Основы графического представления информации. Определение и основные виды компьютерной графики

Воспроизводящее визуальные свойства каких-либо поверхностей или объектов. В отличие от рисунка, к текстуре не применяются нормы и требования композиции , поскольку текстура сама по себе художественным произведением не является, хотя и может иногда выступать доминантой в художественном произведении.

Текстуру, окрестности всех точек которой визуально подобны друг другу, называют равномерной текстурой (гомогенной текстурой).

Компьютерная графика

В компьютерной графике текстурами часто называют растровые цифровые изображения, содержащие текстурные элементы.

Текстуру часто ошибочно называют фоном. Понятие фона относится к перспективному месту на изображении, заднему плану. Текстура же в этом смысле - это изображение, визуально отображающее совокупность свойств поверхности какого-либо объекта - реального или вымышленного.

Понятия «текстура» и «фактура» применительно к свойствам какой-либо поверхности используются синонимично. Иногда словом "фактура" называют совокупность тактильных свойств, а текстурой - совокупность свойств визуальных. Однако за цифровым графическим изображением таких свойств закрепилось слово «текстура».

Параметры

Размер

Для цифрового художника предпочтительнее использовать текстуры большого размера, даже если результат его работы по размеру меньше, чем сами текстуры. Это связано с эффектом антиалиасинга , возникающем, если пытаться увеличивать текстурное изображение в графическом редакторе. При увеличении с антиалиасингом образуется размытость изображения - результат работы программных алгоритмов вычисления и усреднения цвета - что может существенно снизить качество текстуры на создаваемом изображении. В противоположность этому, при уменьшении большого изображения такие эффекты незаметны. Поэтому текстуры большого размера (англ. high resolution ) более ценны как инструмент художника. Размер текстур, точно так же, как и размеры обычных растровых изображений, измеряют в пикселях .

Тип

Общепринятой классификации текстур по типам не существует, однако все же возможно выделить некоторые типы:

  • По эффектам при замощении : обычные (или шовные) и бесшовные текстуры (англ. Seamless patterns ). Бесшовные текстуры при сочленении не образуют видимого шва, т.е. нарушения текстурного рисунка, поэтому ими можно безболезненно замостить холст сколь угодно большого размера. Бесшовные текстуры часто называют паттернами, что является калькой с англ. pattern - узор. К примеру, в растровом графическом редакторе Adobe Photoshop во многих последних версиях имеются предустановленные бесшовные текстуры для замощения холста.
  • По типу изображаемой текстуры (список неполон):
    • текстуры природных объектов (древесная кора, листья, небо и т.д.);
    • текстуры поверхностей из различных материалов (деревянные, металлические, глиняные, каменные, бумажные поверхности и т.д.);
    • текстуры шума , ветра, царапин, выщербленности, иных повреждений;
    • абстрактные текстуры, на которых не изображены объекты, но имеется более-менее однородный фон

Способы получения

К способам получения текстур относятся:

  • фотографирование объекта, содержащего текстуру, на цифровую фотокамеру, с опциональной пост-обработкой в графическом редакторе;
  • сканирование объекта, содержащего текстуру. Недостаток этого способа в том, что, при превалирующей распространенности сканеров планшетного типа, объемные элементы (к примеру, габаритный деревянный щит) отсканировать трудно или вовсе невозможно;
  • отрисовка текстуры «с нуля» в графическом редакторе. Таким образом создаются, как правило, абстрактные текстуры, которым нет аналога в окружающем мире.

Компью́терная гра́фика (также маши́нная графика ) - область деятельности, в которой компьютеры наряду со специальным программным обеспечением используются в качестве инструмента, как для создания (синтеза) и редактирования изображений, так и для оцифровки визуальной информации , полученной из реального мира, с целью дальнейшей её обработки и хранения.

История

Первые вычислительные машины 40-х годов XX-века ("ABC" (1942), "ENIAC"(1946), "EDSAC" (1949), "МЭСМ" (1950)), разрабатывались и использовались строго для расчетов и не имели отдельных средств для работы с графикой. Однако уже тогда некоторые энтузиасты пытались использовались эти ЭВМ первого поколения на электронных лампах для получения и обработки изображений. Программируя память первых моделей ЭВМ и устройств вывода информации, построенных на основе матрицы электрических ламп, можно было получать простые узоры. Лампы накаливания включались и отключались в определенном порядке, образуя изображения различных фигур.

