокарт персональных компьютеров, формирующих соответствующие видеосигналы:

  • VGA (640х480);
  • SVGA (800х600);
  • XGA (1024х780);
  • SXGA (1280х1024);
  • UXGA (1600x1200).

В каждой паре чисел первое показывает число пикселей по горизонтали, а второе – по вертикали изображения.

Чем выше разрешение, тем меньше размеры светящихся элементов и более качественно изображение на экране. К этому всегда следует стремиться, однако с увеличением разрешения стоимость видеокарт и устройств отображения возрастает.

Видеотехника развивается стремительно, и некоторые компьютерные форматы, такие как MDA, CGA и EGA ушли в прошлое. Например, формат CGA, считавшийся в течение нескольких лет самым распространенным, обеспечивал изображение с разрешением всего лишь 320х200 при четырех цветах!

Самый «слабый» из используемых в настоящее время видео форматов, VGA, появился в 1987 году. Количество градаций каждого цвета в нем увеличено до 64, в результате чего число возможных цветов составило 643=262144, что для компьютерной графики имеет даже более важное значение, чем разрешающая способность.

Назначение контактов разъема VGA приведено в таблице.

Контакт Сигнал Описание
1. RED Канал R (красный) (75 Ом, 0,7 В)
2. GREEN Канал G (зеленый) (75 Ом, 0,7 В)
3. BLUE Канал B (синий) (75 Ом, 0,7 В)
4. ID2 Идентификационный бит 2
5. GND Земля
6. RGND Земля канала R
7. GGND Земля канала G
8. BGND Земля канала B
9. KEY Нет контакта (ключ)
10. SGND Земля синхронизации
11. ID0
Идентификационный бит 0
12. ID1 or SDA
Идентификационный бит 1 или данные DDC
13. HSYNC or CSYNC
Строчная H или композитная синхронизация
14. VSYNC
Кадровая синхронизация V
15. ID3 or SCL Идентификационный бит 3 или такты DDC

Кроме собственно видеосигналов (R, G, B, H и V) в разъеме (по спецификации VESA) предусмотрены также некоторые дополнительные сигналы.

Канал DDC (Display Data Channel) предназначен для передачи подробного «досье» дисплея процессору, который, ознакомившись с ним, выдает оптимальный для данного дисплея сигнал с нужным разрешением и экранными пропорциями. Такое досье, называемое EDID (Extended Display Identification Data, или подробные идентификационные данные дисплея), представляет собой блок данных со следующими разделами: бренд-нейм, идентификационный номер модели, серийный номер, дата выпуска, размер экрана, поддерживаемые разрешения и собственное разрешение экрана.

Таким образом, из таблицы видно, что если не использовать канал DDC, то сигнал формата VGA представляет собой, по сути дела, компонентный сигнал RGBHV.

В профессиональной аппаратуре вместо кабеля D-Sub с разъемом DB-15 обычно используют кабель с пятью разъемами BNC, что обеспечивает лучшие характеристики линии передачи. Такой кабель лучше согласован с приемником и передатчиком сигнала по импедансу, имеет меньшие перекрестные помехи между каналами, а следовательно лучше подходит для передачи видеосигнала с высоким разрешением (широким спектром сигнала) на большие расстояния.


Кабель VGA с разъемом DB-15


Кабель VGA с пятью разъемами BNC

В настоящее время наиболее широко используются устройства отображения с соотношением сторон 4:3: 800x600, 1024x768 и 1400x1050, однако существуют форматы с необычным соотношением сторон: 1152x970 (около 6:5) и 1280x1024 (5:4).

Распространение плоских панелей подталкивает рынок к более широкому использованию широкоэкранных дисплеев с соотношением сторон 16:9 с разрешением 852x480 (плазменные дисплеи), 1280x768 (жидкокристаллические дисплеи), 1366x768 и 920x1080 (плазменные и жидкокристаллические дисплеи).

Требуемая ширина полосы линии связи для передачи сигнала VGA или видеоусилителя определяется как результат произведения количества пикселей по горизонтали на количество строк по вертикали на частоту кадров. Полученный результат следует умножить на коэффициент запаса, равный 1,5.

Ш [Гц] = Гор * Верт * Кадр * 1,5

Частота строчной развертки есть произведение числа строк (или рядов пикселей) на частоту кадров.

