Принцип работы схемы кмоп. Логические элементы кмоп. Цифровые микросхемы эмиттерно-связанной логики Общие сведения об эсл имс


Рис. 16.10.

Принципиальное отличие КМОП-схем от nМОП-технологии заключается в отсутствии в схеме активных сопротивлений. К каждому входу схемы подключена пара транзисторов с различным типом канала. Транзисторы с каналом p-типа подключены подложкой к источнику питания, поэтому образование канала в них будет происходить при достаточной большой разности потенциалов между подложкой и затвором, причем потенциал на затворе должен быть отрицательным относительно подложки. Такое состояние обеспечивается подачей на затвор потенциала земли (т.е. логического 0 ). Транзисторы с каналом n-типа подключены подложкой к земле, поэтому образование канала в них будет происходить при подаче на затвор потенциала источника питания (т.е. логической 1 ). Одновременная подача на такие пары транзисторов с разным типом каналов логического нуля или логической единицы приводит к тому, что один транзистор пары обязательно будет открыт, а другой закрыт. Таким образом, создаются условия к подключению выхода либо к источнику п итания, либо к земле.

Так, в простейшем случае, для схемы инвертора (рис. 16.10) при А=0 транзистора VT1 будет открыт, а VT2 закрыт. Следовательно, выход схемы F будет подключен через канал VT1 к источнику питания, что соответствует состоянию логической единицы: F=1 . При А=1 транзистор VT1 будет закрыт (на затворе и подложке одинаковые потенциалы), а VT2 открыт. Следовательно, выход схемы F будет подключен через канал транзистора VT2 к земле. Это соответствует состоянию логического нуля: F=0 .

Логическое сложение (рис. 16.11) осуществляется за счет последовательного соединения p-каналов транзисторов VT1 и VT2. При подаче хотя бы одной единицы единого канала у данных транзисторов не образуется. В то же время благодаря параллельному соединению VT3 и VT4 осуществляется открытие соответствующего транзистора в нижней части схемы, обеспечивающее подключение выхода F к земле. Получается F=0 при подаче хотя бы одной логической 1 – это правило ИЛИ-НЕ.


Рис. 16.11.

Функция И-НЕ осуществляется за счет параллельного соединения VT1 и VT2 в верхней части схемы и последовательного соединения VT3 и VT4 в нижней части (рис. 16.12). При подаче хотя бы на один вход нуля единый канал на VT3 и VT4 не образуется, выход будет отключен от земли. В то же время хотя бы один транзистор в верхней части схемы (на затвор которого подан логический ноль) будет обеспечивать подключение выхода F к источнику питания: F=1 при подаче хотя одного нуля – правило И-НЕ.


Рис. 16.12.

Краткие итоги

В зависимости от элементной базы, различают различные технологии производства ИМС. Основными являются ТТЛ на биполярных транзисторах и nМОП и КМОП на полевых транзисторах .

Ключевые термины

nМОП-технология полевых транзисторов с индуцированным каналом n-типа.

Буфер на 3 состояния – выходная часть схемы ТТЛ, обеспечивающая возможность перехода в третье, высокоимпедансное состояние.

КМОП-технология - технология производства ИМС на базе полевых транзисторов с каналами обоих типов электропроводности.

Открытый коллектор – вариант реализации буферной части элементов ТТЛ без резистора в цепи нагрузки, который выносится за пределы схемы.

Схемы с активной нагрузкой – схемы ТТЛ, в которых состояние буферной цепи определяется состоянием не одного, а двух транзисторов.

Транзисторно-транзисторная логика – технология производства ИМС на базе биполярных транзисторов.

Принятые сокращения

КМОП – комплементарный, металл, оксид, полупроводник

Набор для практики

Упражнения к лекции 16

Упражнение 1

Вариант 1 к упражнению 1 .Нарисовать схему 3-входового элемента ИЛИ-НЕ по nМОП-технологии.

Вариант 2 к упражнению 1 .Нарисовать схему 3-входового элемента И-НЕ по nМОП-технологии.

Вариант 3 к упражнению 1 .Нарисовать схему 4-входового элемента ИЛИ-НЕ по nМОП-технологии.

Упражнение 2

Вариант 1 к упражнению 2 .Нарисовать схему 3-входового элемента ИЛИ-НЕ по КМОП-технологии.

Вариант 2 к упражнению 2 .Нарисовать схему 3-входового элемента И-НЕ по КМОП-технологии.

Вариант 3 к упражнению 2 .Нарисовать схему 4-входового элемента ИЛИ-НЕ по КМОП-технологии.

Упражнение 3

Вариант 1 к упражнению 3 .Нарисовать схему 3-входового элемента ИЛИ-НЕ по ТТЛ-технологии.

Вариант 2 к упражнению 3 .Нарисовать схему 3-входового элемента И-НЕ по ТТЛ-технологии.

Вариант 3 к упражнению 3 .Нарисовать схему 4-входового элемента ИЛИ-НЕ по ТТЛ-технологии.

Упражнение 4

Вариант 1 к упражнению 4 .Нарисовать схему 3-входового элемента ИЛИ по nМОП-технологии.

Вариант 2 к упражнению 4 .Нарисовать схему 3-входового элемента И по nМОП-технологии.

Вариант 3 к упражнению 4 .Нарисовать схему 4-входового элемента ИЛИ по nМОП-технологии.

Упражнение 5

Вариант 1 к упражнению 5 .Нарисовать схему 3-входового элемента ИЛИ по КМОП-технологии.

Вариант 2 к упражнению 5 .Нарисовать схему 3-входового элемента И по КМОП-технологии.

Вариант 3 к упражнению 5 .Нарисовать схему 4-входового элемента ИЛИ по КМОП-технологии.

