Модуляция - чем отличаются виды модуляции AM, ЧМ (FM) и SSB: просто о сложном. Амплитудно-модулированные сигналы и их спектры

Предупреждаю сразу: сильно просто не получится. Слишком уж сложная штука модуляция.

Что бы понять, что такое модуляция, нужно знать, что такое частота, с этого и начнём.
Для примера возьмём качели: частота качания качелей, это число полных колебаний, качелей в секунду.
Полных, это значит что одно колебание, это движение качели от самого крайнего левого положения, вниз, через центр до самого максимального уровня справа и потом опять через центр до того же уровня слева.
Обычные дворовые качели имеют частоту порядка 0,5 герца, значит что полное колебание они совершают за 2 секунды.
Динамик звуковой колонки качается гораздо быстрее, воспроизводя ноту "Ля" первой октавы (440 герц), он совершает 440 колебаний в секунду.
В электрических цепях колебания, это качание напряжения, от максимального положительного значения, вниз, через ноль напряжения до максимального отрицательного значения, вверх, через ноль опять до максимального положительного. Или от максимального напряжения, через некое среднее до минимального, потом опять через среднее, опять до максимального.
На графике (или экране осциллографа) это выглядит так:

Частота колебаний напряжения на выходе радиостанции излучающей несущую на 18 канале сетки C в "европпе" будет 27175000 колебаний в секунду или 27 мегагерц и 175 килогерц (мега - миллион; кило - тысяча).

Что бы сделать модуляцию наглядной, выдумаем два неких сигнала, один частотой 1000Гц, второй 3000Гц, графически они выглядят так:

Заметим, как отображены эти сигналы на графиках слева. Это графики частоты и уровня. Чем больше частота сигнала, тем правее будет изображён на таком графике сигнал, чем больше его уровень (мощность), тем выше линия этого сигнала на графике.

Теперь представим, что оба эти сигнала мы сложили, то есть в готовом виде наш вымышленный тестовый сигнал есть сумма двух сигналов. Как сложили? Очень просто - поставили микрофон и посадили двух людей перед ним: мужика, который кричал на частоте 1000Гц и бабу, которая верещала на 3000Гц, на выходе микрофона мы получили наш тестовый сигнал, который выглядит так:

И вот именно этот тестовый сигнал мы и будем "подавать" на микрофонный вход нашего вымышленного передатчика, изучая что получается на выходе (на антенне) и как всё это влияет на разборчивость и дальность связи.

О модуляции вообще

Модулированный сигнал несущей на выходе любого передатчика в любом случае (при любой модуляции) получается методом сложения или умножения сигнала несущей на сигнал, который нужно передать, например сигнал с выхода микрофона. Разница между модуляциями лишь в том, что умножается, с чем складывается и в какой части схемы передатчика это происходит.
В плане приёма, тут всё сводится к тому, что бы из принятого сигнала выделить то, чем был модулирован сигнал, усилить это и сделать понятным (слышимым, видимым).

Амплитудная модуляция - AM (АМ, амплитудная модуляция)

Как можно видеть, при амплитудной модуляции уровень напряжения колебаний высокой частоты (несущей) напрямую зависит от величины напряжения поступающего с микрофона.
Напряжение на выходе микрофона увеличивается, увеличивается и напряжение несущей на выходе передатчика, то есть больше мощности на выходе, меньше напряжение с микрофона, меньше напряжение на выходе. Когда напряжение на выходе микрофона в некой центральной позиции, то передатчик излучает некую центральную мощность (при АМ модуляции в 100% при тишине перед микрофоном 50% мощности).
Глубиной АМ модуляции называется уровень влияния сигнала с микрофона на уровень выходной мощности передатчика. Если виляние 30% то значит самый сильный отрицательный импульс напряжения с микрофона уменьшит уровень несущей на выходе на 30% от максимальной мощности.
А вот так выглядит спектр сигнала с AM модуляцией (распределение его компонентов по частотам):