В конце 40-х и начале 50-х годах , в многих компьютерах стали использовать электронно-лучевые трубки (ЭЛТ) в виде осциллографов, или трубок Вильямса , которые использовались как оперативная память. Теоретически, записывая 0 или 1 в определенном порядке в такую память, на экране можно было отобразить какое-нибудь изображение, но на практике это не использовалось. Однако в 1952 году британский инженер Александр Дуглас (Alexander Shafto "Sandy" Douglas ) написал шуточную программу "OXO " (Крестики-нолики) для программируемого компьютера EDSAC (1949г.), ставшей в истории первой компьютерной игрой. Изображение решетки и нолики с крестиками строилось путем программирования трубки Вильямса или прорисовывалось на соседнем ЭЛТ.

В 50-х годах вычислительные возможности компьютеров и графические возможности периферийных средств не позволяли рисовать высоко детализированные изображения, но давали возможно осуществить посимвольный вывод изображений на экраны мониторов и типовых принтеров. Изображения на этих устройствах строились из алфавитно-цифровых символов (символьная графика , позже пришло название ASCII-графика и ASCII-Art ). Всё просто: разница в плотности алфавитно-цифровых знаков и особенности человеческого зрения: не воспринимать детали изображения c большого расстояния, позволила создавать на компьютере рисунки и псевдографические объекты. Подобные изображения до появления компьютеров на бумаге создавали машинистки на печатных машинках в конце 19 века.

В 1950 году энтузиаст Бенджамин Лапоски (Ben Laposky ), математик, художник и чертежник, начал экспериментировать с экраном осциллографа, создавая сложные динамичные фигуры - осцилионы . Танец света создавался сложнейшими настройками на этом электронно-лучевом приборе. Для запечатления изображений применялись высокоскоростная фотография и особые объективы, позже были добавлены пигментированные фильтры, наполнявшие снимки цветом.

В 1950 году в военном компьютере Whirlwind-I (по русс. Вихрь, Ураган), встроенный в систему SAGE противовоздушной обороны США, впервые был применён монитор - как средство отображения визуальной и графической информации. [ ]

В 1955 году в лаборатории Массачусетского технологического института (MIT) было изобретено световое перо (Light pen) . Световое перо является светочувствительным устройством ввода компьютера, в основном наутилусом, который используется для выбора текста, рисования изображений и взаимодействия с элементами пользовательского интерфейса на экране компьютера или монитора. Перо хорошо работает только с ЭЛТ(CRT)-мониторами из-за того, как такие мониторы сканируют экран, который является одним пикселем за раз, что дает компьютеру способ отслеживать ожидаемое время сканирования электронным лучом и определять положение пера на основе последней метки времени сканирования. На кончике пера находится фотоэлемент, испускающий электронный импульсы и одновременно реагирующий на пиковое свечение, соответствующее моменту прохода электронного луча. Достаточно синхронизировать импульс с положением электронной пушки, чтобы определить, куда именно указывает перо.

Световые перья вовсю использовались в вычислительных терминалах образца 1960-х годов. С появлением ЖК (LCD)-мониторов в 90-х практически перестали использоваться, так как с экранами этих устройств работа светового пера стала невозможной.

В 1957 году инженер Рассел Кирш (Russell A. Kirsch ) из Национального бюро стандартов США изобрел для компьютера SEAC первый сканер и получил на нём первое цифровое изображение - скан-фото маленького ребенка, собственного сына Уолдена (анг. Walden). [ ]

В 60-е годы XX-века начался реальный расцвет компьютерной графики . С приходом новых высокопроизводительных по тем меркам компьютеров с мониторами на основе транзисторов (2-е поколение ЭВМ) и позже микросхем (3-е поколение ЭВМ) машинная графика стала не только сферой энтузиастов, но серьезным научно-практическим направлением развития компьютерных технологий. Появились первые суперкомпьютеры (СВС 6600 и Cray-1 ) позволившие работать не только с быстрыми вычислениями, но с компьютерной графикой на новом уровне.

В 1960 году инженер-дизайнер Ульям Феттер (William Fetter ) из авиастроительной корпорации Боинг (англ. Boeing) впервые ввел термин "Компьютерная графика" . Феттер, рисуя дизайн кабины пилотов самолета на рабочем компьютере, решил в технической документации описать род своей деятельности. В 1964 году Ульям Феттер также создал на компьютере проволочную графическую модель человека и назвал ее "Человек Боинга", он же "Первый человек", которую позже использовали в телерекламе 60-х годов.