Упражнение 6

Вариант 1 к упражнению 6 .Нарисовать схему 3-входового элемента ИЛИ по ТТЛ-технологии.

Вариант 2 к упражнению 6 .Нарисовать схему 3-входового элемента И по ТТЛ-технологии.

Вариант 3 к упражнению 6 .Нарисовать схему 4-входового элемента ИЛИ по ТТЛ-технологии.

Упражнение 7

Вариант 1 к упражнению 7 .Нарисовать схему элемента 2И-ИЛИ-НЕ по ТТЛ-технологии.

Вариант 2 к упражнению 7 .Нарисовать схему элемента 2И-ИЛИ-НЕ по КМОП-технологии.

Вариант 3 к упражнению 7 .Нарисовать схему элемента 2И-ИЛИ-НЕ по nМОП-технологии.

Упражнение 8

Вариант 1 к упражнению 8 .Нарисовать схему 3-входового элемента ИЛИ-НЕ с буфером на 3 состояния.

Вариант 2 к упражнению 8 .Нарисовать схему 3-входового элемента И-НЕ с открытым коллектором.

Вариант 3 к упражнению 8 .Нарисовать схему 3-входового элемента ИЛИ с буфером на 3 состояния.

Для проектирования цифровых ИС кроме биполярных п-р-п- и p-n-p-транзисторов используются также униполярные полевые и -канальные транзисторы (рис. 5.17,а), которые называются МОП-транзисторами (МOS-transistors; MOS - Metal-Oxide-Semiconductor - металл-окисел-полупроводник). В общем случае полевой транзистор имеет четыре электрода: исток S (Source), сток D (Drain), затвор G (Gate) и подложка SS (Substrate). Вывод затвора в изображении полевых транзисторов смещается ближе к истоковому выводу. Изображение канала с обогащением штриховой линией символизирует отсутствие проводимости между стоком и истоком при нулевом напряжении затвор-исток. На рис. 5.17,а символами "+" и "-" обозначены полярности напряжений на электродах для нормального режима работы полевого транзистора. Подложка обычно подключается к истоку или к одному из полюсов источника питания.

На рис. 5.17,6 показана схема включения пары комплементарных транзисторов (транзисторов с разными типами каналов), представляющая собой электронный ключ - инвертор (ЛЭ НЕ). Особенностью данного ключа является отсутствие тока через транзисторы в статическом состоянии, так как при любом значении входного сигнала один из последовательно включенных транзисторов закрыт. Ключ потребляет ток только при его переключении на интервале времени, в течение которого изменяется входной сигнал. На этом интервале оба транзистора

открыты, так как входной сигнал имеет значения приводит к значениям разностей напряжений между затворами и истоками и -канальных транзисторов, значительно отличающимися от нулевых. Наибольший ток протекает при

Полевые транзисторы позволяют построить не только цифровые, но и аналоговые ключи для коммутации двуполярных аналоговых сигналов, что невозможно сделать на биполярных транзисторах. На рис. 5.17,в показан основной элемент такого аналогового ключа (вместо потенциала земли для коммутации Двуполярных сигналов следует подать отрицательное напряжение При значениях оба транзистора закрыты (сопротивление закрытого ключа составляет ротни ключ разомкнут, а при открывается один из транзисторов в зависимости от полярности коммутируемого входного напряжения В этом Случае сопротивление между полюсами ключа проставляет от единиц до сотен Ом в зависимости от типа (сопротивленйе открытого ключа). Чем меньше зависимость величины напряжения коммутируемого сигнала, тем выше линейность ключа. При проектировании аналоговых ключей принимают меры по улучшению их линейности. Вход и выход аналогового ключа неразличимы - входом будет тот полюс ключа, на который подан коммутируемый сигнал.

Разработаны три основные технологии изготовления ИС на полевых транзисторах:

МОП технология (n-MOS technology),

МОП технология p-MOS technology),

КМОП технология CMOS technology; CMOS - Complementary MOS).

Все эти технологии постоянно совершенствуются с целью увеличения быстродействия и степени интеграции элементов на кристалле. К настоящему времени разработано несколько десятков этих технологий.

Схемотехника КМОП ИС. Первые КМОП ИС серии были разработаны фирмой в 1968 г. , затем была выпущена серия вытесненная впоследствии ( серией с улучшенными характеристиками. Данные серии ИС выпускают многие зарубежные фирмы, например, серии Серии серии серий и др. Общим

недостатком ИС всех этих серий является их низкое быстродействие (время задержки сигналов достигает сотен не) и малые значения выходных токов.

В 1981 г. фирмами Motorola и National Semiconductor были разработаны ИС серий близкие по физическим параметрам к сериям В частности, быстродействие этих КМОП и ТТЛ серий одинаково (среднее время задержки вентиля не). Еще большее быстродействие было достигнуто в КМОП сериях разработанных в 1985 г. фирмой Texas Instruments Inc. (). Положительные свойства как ТТЛ ИС, так и КМОП ИС были реализованы фирмой в ИС серии ВСТ (1987 г.), изготовляемых по BiCMOS-технологии технология с размещением биполярных и КМОП транзисторов на одном кристалле с уровнями входных и выходных сигналов ИС, совместимых с ТТЛ-уровнями) .

В табл. 5.9 приведено соответствие отечественных и зарубежных серий КМОП ИС. Напряжение питания у КМОП ИС можно изменять в широких пределах - чем выше напряжение питания, тем больше быстродействие ИС. По выполняемым функциям и (или) нумерации выводов ИС серий 4000 в большинстве своем отличаются от ТТЛ ИС аналогичного функционального назначения. Функциональный ряд ИС серий включает в себя часть ИС как ТТЛ серий 54/74, так и КМОП серий с одинаковыми номерами во всех этих сериях имеют одинаковое функциональное назначение и нумерацию выводов).