Вид сигнала Занимаемый
спектр частот, МГц
Рекомендуемое макс.
расстояние передачи, м
Аналоговый видеосигнал NTSC 4,25 100 (кабель RG-6)
VGA (640x480, 60 Гц) 27,6 50
SVGA (800x600, 60 Гц) 43 30
XGA (1027x768, 60 Гц) 70 15
WXGA (1366x768, 60 Гц) 94 12
UXGA (1600x1200, 60 Гц) 173 5

Таким образом, сигнал UXGA требует полосу пропускания 173 МГц. Это огромная полоса: она простирается от звуковых частот до седьмого телевизионного канала!

Как удлинить компонентный сигнал

На практике часто возникает необходимость передать видеосигналы на расстояния большие, чем указано в вышеприведенных таблицах. Частичным решением проблемы является использование коаксиальных кабелей высокого качества, с малым омическим сопротивлением, хорошо согласованных с линией, имеющих малый уровень помех. Такие кабели довольно дороги и не дают полного решения проблемы.

Если устройство-приемник сигнала находится на значительном расстоянии, следует использовать специализированное оборудование – так называемые удлинители интерфейса. Устройства этого класса помогают устранить изначальное ограничение на длину линии связи между компьютером и элементами информационной сети. Удлинители сигналов VGA действуют на аппаратном уровне, поэтому они свободны от каких-либо проблем с совместимостью программного обеспечения, согласованием кодеков или преобразованием форматов.

Если рассматривать пассивную линию (т.е. линию без активного оконечного оборудования), то кабель типа RG-59 способен передать без видимых на экране искажений композитное видео, телевизионный сигнал стандартов PAL или NTSC только на 20-40 м (либо до 50-70 м по кабелю RG-11). Специализированные кабели, например Belden 8281 или Belden 1694A, позволят увеличить дальность передачи примерно на 50%.

Для сигналов VGA, Super-VGA или XGA, полученных с графических плат компьютеров, обычный кабель VGA обеспечивает передачу изображения с разрешением 640x480 на расстояние 5-7 м (а при разрешении 1024x768 и выше такой кабель не должен быть длиннее 3 м.). Высококачественные промышленные кабели VGA/XGA обеспечивают дальность до 10-15, редко до 30 м. Кроме того, линия связи будет подвержена потерям на высоких частотах (High frequency loss), которые проявляются в снижении яркости до полного исчезновения цвета, ухудшении разрешения и четкости.

Для устранения этой проблемы можно использовать линейный усилитель-корректор, включенный ПЕРЕД длинным кабелем. В нем используется схема компенсации потерь на высоких частотах, именуемая EQ (Cable Equalization, коррекция кабеля) или управление высокочастотной составляющей – HF (High Frequency) control. Схема EQ обеспечивает частотно-зависимое усиление сигнала для «спрямления» амплитудно-частотной характеристики (АЧХ). Регулятор общего усиления позволяет парировать обычные (омические) потери в кабеле.

Такие линейные усилители позволяют (при использовании кабелей максимального качества) передать сигнал с разрешением до 1600х1200 (60 Гц) на расстояния до 50-70 м (и больше, при меньших разрешениях).

Однако не всегда этого достаточно: иногда нужны большие расстояния, иногда на длинный кабель могут наводиться помехи, с которыми линейный усилитель бороться не может. В этом случае обычный коаксиальный кабель VGA можно заменить на иной, более подходящий носитель. Сегодня для этого чаще всего используют недорогой и удобный кабель витой пары, устанавливая на концах кабеля специальные преобразователи (передатчик и приемник).

Передающее устройство такого удлинителя преобразует видеосигналы в дифференциальный симметричный формат, наиболее подходящий для витых пар. На принимающей стороне восстанавливается стандартный видеоформат.

Используется обычный кабель для локальных сетей Ethernet, категории 5 и выше. Для видеосигналов лучше подходит неэкранированный кабель (UTP). За счет дешевизны такого кабеля весь тракт передачи сигнала обычно не удорожается, несмотря на необходимость установки дополнительных приборов.

Данный метод удлинения сигнала VGA хорошо работает на расстояниях до 300 м.

Аналогичные методы можно использовать и для удлинения компонентных сигналов других типов (YUV, RGBS, s-Video), промышленность выпускает соответствующие разновидности приборов.

Заметим, что для передачи компонентного видео YUV обычно хорошо подходят и приборы для сигнала VGA (и это оговаривается в их описаниях), если использовать их каналы R, G, B для передачи каналов Y, U и V (каналы синхронизации H и V можно не использовать). Обычно для этого достаточно использовать кабели-переходники для согласования типа разъемов.

Средой передачи в удлинителях могут также быть оптическое волокно и беспроводный радиоканал. По сравнению с витыми парами, оптоволокно значительно увеличит стоимость, а беспроводная связь не обеспечит достаточной помехозащищенности и надежности, да и получить разрешение на ее использование непросто.




Top