В 1962 году программист Стив Рассел (Steve Russell ) из МТИ на компьютере DEC PDP-1 создал отдельную программу с графикой - компьютерную игру «Spacewar! ». Создание игры заняло около 200 человеко-часов . Игра использовала джойстик и обладала интересной физикой с симпатичной графикой. Однако первой компьютерной игрой но без графики можно считать программу Александра Дугласа "OXO" (Крестики-нолики, 1952)

В 1963 году на основе компьютера "TX-2 " американский инженер-программист из МТИ, пионер компьютерной графики, Айвен Сазерленд (Ivan Edward Sutherland ) создал программно-аппаратный комплекс Sketchpad , который позволял рисовать точки, линии и окружности на трубке световым пером . Поддерживались базовые действия с примитивами: перемещение, копирование и др. По сути, это был первый векторный редактор , реализованный на компьютере, ставшим прообразом современных САПР (систем автоматизированного проектирования), например современных AutoCAD или Компас-3D. Также программу можно назвать первым графическим интерфейсом, вышедшем за 10 лет до компьютера Xerox Alto (1973г.), причём она являлась таковой ещё до появления самого термина. Айвен Сазерленд в 1968 году создал прообраз первого компьютерного шлема виртуальной реальности, назвав его "Дамокловым мечом" по аналогии с древнегреческой легендой.

В середине 1960-х гг. появились разработки в промышленных приложениях компьютерной графики. Так, под руководством Т. Мофетта и Н. Тейлора фирма Itek разработала цифровую электронную чертёжную машину (графопостроитель ).

В 1963 году программист из Bell Labs Эдвард Зейджек (Edward E. Zajac ) сделал первую компьютерную анимацию - движение спутника вокруг Земли . Анимация демонстрировала теоретический спутник, который использовал гироскопы, чтобы поддерживать свою ориентацию относительно Земли. Вся компьютерная обработка была сделана на компьютерах серий IBM 7090 или 7094 с использование программы ORBIT. [ ]

В последующие годы выходят и другие, но более сложные и значимые анимации: "Tesseract" (Тессеракт он же гиперкуб, 1965г.) Майкла Нолла из «Bell Labs», "Hummengbird" (Колибри, 1967г.) Чарльза Цури и Джеймса Шаферса, "Кошечка" (1968г.) Николая Константинова, "Metadata" (Метаданные, 1971г.) Питера Фолдерса и т..д.

В 1964 году выпущен IBM 2250 , первый коммерческий графический терминал для мейнфрейма IBM/360.

В 1964 году компания General Motors совместно с IBM представила систему автоматизированного проектирования DAC-1.

В 1967 году профессор Дуглас Энгельбарт (Douglas Carl Engelbart ) сконструировал первую компьютерную мышь (указатель XY-координат) и показал ее возможности на выставке в городе Сан-Франциско в 1968 году.

В 1967 году сотрудник IBM Артур Аппель описывает алгоритм удаления невидимых ребер (в том числе и частично скрытых), позднее названный лучевым кастингом , отправной точкой современной 3D-графики и фотореализма.

В том же 1968 году [ ] существенный прогресс компьютерная графика испытала с появлением возможности запоминать изображения и выводить их на компьютерном дисплее , электронно-лучевой трубке . Появились первые растровые мониторы.

В 70-х годах компьютерная графика получила новый рывок в развитии. Появились первые цветные мониторы и цветная графика. Суперкомпьютеры с цветными дисплеями стали использоваться для создания спецэффектов в кино (фантастическая эпопея 1977 года "Звездные войны " режиссера Джорджа Лукаса, фантастический ужастик "Чужой" (анг. "Alien") киностудии XX-век Fox и режиссера Ридли Скотта , и позже недооцененный научно-фантастический фильм 1982 года «Трон» (англ. Tron) студии Walt Disney и режиссёра Стивена Лисбергера ). В этот период компьютеры стали еще более быстродействующими, их научили рисовать 3D-изображения, возникла трехмерная графика и новое направление визуализации - фрактальная графика. Появились персональные компьютеры с графическими интерфейсами, использующие компьютерную мышь (Xerox Alto (1973г.)).

В 1971 году математик Анри Гуро, в 1972 году Джим Блинн и в 1973 году Буй Туонг Фонг разработали модели затенения , позволившая графике выйти за рамки плоскости и точно отобразить глубину сцены. Джим Блинн стал новатором в области внедрения карт рельефа, техники моделирования неровных поверхностей. А Алгорим Фонга впоследствии стал основным в современных компьютерных играх.

В 1972 году пионер компьютерной графики Эдвин Катмулл (Edwin Catmull ) создал первое 3D-изображение - проволочную и текстурированную модель собственной левой руки.

В 1975 году французский математик Бенуа Мандельброт (Benoît B. Mandelbrot ), программируя компьютер модели IBM, построил на нем изображение результатов вычисления комплексной математической формулы (множество Мандельброта), и в результате анализа полученных повторявших закономерностей дал красивым изображениям название - фрактал (с лат. дробный, разбитый). Так возникла фрактальная геометрия и новое перспективное направление в компьютерной графике - фрактальная графика .

В конце 70-х годах , с появлением персональных компьютеров (4-го поколения - на микропроцессорах), графика с промышленных систем перешла на конкретные рабочие места и в дома простых пользователей. Зародилась индустрия видеоигр и компьютерных игр. Первым массовым персональным компьютером с цветной графикой стал ПК Apple II (1977г.), позже Apple Macintosh (1984г.)