На рис. 5.18, а показаны цепи диодной защиты входов и выходов ЛЭ от электростатического напряжения у ИС серии а на рис. 5.18,6 - у ИС серии Такую защиту входов и выходов имеют все цифровые ИС, кроме преобразователей уровней напряжений которых используется другой вариант защиты входов (рис. 5.19). При первом варианте защиты входов уровни входных сигналов не должны превышать напряжения питания из-за открывания диода, включенного между входом и полюсом При втором варианте защиты уровни входных сигналов могут в несколько раз превышать значение не выводя ИС из строя (избыточное напряжение гасится на резисторе). В этом случае ИС работает как понижающий преобразователь уровня логической 1. Входная цепь обеспечивает также защиту от отрицательных значений напряжений входных сигналов. В

(см. скан)

дальнейшем цепи защиты входов и выходов, как правило, показываться не будут.

Различие между сериями (рис. 5.19,а) и (рис. 5.19,6) заключается в наличии на выходах ИС последней дополнительных буферов для развязки ИС от внешней среды. Вместо серии в настоящее время выпускается серия с небуферированными выходами, имеющая аналогичные электрические параметры (UB - Unbuffered, В - Buffered). Наличие в серии CD40005 дополнительных выходных буферов приводит к увеличению задержек сигналов в ЛЭ, но улучшает переключательные характеристики. Сравнительная характеристика этих серий приведена в табл. 5.10.

Таблица 5.10. (см. скан) Параметры ИС серий CD4000B и CD4000UB

Реализация аналогового ключа показана на рис. 5.20. При значении сигнала ОЕ = 1 (ОЕ - Output Enable) ключ открыт, а при закрыт. В закрытом состоянии ключ характеризуется большим выходным импедансом и принято говорить, что выход находится в Z-cостоянии. Вместо

потенциала земли можно подать отрицательное напряжение но при этом должно выполняться условие

Схема двухвходового представлена на рис. 5.21. Выходной каскад на двух комплементарных транзисторах является буферным каскадом, так как он изолирует все внутренние связи от выхода ЛЭ. Различие между небуферированной и буферированной сериями наглядно видно из рис. 5.22, где представлены выполняющие одинаковые функции Другое схемотехническое исполнение ЛЭ 2И-НЕ показано на рис. 5.23.

Универсальный набор элементов, состоящий из двух комплементарных пар МОП-транзисторов и инвертора, реализован в (рис. 5.24). Данный набор позволяет пользователю с помощью внешних соединений выводов ИС получать аналоговые коммутаторы и

аналоговый двухканальный коммутатор (рис. 5.25) - соединены выводы 2 и 9; 4 и 11; 3 и 6; 8, 10 и 13; 1, 5 и 12;

три инвертора - соединить выводы 2, 11 и 14; 4, 7 и 9; 8 и 13 (выход НЕ со входом 6); 1 и 5 (выход НЕ со входом 3); 10 - вход выход НЕ;

3ИЛИ-НЕ - соединить выводы 4, 7 и 9; и 11; 5, 8 и 12 (выход ЛЭ со входами 3, 6 и 10);

3И-НЕ - соединить выводы 2, 11 и 14; 4 и 8; 5 и 9; 1, 12 и 13 (выход ЛЭ со входами 3, 6 и 10);

ЛЭ, реализующий функцию соединить выводы 2 и 14; 4, 8 и 9; 1 и 11; 5, 12 и 13 (выход

ЛЭ, реализующий функцию соединить выводы 2 и 14; 7 и 9; 4 и 8; 1, 11 и 13; 5 и 12 (выход ;

инвертор с Z-состоянием выхода, выполняющий функцию

При и Z-состояние выхода при соединить выводы 8, 11 и 13;

По сравнению с ТТЛ ИС следует отметить следующие достоинства КМОП ИС серий 4000 (серий 561 и 1561):

малая мощность потребления в диапазоне частот до (в статическом режиме мощность потребления составляет на вентиль);

большой диапазон напряжения питания можно использовать нестабилизированный источник питания; очень высокое входное сопротивление ( большая нагрузочная способность на частотах до

малая зависимость характеристик от температуры. К недостаткам КМОП ИС серий 4000 (серий 561 и 1561) следует отнести:

повышенное выходное сопротивление (0,5 ... 1 кОм); большое влияние емкости нагрузки и напряжения питания на время задержки, длительность фронтов и потребляемую мощность;

большие времена задержек и длительности фронтов; большой разброс всех параметров.

Графики зависимостей рассеиваемой мощности от частоты для КМОП и ТТЛ ИС пересекаются на некоторой частоте, поскольку у ТТЛ ИС динамическая мощность очень слабо зависит от частоты переключения. На предельно допустимых частотах мощность потребления КМОП ИС оказывается такого же порядка, что и у ТТЛ ИС.

В статическом режиме (без перегрузки) у КМОП ИС уровни выходных сигналов значительно отличаются от уровней У КМОП ИС в отличие от типовых значений Требования к уровням входных сигналов также значительно различаются: у КМОП ИС в отличие от Соответственно различаются пороги переключения: для КМОП BС и 1,2 В для ТТЛ BС. Это вызывает определенные трудности при использовании в одном устройстве ТТЛ и уровень

При Способы согласования уровней будут рассмотрены в § 5.6.