В 80-х годах , с развитием видеосистемы персональных компьютеров IBM PC (1981г. ) графика становилась более детализированной и цветопередающей (повысилось разрешение изображений и расширилась цветовая палитра). Появились первые видеостандарты MDA, CGA, EGA,VGA, SVGA. Разработаны первые стандарты файловых графических форматов, например GIF (1987), Возникло графическое моделирование...

Текущее состояние

Основные области применения

Научная графика - первые компьютеры использовались лишь для решения научных и производственных задач. Чтобы лучше понять полученные результаты, производили их графическую обработку, строили графики, диаграммы, чертежи рассчитанных конструкций. Первые графики на машине получали в режиме символьной печати. Затем появились специальные устройства - графопостроители (плоттеры) для вычерчивания чертежей и графиков чернильным пером на бумаге. Современная научная компьютерная графика дает возможность проводить вычислительные эксперименты с наглядным представлением их результатов.

Деловая графика - область компьютерной графики, предназначенная для наглядного представления различных показателей работы учреждений. Плановые показатели, отчётная документация, статистические сводки - вот объекты, для которых с помощью деловой графики создаются иллюстративные материалы. Программные средства деловой графики включаются в состав электронных таблиц.

Конструкторская графика используется в работе инженеров-конструкторов, архитекторов, изобретателей новой техники. Этот вид компьютерной графики является обязательным элементом САПР (систем автоматизации проектирования). Средствами конструкторской графики можно получать как плоские изображения (проекции, сечения), так и пространственные трёхмерные изображения.

Иллюстративная графика - это произвольное рисование и черчение на экране монитора. Пакеты иллюстративной графики относятся к прикладному программному обеспечению общего назначения. Простейшие программные средства иллюстративной графики называются графическими редакторами.

Художественная и рекламная графика - ставшая популярной во многом благодаря телевидению. С помощью компьютера создаются рекламные ролики, мультфильмы, компьютерные игры, видеоуроки, видеопрезентации. Графические пакеты для этих целей требуют больших ресурсов компьютера по быстродействию и памяти. Отличительной особенностью этих графических пакетов является возможность создания реалистических изображений и «движущихся картинок». Получение рисунков трёхмерных объектов, их повороты, приближения, удаления, деформации связано с большим объёмом вычислений. Передача освещённости объекта в зависимости от положения источника света, от расположения теней, от фактуры поверхности, требует расчётов, учитывающих законы оптики.

Пиксель арт Пиксельная графика, большая форма цифрового искусства, создается с помощью программного обеспечения для растровой графики, где изображения редактируются на уровне пикселей. В увеличенной части изображения отдельные пиксели отображаются в виде квадратов и их легко увидеть. В цифровых изображениях пиксель (или элемент изображения) - это отдельная точка в растровом изображении. Пиксели размещаются на регулярной двумерной сетке и часто представлены точками или квадратами. Графика в большинстве старых (или относительно ограниченных) компьютерных и видеоигр, графические калькуляторные игры и многие игры для мобильных телефонов - в основном пиксельная графика.

Компьютерная анимация - это получение движущихся изображений на экране дисплея. Художник создает на экране рисунки начального и конечного положения движущихся объектов, все промежуточные состояния рассчитывает и изображает компьютер, выполняя расчёты, опирающиеся на математическое описание данного вида движения. Такая анимация называется мультипликация по ключевым кадрам . Так же существуют другие различные виды компьютерной анимации: процедурная анимация , шейповая анимация , программируемая анимация и анимация, где художник сам отрисовывает все кадры "вручную". Полученные рисунки, выводимые последовательно на экран с определённой частотой, создают иллюзию движения.

Мультимедиа - это объединение высококачественного изображения на экране компьютера со звуковым сопровождением. Наибольшее распространение системы мультимедиа получили в области обучения, рекламы, развлечений.

Научная работа

Компьютерная графика является также одной из областей научной деятельности. В области компьютерной графики защищаются диссертации, а также проводятся различные конференции:

  • конференция Siggraph , проводится в США
  • конференции Eurographics , проводятся ассоциацией Eurographics ежегодно в странах Европы
  • конференция Графикон , проводится в России
  • CG-событие , проводится в России
  • CG Wave 2008 , CG Wave, проводится в России

Техническая сторона

По способам задания изображений графику можно разделить на категории:

Двухмерная графика

Двухмерная (2D - от англ. two dimensions - «два измерения») компьютерная графика классифицируется по типу представления графической информации, и следующими из него алгоритмами обработки изображений. Обычно компьютерную графику разделяют на векторную и растровую, хотя обособляют ещё и фрактальный тип представления изображений.