В сериях выпускаются КМОП ИС двух типов: серии не согласованные по входам с ТТЛ ИС, и серии согласованные по входам с ТТЛ ИС (не требующие дополнительного преобразования уровней). Эти серии различаются выполнением входных и выходных цепей ИС, показанных на рис. 5.26,а для ИС серий на рис. 5.26,б - для ИС серий на рис. 5.27 - для ИС серий и на рис. 5.28 - для ИС серий Пороги переключения у ИС серий находятся между , а у ИС серий порог переключения равен при требовании к уровням входных сигналов, задаваемом неравенствами

Помехоустойчивость ИС серий приведена в табл. 5.11, из которой видно, что она значительно выше, чем у ТТЛ серий (см. табл. 5.5). Предельные значения параметров ИС этих серий указаны в табл. 5.12, а рекомендуемые условия эксплуатации

(см. скан)

В табл. 5.13 .

Интегральные схемы КМОП серий, имеющие одинаковые номера (у зарубежных ИС) или одинаковые буквенно-цифровые обозначения (у отечественных ИС раздельно по группам серий 176/561/564/1561 и 1564/1554), выполняют одинаковые функции и совпадают по разводке внешних выводов. В дальнейшем на рисунках для ИС КМОП серий будет указываться название ИС только одной конкретной серии, хотя аналогичные ИС могут быть и в других сериях.

Рис. 5.29 (см. скан)

На рис. 5.29 представлены ЛЭ И-НЕ, И, НЕ, ИЛИ-НЕ и сумма по модулю два, выпускаемые отечественной промышленностью. На графических обозначениях указаны номера аналогов зарубежных ИС. Логические элементы серии 176 приведены на рис. 5.30. Применение было рассмотрено выше при описании ее зарубежного аналога комплементарные пары транзисторов, G - затвор, стоки р-канального и n-канального транзисторов, SP и SN - истоки

(кликните для просмотра скана)

p-канального и n-канального транзисторов). Зарубежные ЛЭ, не имеющие в настоящее время отечественных аналогов, показаны на рис. 5.31 и 5.32.

Рис. 5.32 (см. скан)

Параметры ИС КМОП серии приведены в табл. , а в табл. П2.3 - параметры ИС серий 4000 , которые в первую очередь следует учитывать при проектировании цифровых и микропроцессорных устройств. Параметры отечественных ИС серий 176, 561 и 1561 можно найти в справочниках , а ИС серии 1554 - в . Полезный справочный материал по ИС КМОП серий имеется в .

Интегральные схемы серий 54.АС11000/74.АС11000.

Для уменьшения уровня помех у быстродействующих КМОП ИС, возникающих при переключении ЛЭ, предпочтительнее использовать центральное расположение выводов питания на

кристалле, причем выходы ИС следует располагать на той стороне, где находится общий вывод питания (GND). Фирма выпустила серии где число И указывает на центральное расположение выводов питания ИС, а числа порядковый номер ИС, как и в остальных сериях На рис. 5.33 приведены ЛЭ этих серий.

Интегральные схемы серий SN54BCT/SN74BCT.

Как указывалось выше, ИС данных серий изготовляются по BiMOS технологии. Входные цепи ИС выполняются по схеме, приведенной на рис. 5.34,а, что делает входы этих ИС совместимыми с ТТЛ-уровнями входных сигналов.

В микропроцессорных системах в большом количестве используются шинные драйверы и приемопередатчики, причем в каждый момент времени в активном состоянии находится приемопередатчик или драйвер только одного внешнего устройства, а остальные - в Z-состоянии. Драйверы и приемопередатчики, выполняемые по ТТЛ технологиям, в Z-состоянии выходов потребляют ток того же порядка, что и в активном состоянии выходов, хотя не выполняют большую часть времени полезной работы.

Основная цель разработки BiMOS ИС и заключалась в резком снижении потребляемого тока в Z-состоянии выходов ИС, предназначенных для проектирования внешних устройств микропроцессорных систем. На рис. показана схема -состоянием выхода, выполненного по BiMOS технологии входная цепь, показанная на рис. 5.34,а).

Неиспользуемые входы ИС.

При проектировании цифровых устройств на ИС могут использоваться не все их входы. Исходя из логики работы разрабатываемого устройства, на эти входы следует подать либо логический уровень 0, либо уровень 1. Логический уровень 0 как в ТТЛ, так и в КМОП ИС подается подключением неиспользуемого входа к корпусу Логический уровень 1 подается на неиспользуемые входы подключением их к источнику напряжения питания (ТТЛ ИС) или (КМОП ИС), однако входы ТТЛ ИС серий 54/74, , в которых используются многоэмиттерные транзисторы, рекомендуется подключать к источнику питания через токоограничивающий резистор для защиты от скачков напряжения, возникающих, например, при включении питания.

Логические уровни КМОП микросхем при пятивольтовом питании показаны на рис.9.

Границы уровней логического нуля и единицы для КМОП микросхем при пятивольтовом питании приведена на рис. 10.

Рис. 10. Уровни логических сигналов на входе цифровых КМОП микросхем.

Из рисунка 10 видно, что запас по уровням срабатывания для обеспечения помехоустойчивости у КМОП более 1,1 В. Это почти втрое больше чем у ТТЛ.

При уменьшении напряжения питания границы логического нуля и логической единицы смещаются пропорционально изменению напряжения питания.

Семейства кмоп микросхем

Первые КМОП микросхемы не имели защитных диодов на входе, поэтому их монтаж представлял значительные трудности. Это семейство микросхем серии К172. Следующее улучшенное семейство микросхем серии К176 получило эти защитные диоды. Оно достаточно распространено и в настоящее время. Серия К1561 (иностранный аналог этих микросхем - C4000В.) завершает развитие первого поколения КМОП микросхем. В этом семействе было достигнуто быстродействие на уровне 90нс и диапазон изменения напряжения питания 3..15В.