Векторная графика

Вместе с тем, не всякое изображение можно представить как набор из примитивов. Такой способ представления хорош для схем, используется для масштабируемых шрифтов, деловой графики, очень широко используется для создания мультфильмов и просто роликов разного содержания.

Растровая графика

Пример растрового рисунка

Фрактальная графика

Фрактальное дерево

CGI графика

CGI (англ. computer-generated imagery , букв. «изображения, созданные компьютером») - изображения, получаемые компьютером на основе расчета и использующиеся в изобразительном искусстве , печати , кинематографических спецэффектах , на телевидении и в симуляторах . Созданием движущихся изображений занимается компьютерная анимация , представляющая собой более узкую область графики CGI.

Представление цветов в компьютере

Для передачи и хранения цвета в компьютерной графике используются различные формы его представления. В общем случае цвет представляет собой набор чисел, координат в некоторой цветовой системе.

Стандартные способы хранения и обработки цвета в компьютере обусловлены свойствами человеческого зрения. Наиболее распространены системы RGB для дисплеев и CMYK для работы в типографском деле.

Иногда используется система с большим, чем три, числом компонент. Кодируется спектр отражения или испускания источника, что позволяет более точно описать физические свойства цвета. Такие схемы используются в фотореалистичном трёхмерном рендеринге.

Реальная сторона графики

Любое изображение на мониторе, в силу его плоскости, становится растровым, так как монитор это матрица, он состоит из столбцов и строк. Трёхмерная графика существует лишь в нашем воображении, так как то, что мы видим на мониторе - это проекция трёхмерной фигуры, а уже создаём пространство мы сами. Таким образом, визуализация графики бывает только растровая и векторная, а способ визуализации это только растр(набор пикселей), а от количества этих пикселей зависит способ задания изображения.

Пациент надевает шлем, садится в кресло с вибрирующими элементами и видит себя сидящим в салоне само­лёта у иллюминатора, выглянув в который может лицезреть удаляющуюся взлётную полосу. Рейс сопро­вождается натуральными звуками, среди которых есть и тревожные, вроде остановки двигателей - эти эффек­ты необходимо использовать, но с большой осторожностью.

Одна из широко распространенных областей применения виртуальной реальности - игровая индустрия

Чтобы обуздать сопротивление виртуального мира, проще всего выпустить его "наружу", в предметную реаль­ность. И тогда можно будет свободно, без интерфейсных оговорок, передвигаться по кибернетическому про­странству. Такая система представляет собой миллиар-ды искусственных разумов, объединённых в единую ней-рокибернетическую сеть, рядом с которой Интернет покажется детской игрушкой.

Компьютерный дизайн. Тема № 9

Компьютерное моделирование является одним из эффективных методов изучения физических систем. Часто компьютерные модели проще и удобнее исследовать, они позволяют проводить вычислительные эксперименты, реальная постановка которых затруднена или может дать непредсказуемый результат. Логичность и формализованность компьютерных моделей позволяет выявить основные факторы, определяющие свойства изучаемых объектов, исследовать отклик физической системы на изменения ее параметров и начальных условий.

К омпьютерное моделирование требует абстрагирования от конкретной природы явлений, построения сначала качественной, а затем и количественной модели.

К основным этапам компьютерного моделирования относятся: постановка задачи, определение объекта моделирования; разработка концептуальной модели, выявление основных элементов системы и элементарных актов взаимодействия; формализация, то есть переход к математической модели; создание алгоритма и написание программы; планирование и проведение компьютерных экспериментов; анализ и интерпретация результатов.

Р азличают аналитическое и имитационное моделирование. Аналитическими называются модели реального объекта, использующие алгебраические, дифференциальные и другие уравнения, а также предусматривающие осуществление однозначной вычислительной процедуры, приводящей к их точному решению. Имитационными называются математические модели, воспроизводящие алгоритм функционирования исследуемой системы путем последовательного выполнения большого количества элементарных операций.

Двухмерная графика

Двухмерная (2D - «два измерения») компьютерная графика классифицируется по типу представления графической информации, и следующими из него алгоритмами обработки изображений. Обычно компьютерную графику разделяют на векторную и растровую, хотя обособляют ещё и фрактальный тип представления изображений.

Векторная графика

Векторная графика представляет изображение как набор геометрических примитивов. Обычно в качестве них выбираются точки, прямые, окружности, прямоугольники, а также как общий случай, кривые некоторого порядка. Объектам присваиваются некоторые атрибуты, например, толщина линий, цвет заполнения. Рисунок хранится как набор координат, векторов и других чисел, характеризующих набор примитивов. При воспроизведении перекрывающихся объектов имеет значение их порядок.

Изображение в векторном формате даёт простор для редактирования. Изображение может без потерь масштабироваться, поворачиваться, деформироваться, также имитация трёхмерности в векторной графике проще, чем в растровой.