Дальнейшим развитием КМОП микросхем стала серия SN74HC. Эти микросхемы отечественного аналога не имеют. Они обладают быстродействием 27нс и могут работать в диапазоне напряжений 2..6В. Они совпадают по цоколёвке и функциональному ряду с ТТЛ микросхемами, но не совместимы с ними по логическим уровням, поэтому одновременно были разработаны микросхемы серии SN74HCT (отечественный аналог - К1564), совместимые с ТТЛ микросхемами и по логическим уровням.

В это время наметился переход на трёхвольтовое питание. Для него были разработаны микросхемы SN74ALVC с временем задержки сигнала 5,5нс и диапазоном питания 1,65..3,6В. Эти же микросхемы способны работать и при 2,5 вольтовом питании. Время задержки сигнала при этом увеличивается до 9нс.

Наиболее перспективным семейством КМОП микросхем считается семейство SN74AUC с временем задержки сигнала 1,9нс и диапазоном питания 0,8..2,7В.

Цифровые микросхемы эмиттерно-связанной логики Общие сведения об эсл имс

Интегральные микросхемы на основе эмиттерно-связанной логики (ЭСЛ) получили широкое распространение в качестве элементной базы быстродействующей вычислительной и радиоэлектронной аппаратуры. Микросхемы на основе ЭСЛ имеют ряд достоинств, которые обеспечили их преимущество перед другими микросхемами при построении данного класса аппаратуры:

1. Хорошая схемно-техническая отработанность и, как следствие, сравнительно невысокая стоимость при изготовлении.

    Высокое быстродействие при средней потребляемой мощности или сверхвысокое быстродействие при большой потребляемой мощности.

    Малая энергия переключения.

    Высокая относительная помехоустойчивость.

    Высокая стабильность динамических параметров при изменении рабочей температуры и напряжения питания.

    Большая нагрузочная способность.

    Независимость тока потребления от частоты переключения.

    Способность ИМС работать на низкоомные линии связи и нагрузки.

    Широкий функциональный набор микросхем.

10. Удобство применения в условиях повышенной плотности компоновки с использованием многослойного печатного монтажа и низкоомных коаксиальных и плоских кабелей.

В настоящее время ИС ЭСЛ являются самыми быстродействующими микросхемами на основе кремния, выпускаемыми промышленностью как у нас в стране, так и за рубежом. Опыт проектирования аппаратуры, показывает, что применение ИС ЭСЛ оптимально для построения быстродействующих радиоэлектронных устройств, в частности ЭВМ высокого быстродействия, и менее эффективно при разработке радиоэлектронных устройств малого и среднего быстродействия.

Высокое быстродействие обусловлено тем, что в этих элементах транзисторы работают в ненасыщенном режиме, в результате чего исключается накопление и рассасывание неосновных носителем заряда.

Структурно базовый элемент ЭСЛ содержит: источник опорного напряжения (ИОН), токовый переключатель (ТП) и эмиттерные повторители.

В основу токового переключателя на входе положена схема с объединенными эмиттерами (рис.11). Главные ее достоинства: постоянство суммарного тока эмиттеров / э = 1 э 1 + I э2 в процессе работы; наличие прямого и инверсного выходов U вых1 , U вых2 .

Рис. 11. Базовый логический элемент ЭСЛ

К современным цифровым микросхемам ЭСЛ относятся ИС серий 100, К100, 500, К500, 1500, KI500.

Типовое время задержки логических элементов ИМС серии К1550 0,7 нс, серии К500 0,5...2 нс; серии 138 2,9 нс. ЭСЛ микросхемы имеют помехоустойчивость по напряжению низкого и высокого уровней не менее 125 мВ и 150 мВ, разброс выходного напряжения низкого уровня 145...150 мВ, высокого уровня 200 мВ. Амплитуда логического сигнала U л до 800 мВ. В ИМС серии 500 уровень интеграции до 80 логических элементов на кристалле; функциональный набор микросхем - 48 модификаций, потребляемая элементом мощность Р пот =8...25мВт (в ненагруженном состоянии), энергия, потребляемая при переключении А = 50 пДж.

Базовый логический элемент ИМС К500 благодаря наличию прямого и инверсного выхода одновременно выполняет две функций: ИЛИ-НЕ и ИЛИ . В отрицательной логике выполняются функции И/И-НЕ. Электрическая схема базового элемента ЭСЛ состоит из трех цепей (рис.12): токового переключателя (ТП), выходных эмиттерных повторителей (ЭП) и источника опорного напряжения (ИОН).

Токовый переключатель построен на транзисторах VT 1- VT 5 и резисторах R 1- R 7 и представляет собой дифференциальный усилитель, работающий в режиме ключа, имеющий несколько входов. Увеличение числа входов ТП достигается параллельным подключением дополнительных входных транзисторов VT 1- VT 4.

Базовый ЛЭ работает следующим образом. При подаче на все входы схемы XI - X 4 напряжения низкого уровня (-1,7 В) входные транзисторы VT 1- VT 4 закрыты, транзистор VT 5 открыт, так как напряжение на его базе U ОП = -1,3 В выше.

Большая потребляемая и рассеиваемая мощности являются недостатками микросхем ЭСЛ, что является следствием их работы в ненасыщенном режиме. Малый логический перепад, с одной стороны, повышает быстродействие, а с другой снижает помехоустойчивость.

Основной родовой признак ТТЛ - использование биполярных транзисторов, причем структуры только п-р-п. КМОП же, как следует из ее названия, осно­вана на полевых транзисторах с изолированным затвором структуры МОП, причем комплементарных, то есть обоих полярностей - и с w- и с /^-каналом. Схемотехника базовых логических элементов ТТЛ и КМОП приведена на рис. 15.1. На западе их еще называют вентилями - чем можно оправдать та­кое название, мы увидим в конце главы.

Входной многоэмиттерный транзистор ТТЛ мы уже рисовали в главе И - он может иметь сколько угодно (на практике - до восьми) эмиттеров, и эле­мент тогда будет иметь соответствующее число входов. Если любой из эмит­теров транзистора VT1 замкнуть на «землю», то транзистор откроется, а фа-зорасщепляющий транзистор VT2 (с его работой мы знакомы по рис. 6.8) - закроется. Соответственно, выходной транзистор VT3 откроется, а VT4 - закроется, на выходе будет высокий логический уровень, или уровень логи­ческой единицы. Если же все эмиттеры присоединены к высокому потенциа­лу (или просто «висят» в воздухе), то ситуация будет обратная - VT2 откро­ется током через переход база-коллектор VT1 (такое включение транзистора называется «инверсным»), и на выходе установится ноль за счет открытого транзистора VT4. Такой ТТЛ-элемент будет осуществлять функцию «И-НЕ» (логический ноль на выходе только при единицах на всех входах).

ТТЛ

Выходной каскад ТТЛ-элемента представляет собой некое подобие ком­плементарного («пушпульного») каскада класса В, знакомого нам по анало­говым усилителям (см. рис. 8.2). Однако воспроизведение р-п-р-транзисторов оказалось для ТТЛ-технологии слишком сложным, потому такой каскад носит еще название псевдокомплементарного- верхний транзистор VT3 работает в режиме эмиттерного повторителя, а нижний - в схеме с общим эмиттером.

Рис. 15.1. Схемы базовых элементов ТТЛ и КМОП

Кстати, заметим, что из-за недоступности p-w-p-транзисторов воспроизведе­ние схемы «ИЛИ» для ТТЛгтехнологии оказалось крепким орешком, и ее, схемотехника довольно существенно отличается от показанной на рис. 15.1 базовой схемы элемента «И-НЕ».

Заметки на полях

На заре транзисторной техники псевдокомплементарные каскады, подобные выходному каскаду ТТЛ, использовались - о ужас! - для усиления звука. Это построение дало основания для многочисленных попыток приспособить логи­ческие элементы, которые, в сущности, представляют собой усилитель с до­вольно большим (несколько десятков) коэффициентом усиления, для усиле­ния аналоговых сигналов. Излишне говорить, что результаты оказались довольно плачевными, даже с КМОП-элементом, который построен куда более симметрично.

Как видно из схемы, ТТЛ-элемент существенно несимметричен и по входам, и по выходам. По входу напряжение логического нуля должно быть доста­точно близко к «земле», при напряжении на эмиттере около 1,5 В (при стан­дартном для ТТЛ питании 5 В) входной транзистор уже запирается. Причем при подаче нуля нужно обеспечить отвод довольно значительного тока база-эмиттер- около 1,6 мА для стандартного элемента, отчего для элементов ТТЛ всегда оговаривается максимальное количество одновременно подсое­диненных к выходу других таких элементов (стандартно - не более десят­ка). В то же время логическую единицу на входы можно не подавать вовсе. Практически, однако, подавать ее следует - по правилам незадействованные входы ТТЛ должны быть присоединены к питанию через резисторы 1 кОм.

Еще хуже дела обстоят на выходе: напряжение логического нуля обеспечива­ется открытым транзистором и действительно довольно близко к нулю - даже при нагрузке в виде десятка входов других таких же элементов оно не превышает 0,5 В, а в нормах на сигнал ТТЛ оговорена величина не более 0,8 В. А вот напряжение логической единицы довольно далеко отстоит от питания и составляет при питании 5 В в лучшем случае (без нагрузки) от 3,5 до 4 В, практически же в нормах оговаривается величина 2,4 В.

Такое балансирование десятыми вольта (напряжение нуля 0,8 В, напряжение порога переключения от 1,2 до 2 В, напряжение единицы 2,4 В) приводит к тому, что все ТТЛ-микросхемы могут работать в довольно узком диапазоне напряжений питания - практически от 4,5 до 5,5 В, многие даже от 4,75 до 5,25 В, то есть 5 В ±5%. Максимально допустимое напряжение питания со­ставляет для разных ТТЛ-серий от 6 до 7 В, и при его превышении они обыч­но горят ясным пламенем. Низкий и несимметричный относительно питания порог срабатывания элемента приводит и к плохой помехоустойчивости.

Самым крупным (и даже более серьезным, чем остальные) недостатком ТТЛ является высокое потребление - до 2,5 мА на один такой элемент, это без учета вытекающих токов по входу и потребления нагрузки по выходу. Так что приходится только удивляться, почему микросхемы ТТЛ, содержащие много базовых элементов, вроде счетчиков или регистров, не требуют охла­ждающего радиатора. Сочетание низкой помехоустойчивости с высоким по­треблением - смесь довольно гремучая, и при разводке плат с ТТЛ-микросхемами приходится ставить по развязывающему конденсатору на ка­ждый корпус. Все перечисленное в совокупности давно бы заставило отка­заться от технологии ТТЛ вообще, однако у них до некоторого времени было одно неоспоримое преимущество: высокое быстродействие, которое для ба­зового элемента в виде, показанном на рис. 15.1, может достигать десятков мегагерц.

В дальнейшем развитие ТТЛ шло по линии уменьшения потребления и улучшения электрических характеристик, в основном за счет использования т. н. переходов Шоттки, на которых падение напряжения может составлять 0,2-0,3 В вместо обычных 0,6-0,7 В (технология ТТЛШ, обозначается бук­вой S в наименовании серии, отечественный аналог- серии 531 и 530). Ба­зовая технология, которая составляла основу широко распространенной в 1960-70-х годах серии 74 без дополнительных букв в обозначении (анало­ги- знаменитые отечественные серии 155 и 133), сейчас практически не используется. ТТЛ-микросхемы в настоящее время можно выбирать из вари­антов, представленных малопотребляющими сериями типа 74LSxx (серии 555 и 533) или быстродействующими типа 74Fxx (серия 1531). Причем по­требление последних практически равно потреблению старых базовых серий при более высоком (до 125 МГц) быстродействии, а для первых все наобо­рот- быстродействие сохранено на уровне базового, зато потребление пи­тания снижено раза в три-четыре.