Растровая графика

Растровая графика всегда оперирует двумерным массивом (матрицей) пикселей. Каждому пикселю сопоставляется значение - яркости, цвета, прозрачности - или комбинация этих значений. Растровый образ имеет некоторое число строк и столбцов.

Без особых потерь растровые изображения можно только лишь уменьшать, хотя некоторые детали изображения тогда исчезнут навсегда, что иначе в векторном представлении. Увеличение же растровых изображений оборачивается «красивым» видом на увеличенные квадраты того или иного цвета, которые раньше были пикселями.

В растровом виде представимо любое изображение, однако этот способ хранения имеет свои недостатки: больший объём памяти, необходимый для работы с изображениями, потери при редактировании.

Фрактальная графика

Фрактал - объект, отдельные элементы которого наследуют свойства родительских структур. Поскольку более детальное описание элементов меньшего масштаба происходит по простому алгоритму, описать такой объект можно всего лишь несколькими математическими уравнениями.

Фракталы позволяют описывать целые классы изображений, для детального описания которых требуется относительно мало памяти. С другой стороны, фракталы слабо применимы к изображениям вне этих классов.

Трёхмерная графика - раздел компьютерной графики, совокупность приемов и инструментов (как программных, так и аппаратных), предназначенных для изображения объёмных объектов.

Трёхмерное изображение на плоскости отличается от двумерного тем, что включает построение геометрической проекции трёхмерной модели сцены на плоскость (например, экран компьютера) с помощью специализированных программ (однако, с созданием и внедрением 3D-дисплеев и 3D-принтеров, трёхмерная графика не обязательно включает в себя проецирование на плоскость). При этом модель может как соответствовать объектам из реального мира (автомобили, здания, ураган, астероид), так и быть полностью абстрактной (проекция четырёхмерного фрактала).

Трёхмерная графика активно применяется для создания изображений на плоскости экрана или листа печатной продукции в науке и промышленности, например в системах автоматизации проектных работ (САПР; для создания твердотельных элементов: зданий, деталей машин, механизмов), архитектурной визуализации (сюда относится и так называемая «виртуальная археология»), в современных системах медицинской визуализации.

Самое широкое применение - во многих современных компьютерных играх.

Также как элемент кинематографа, телевидения, печатной продукции.

Трёхмерная графика обычно имеет дело с виртуальным, воображаемым трёхмерным пространством, которое отображается на плоской, двухмерной поверхности дисплея или листа бумаги. В настоящее время известно несколько способов отображения трехмерной информации в объемном виде, хотя большинство из них представляет объёмные характеристики весьма условно, поскольку работают со стереоизображением. Из этой области можно отметить стереоочки, виртуальные шлемы, 3D-дисплеи, способные демонстрировать трехмерное изображение. Несколько производителей продемонстрировали готовые к серийному производству трёхмерные дисплеи. Однако и 3D-дисплеи по-прежнему не позволяют создавать полноценной физической, осязаемой копии математической модели, создаваемой методами трехмерной графики. Развивающиеся с 1990-х годов технологии быстрого прототипирования ликвидируют этот пробел. Следует заметить, что в технологиях быстрого прототипирования используется представление математической модели объекта в виде твердого тела (воксельная модель).

Для получения трёхмерного изображения на плоскости требуются следующие шаги:

Моделирование - создание трёхмерной математической модели сцены и объектов в ней;

Текстурирование - назначение поверхностям моделей растровых или процедурных текстур (подразумевает также настройку свойств материалов - прозрачность, отражения, шероховатость и пр.);

Освещение - установка и настройка источников света;

Анимация (в некоторых случаях) - придание движения объектам;

Динамическая симуляция (в некоторых случаях) - автоматический расчёт взаимодействия частиц, твёрдых/мягких тел и пр. с моделируемыми силами гравитации, ветра, выталкивания и др., а также друг с другом;

Рендеринг (визуализация) - построение проекции в соответствии с выбранной физической моделью;

вывод полученного изображения на устройство вывода - дисплей или принтер.

В документы Microsoft Word можно вставлять два типа графических объектов: рисунки и изображения. На русском языке разница между этими терминами неочевидна, и мы поясним, что под ними понимается в текстовом процессоре Word. Рисунки - объекты векторной природы (линии, прямые и кривые, геометрические фигуры, стандартные и нестандартные). Простейшие средства для их создания есть в самом текстовом процессоре.

Изображения - растровые объекты. Текстовый процессор не имеет средств для их создания, поэтому они вставляются как внешние объекты из файла, подготовленного другими средствами (графическим редактором, с помощью сканера, цифровой фотокамеры, графического планшета).