КМОП

КМОП-элементы намного ближе к представлению о том, каким должен быть идеальный логический элемент. Для начала, как можно видеть из рис. 15.1, они практически симметричны, как по входу, так и по выходу. Открытый по­левой транзистор на выходе (либо /?-типа для логической единицы, либо «-типа для логического нуля) фактически представляет собой, как мы знаем.

просто сопротивление, которое для обычных КМОП-элементов может со­ставлять от 100 до 300 Ом (под «обычными» или «классическими» КМОП мы подразумеваем здесь серию 4000А или 4000В, см. далее). Для дополнитель­ной симметрии на выходе обычно ставят последовательно два инвертора, по­добных показанному на рис. 15.1 справа (жалко, что ли, транзисторов, если потребление не растет?). Поэтому на выходе не сказывается то, что в нижнем плече для схемы «И-НЕ» стоят два таких транзистора последовательно.

Для схемы «ИЛИ» такие транзисторы будут стоять в верхнем плече - она полностью симметрична схеме «И», что тоже плюс технологии КМОП по сравнению с ТТЛ. Обратите также внимание, что выходной каскад инвертора построен не по схеме «пушпульного» каскада, то есть это не потоковые по­вторители напряжения, а транзисторы в схеме с общим истоком, соединен­ные стоками, что позволяет получить дополнительный коэффициент усиле­ния по напряжению.

На практике особенности построения элемента приводят к тому, что в КМОП-микросхемах:

На ненагруженном выходе напряжение логической единицы практически равно напряжению питания, а напряжение логического нуля практически равно потенциалу «земли»;

Порог переключения близок к половине напряжения питания;

Входы практически не потребляют тока, так как представляют собой изо­лированные затворы МОП-транзисторов;

В статическом режиме весь элемент также не потребляет тока от источ­ника питания.

Из последнего положения вытекает, что схема любой степени сложности, построенная с помощью КМОП-элементов, в «застывшем» состоянии и даже при малых рабочих частотах, не превышающих десятка-другого килогерц, практически не потребляет энергии! Отсюда ясно, как стали возможными такие фокусы, как наручные часы, которые способны идти от малюсенькой батарейки годами, или sleep-режим микроконтроллеров, в котором они по­требляют от 1 до 50 мкА на все десятки тысяч составляющих их логических элементов.

Другое следствие вышеперечисленных особенностей - исключительная по­мехоустойчивость, достигающая половины напряжения питания. Но это еще не все преимущества. КМОП-микросхемы «классических» серий могут рабо­тать в диапазоне напряжений питания от 2 до 18 В, а современные быстро­действующие - от 2 до 7 В. Единственное, что при этом происходит- при

снижении питания довольно резко- в разы- падает быстродействие и ухудшаются некоторые другие характеристики.

Кроме того, выходные транзисторы КМОП, как и любые другие полевые транзисторы, при перегрузке (например, в режиме короткого замыкания) ра­ботают как источники тока - при напряжении питания 15 В этот ток соста­вит около 30 мА, при 5 В - около 5 мА. Причем это в принципе может быть долгосрочный режим работы таких элементов, единственное, что при этом надо проверить - не превышается ли значение суммарного допустимого то­ка через вывод питания, которое обычно составляет около 50 мА. То есть, возможно, придется ограничить число выходов, одновременно подключен­ных к низкоомной нагрузке. Естественно, о логических уровнях в таком ре­жиме уже речи не идет, только о втекающем или вытекающем токе.

И тут мы подходим к основному недостатку «классической» КМОП-технологии - низкому в сравнении ТТЛ быстродействию. Это обусловлено тем, что изолированный затвор МОП-транзистора представляет собой кон­денсатор довольно большой емкости- в базовом элементе до 10-15 пФ. В совокупности с выходным резистивным сопротивлением предыдущей схе­мы такой конденсатор образует фильтр низких частот. Обычно рассматрива­ют не просто частотные свойства, а время задержки распространения сигнала на один логический элемент. Задержка возникает из-за того, что фронт сиг­нала не строго вертикальный, а наклонный, и напряжение на выходе еще только начнет нарастать (или снижаться), когда напряжение на входе достиг­нет уже значительной величины (в идеале- половины напряжения пита­ния). Время задержки могло достигать у ранних серий КМОП величины 200-250 НС (сравните - у базовой серии ТТЛ всего 7,5 не). На практике при напряжении питания 5 В максимальная рабочая частота «классического» КМОП не превышает 1-3 МГц- попробуйте соорудить на логических эле­ментах генератор прямоугольных сигналов по любой из схем, которые будут разобраны в главе 16, и вы увидите, что уже при частоте 1 МГц форма сигна­ла будет скорее напоминать синусоиду, чем прямоугольник.

Другим следствием наличия высокой входной емкости является то, что при переключении возникает импульс тока перезарядки этой емкости, то есть чем выше рабочая частота, тем больше потребляет микросхема, и считается, что при максимальных рабочих частотах ее потребление может сравниться с по­треблением ТТЛ (по крайней мере, ТТЛ серии 74LS). Дело еще усугубляется тем, что из-за затянутых фронтов импульсов элемент достаточно длительное время находится в активном состоянии, когда оба выходных транзистора приоткрыты (то есть возникает так называемый эффект «сквозного тока»).