Когда графический объект напечатан на бумаге (в книге, газете, журнале), нам совершенно все равно, какую природу он имеет: векторную или растровую. Но когда этот объект создается, хранится или обрабатывается на компьютере, разница очень заметная. Дело в том, что эти типы объектов обладают разными наборами свойств, и потому при работе с ними используются разные программные средства. Характерный пример растрового изображения - обычная фотография. Ни одна линия, ни одна фигура на фотографии не имеет собственных свойств - все они состоят из точек. Только точки в растровом изображении имеют уникальные свойства, по которым их можно отличить друг от друга. Для точек этих свойств немного - координаты точки, размер точки, форма точки и цвет точки. Важнейшим из них является цвет. Только благодаря тому, что каждая точка фотографического изображения имеет некий цвет, мы получаем информацию об объекте съемки при рассмотрении фотографии.

Характерный пример векторного изображения - чертеж. Его можно рассматривать как совокупность линий, имеющих уникальные и различимые свойства. Линии обладают толщиной, цветом, формой, типом (сплошная, пунктирная и т. п.), заливкой (только если линия замкнутая). Точки в векторном изображении неразличимы. Мы знаем, что все линии состоят из бесконечного количества точек, но не рассмат­риваем их свойства.

В растровой графике, где линия является совокупностью конечного количества точек, она может быть многоцветной, поскольку каждая точка может обладать цветом. В векторной графике многоцветных линий быть не может - это один объект, обладающий одним свойством цвета.

ª В растровых объектах решающую роль играет цвет, а форма - условна. Рассмотрев прямую линию на фотографии с помощью увеличительно стекла, можно легко убедиться, что она отнюдь не прямая. В векторных объектах форма линий играет решающую роль, а цвет - условен.

В терминологии программы Microsoft Word векторные объекты называются рисунками (pictures ), а растровые - изображениями (images ). Рисунки всегда внедрены в документ - их можно редактировать непосредственно по месту. Изображения вставляют в документ методом связывания или внедрения. Их редактирование средствами текстового процессора невозможно, но возможно управление их положением и их визуализацией. Под визуализацией понимается метод отображения с учетом яркости и контрастности.

В век информационных технологий компьютерная графика получила широкое распространение во всем мире. Почему она так популярна? Где она применяется? И вообще, что такое компьютерная графика? Давайте разберемся!

Компьютерная графика: что такое?

Проще всего - это наука. Кроме того, это один из разделов информатики. Он изучает способы обработки и форматирования графического изображения с помощью компьютера.

Уроки компьютерной графики на сегодняшний день существуют и в школах, и в высших учебных заведениях. И трудно сегодня найти область, где она не была бы востребована.

Также на вопрос: «Что такое компьютерная графика?» - можно ответить, что это одно из многих направлений информатики и, кроме того, относится к наиболее молодым: оно существует около сорока лет. Как и всякая иная наука, она имеет свой определенный предмет, цели, методы и задачи.

Какие задачи решает компьютерная графика?

Если рассматривать этот раздел информатики в широком смысле, то можно увидеть, что средства компьютерной графики позволяют решать следующие три типа задач:

1) Перевод словесного описания в графическое изображение.

2) Задача распознавания образов, то есть перевод картинки в описание.

3) Редактирование графических изображений.

Направления компьютерной графики

Несмотря на то что сфера применения этой области информатики, бесспорно, крайне широка, можно выделить основные направления компьютерной графики, где она стала важнейшим средством решения возникающих задач.

Во-первых, иллюстративное направление. Оно является самым широким из всех, так как охватывает задачи начиная от простой визуализации данных и заканчивая созданием анимационных фильмов.

Во-вторых, саморазвивающееся направление: компьютерная графика, темы и возможности которой поистине безграничны, позволяет расширять и совершенствовать свои навыки.

В-третьих, исследовательское направление. Оно включает в себя изображение абстрактных понятий. То есть применение компьютерной графики направлено на создание изображения того, что не имеет физического аналога. Зачем? Как правило, с целью показать модель для наглядности либо проследить изменение параметров и скорректировать их.

Какие существуют виды компьютерной графики?

Еще раз: что такое компьютерная графика? Это изучающий способы и средства обработки и создания графического изображения с помощью техники. Различают четыре вида компьютерной графики, несмотря на то, что для обработки картинки с помощью компьютера существует огромное количество различных программ. Это растровая, векторная, фрактальная и 3-D графика.

Каковы их отличительные черты? В первую очередь виды компьютерной графики различаются по принципам формирования иллюстрации при отображении на бумаге или на экране монитора.

Растровая графика

Базовым элементом растрового изображения или иллюстрации является точка. При условии, что картинка находится на экране, точка называется пикселем. Каждый из пикселей изображения обладает своими параметрами: цветом и расположением на холсте. Разумеется, что чем меньше размеры пикселей и больше их количество, тем лучше выглядит картинка.