Это же затягивание фронтов в сочетании с высокоомным входом приводит к снижению помехоустойчивости при перею1ючении - если на фронте сигна­ла «сидит» высокочастотная помеха, то это может приводить к многократ­ным переключениям выхода, как это было у компаратора (см. главу 13). По этой причине в спецификациях на микросхемы часто указывают желатель­ную максимальную длительность фронтов управляющего сигнала.

Однако в современных КМОП, в отличие от «классических», большинство недостатков, связанных с низким быстродействием, удалось преодолеть (правда, за счет снижения допустимого диапазона питания). Подробнее о се­риях КМОП рассказано далее, а пока несколько еще несколько слов об осо­бенностях этих микросхем.

Незадействованные входы элемента КМОП нужно обязательно подключать куда-нибудь - либо к земле, либо к питанию (резисторов при этом не требу­ется, так как вход тока не потребляет), либо объединять с соседним вхо­дом - иначе наводки на столь высокоомном входе полностью нарушат рабо­ту схемы. Причем в целях снижения потребления следует делать это и по отношению к незадействованным элементам в том же корпусе (но не ко всем незадействованным выводам, конечно). «Голый» вход КМОП из-за своей вы-сокоомности может быть также причиной повышенной «смертности» чипов при воздействии статического электричества, однако на практике входы все­гда шунтируют диодами, как показано на рис. 11.4. Допустимый ток через эти диоды также оговаривается в спецификациях.

Логические элементы КМОП

Эквивалентные схемы элементов, представленных выше, можно получить, используя только PMOS-транзисторы. Однако наибольший интерес представляет совместное применение PMOS и NMOS-транзисторов. Такая технология наиболее популярна сегодня и называется CMOS-технологией. Она обеспечивает максимальное быстродействие работы элементов при низком энергопотреблении по сравнению со всеми другими технологиями.

В NMOS-цепях логические функции реализовались комбинацией соединений NMOS-транзисторов, объединенных с токоограничивающим элементом.

Т.к. все элементы, построенные на NMOS-транзисторах реализуют отрицательные функции (НЕ, ИЛИ-НЕ, И-НЕ), то их можно условно представить так, как показано на блок-схеме рисунка 1.9.

Рисунок 1.9 - Структура NMOS-схемы

При этом все транзисторные цепи объединены в блок PDN (Pull-down Network) – блок отрицательной логики. Для реализации прямых логических функций необходимо соединение двух отрицательных элементов, что снижает быстродействие всего элемента в целом. Концепция CMOS-цепей основана на реализации прямых функций (И, ИЛИ) на PMOS-транзисторах таким образом, что блоки прямой логики (PUN – Pull-up Network) и блоки отрицательной логики (PDN - Pull-down Network) являются дополнениями друг друга. Тогда логическая схема, реализующая типичный логический элемент, будет иметь вид, представленный на рисунке 1.10.

Рисунок 1.10 - Структура CMOS-схемы

Для любой комбинации входных сигналов PDN устанавливает уровень логического нуля на выходе V f , или PUN устанавливает на этом выходе уровень логической единицы. PDN и PUN имеют равное количество транзисторов, которые размещены так, что эти два блока работают параллельно. Там, где PDN включает NMOS-транзисторы, соединенные последовательно, PUN строится на PMOS-транзисторах, соединенных параллельно, и наоборот.

Самый простой пример CMOS-схемы - инвертор, показан на рисунке 1.11.

Рисунок 1.11 - Реализация CMOS-инвертора

Когда сигнал V x =0V, транзистор T2 закрыт, а транзистор T1 открыт. Следовательно, V f =5V, и так как T2 закрыт, ток через транзисторы не течет. Когда V x =5V, то T2 открыт, а T1 закрыт. Таким образом, V f =0V, и тока в цепи по прежнему не будет, т.к. транзистор T1 закрыт. Это свойство справедливо для всех CMOS-цепей – логические элементы практически не потребляют ток в статическом режиме. Ток в таких цепях будет протекать только во время переключения элементов (вот почему, с ростом частоты работы устройств, построенных по этой технологии, возрастает и энергопотребление). Вследствие этого, CMOS-схемы стали наиболее популярной технологией при реализации цифровых логических устройств.

Рисунок 1.12 представляет принципиальную электрическую схему логического элемента И-НЕ CMOS. Реализация этого элемента подобна NMOS-схеме, представленной на рисунке 1.5 за исключением того, что токоограничивающий резистор был заменен блоком PUN, состоящим из двух PMOS-транзисторов, соединенных параллельно. Таблица истинности на рисунке показывает состояние каждого из этих четырех транзисторов для каждой логической комбинации вводов x 1 и x 2 . Легко проверить, что данная схема реализует логическую функцию И-НЕ. В статическом состоянии отсутствует путь для протекания тока от V DD к Gnd.

Рисунок 1.12 - CMOS-реализация логического элемента И-НЕ

Схема на рисунке 1.12 может быть получена исходя из логического выражения, которое определяет логическую функцию И-НЕ, . Это выражение определяет состояния, при которых f = 1; следовательно, оно определяет поведение блока PUN. Так как этот блок состоит из PMOS-транзисторов, которые открываются при подаче на их входы логического нуля, входная переменная x i открывает транзистор, если x i =0. По правилу де Моргана мы имеем:

Таким образом f = 1 , когда либо вход x 1 , либо вход x 2 имеют значение логического нуля, что означает что PUN должен иметь два PMOS-транзистора, соединенных параллельно. Блок PDN должен дополнять функцию f, которая имеет вид:

f = x 1 x 2

Функция f = 1 , когда оба входа x 1 и x 2 равны 1, поэтому блок PDN должен иметь два NMOS-транзистора, соединенных последовательно.

Схема для CMOS-реализации элемента ИЛИ-НЕ может быть получена из логического выражения.




Top