Основная проблема растрового изображения - это большие объемы данных.

Второй недостаток растровой графики - необходимость увеличить картинку для того, чтобы рассмотреть детали.

Кроме того, при сильном увеличении происходит пикселизация изображения, то есть разделение его на пиксели, что в значительной степени искажает иллюстрацию.

Векторная графика

Элементарной составляющей векторной графики является линия. Естественно, что в растровой графике тоже присутствуют линии, однако они рассматриваются как совокупность точек. А в векторной графике все, что нарисовано, является совокупностью линий.

Этот тип компьютерной графики идеален для того, чтобы хранить высокоточные изображения, такие как, например, чертежи и схемы.

Информация в файле хранится не как графическое изображение, а в виде координат точек, с помощью которых программа воссоздает рисунок.

Соответственно, для каждой из точек линии резервируется одна из ячеек памяти. Необходимо заметить, что в векторной графике объем памяти, занимаемый одним объектом, остается неизменным, а также не зависит от его размера и длины. Почему так происходит? Потому что линия в векторной графике задается в виде нескольких параметров, или, проще говоря, формулой. Что бы мы ни делали с ней в дальнейшем, в ячейке памяти будут изменяться лишь параметры объекта. Количество ячеек памяти останется прежним.

Таким образом, можно прийти к выводу, что векторные файлы, по сравнению с растровыми, занимают гораздо меньший объем памяти.

Трехмерная графика

3D-графика, или трехмерная графика, изучает методы и приемы создания объемных моделей объектов, максимально соответствующие реальным. Подобные изображения можно рассмотреть со всех сторон.

Гладкие поверхности и разнообразные графические фигуры используются с целью создания объемных иллюстраций. С их помощью художник создает сначала каркас будущего объекта, а потом поверхность покрывают такими материалами, которые визуально похожи на реальные. Далее делают гравитацию, осветление, свойства атмосферы и прочие параметры пространства, в котором находится изображаемый объект. Затем, при условии, что объект движется, задают траекторию движения и его скорость.

Фрактальная графика

Фракталом называется рисунок, состоящий из одинаковых элементов. Большое количество изображений являются фракталами. К примеру, снежинка Коха, множество Мандельброта, треугольник Серпинского, а также «дракон» Хартера-Хейтчея.

Фрактальный рисунок можно построить либо с помощью какого-либо алгоритма, либо путем автоматического создания изображения, которое осуществляется путем вычислений по заданным формулам.

Модификация изображения происходит при внесении изменений в структуру алгоритма или смене коэффициентов в формуле.

Главным преимуществом фрактальной графики является то, что в сохраняются только формулы и алгоритмы.

компьютерной графики

Однако необходимо заметить, что выделение данных направлений весьма условно. Кроме того, оно может быть детализировано и расширено.

Итак, перечислим основные области компьютерной графики:

1) моделирование;

2) проектирование;

3) отображение визуальной информации;

4) создание пользовательского интерфейса.

Где применяется компьютерная графика?

В инженерном программировании широко используется трехмерная компьютерная графика. Информатика в первую очередь пришла на помощь инженерам и математикам. Средствами трехмерной графики происходит моделирование физических объектов и процессов, например, в мультипликации, компьютерных играх и кинематографе.

Широко применяется при разработке полиграфических и мультимедийных изданий. Очень редко иллюстрации, которые выполняются средствами растровой графики, создаются с помощью компьютерных программ вручную. Зачастую с этой целью пользуются отсканированные изображения, которые художник изготовил на фотографии или бумаге.

В современном мире широко применяются цифровые фото- и видеокамеры с целью ввода растровых фотографий в компьютер. Соответственно, подавляющее большинство которые предназначены для работы с растровой графикой, ориентированы не на создание изображений, а на редактирование и обработку.

Растровые изображения применяются в интернете в том случае, если есть необходимость передать всю цветовую гамму.

А вот программы для работы с векторной графикой, наоборот, чаще всего используются с целью создания иллюстраций, ежели для обработки. Подобные средства нередко используют в издательствах, редакциях, дизайнерских бюро и рекламных агентствах.

Средствами векторной графики гораздо проще решаются вопросы оформительских работ, которые основаны на применении простейших элементов и шрифтов.

Бесспорно, существуют примеры векторных высокохудожественных произведений, однако они являются скорее исключением, чем правилом, по той простой причине, что подготовка иллюстраций средствами векторной графики необычайно сложна.

Для автоматического с помощью математических расчетов созданы программные средства, работающие с факториальной графикой. Именно в программировании, а не в оформлении или рисовании состоит создание факториальной композиции. Факториальная графика редко применяется с целью создания электронного или печатного документа, однако ее нередко используют в развлекательных целях.




Top