По центру, на частоте 27175000 Гц у нас несущая, а ниже и выше по частоте "боковые полосы", то есть суммы сигнала несущей и звуковых частот нашего тестового сигнала:
27175000+1000Гц и 27175000-1000Гц
27175000+3000Гц и 27175000-3000Гц
Сигналы "несущая минус звук" - нижняя боковая полоса, а "несущая плюс звук" - верхняя боковая полоса.
Не трудно заметить, что для передачи информации достаточно только одной боковой полосы, вторая лишь повторяет ту же самую информацию, но только с противоположным знаком попусту расходуя мощность передатчика на излучение этой дублирующей информации в эфир.
Если убрать несущую, которая полезной информации вообще не содержит и одну из боковых полос, то получиться SSB модуляция (по-русски: ОБП) - модуляция с одной боковой полосой и отсутствующей несущей (однополосная модуляция).

SSB модуляция (ОБП, однополосная модуляция)

Вот так выглядит SSB на выходе передатчика:

Видно, что этот сигнал мало чем отличается от АМ модуляции. Оно и понятно, SSB это продолжение AM, то есть SSB создаётся из АМ модуляции, из сигнала которой удаляется не нужная боковая полоса и несущая.
Если же взглянуть на спектр сигнала, то разница очевидна:

Здесь нет ни несущей ни дублирующей боковой полосы (на этом графике показана USB, т.е. однополосная модуляция, где оставлена верхняя боковая полоса, есть ещё и LSB, это когда оставлена нижняя боковая полоса).
Нет несущей, нет дублирующей боковой - вся мощность передатчика уходит только на передачу полезной информации.
Только принять такую модуляцию на обычный АМ приёмник невозможно. Для приёма нужно восстановить "отправную точку" - несущую. Сделать это просто - частота на которой работает передатчик известна, значит нужно лишь добавить несущую такой же частоты и отправная точка появиться. Любопытный читатель наверно уже заметил, что если не известна частота передатчика, то отправная точка будет не правильная, мы добавим не ту несущую, что же мы при этом услышим? А услышим мы при этом голос или "быка" или "гномика". Произойдёт это потому, что приёмник в данном виде модуляции не знает, какие частоты были у нас изначально, то ли это были 1000Гц и 3000Гц, то ли 2000Гц и 4000Гц, то ли 500Гц и 2500Гц - "расстояния" то между частотами верные, а вот начало сместиться, как результат или "пи-пи-пи" или "бу-бу-бу".

CW модуляция (телеграф)

С телеграфом всё просто - это сигнал 100% АМ модуляция, только резкая: или сигнал есть на выходе передатчика или сигнала нет. Нажат телеграфный ключ - есть сигнал, отпущен - нет ничего.
Выглядит на графиках телеграф вот так:

Соответственно спектр телеграфного сигнала:

То есть частота несущей 100% промодулирована нажатиями на телеграфный ключ.
Почему на спектре 2 палочки немного отступая от сигнала "центральной частоты" а не одна единственная - несущей?
Здесь всё просто: как бы то ни было, телеграф это АМ, а АМ это сумма сигналов несущей и модуляции, так как телеграф (морзянка), это серия нажатий на ключик то это тоже колебания с некоторой но частотой, пусть и низкой по сравнению со звуком. Именно на частоту нажатия на ключик и отступают боковые полосы телеграфного сигнала от несущей.
Как передавать такие сигналы?
В простейшем случае - нажимая на кнопку передачи во время молчания перед микрофоном.
Как принимать такие сигналы?
Для приёма нужно несущую, появляющуюся в эфире в такт нажатиям на ключ, превратить в звук. Методов много, самый простой - подключить к выходу детектора АМ приёмника схему, которая пикает каждый раз как на детекторе появляется напряжение (т.е. на детектор поступает несущая). Более сложный и разумный способ - смешать сигнал поступающий из эфира с сигналом генератора (гетеродина) встроенного в приёмник, а разность сигналов подать на усилитель звука. Так если частота сигнала в эфире 27175000Гц, частота генератора приёмника 27174000, то на вход усилителя звуковой частоты поступит сигнал 27175000+27174000=54349000Гц и 27175000-27174000=1000Гц, естественно первый из них не звуковой а радиосигнал, его усилитель звука не усилит, а вот второй, 1000Гц, это уже слышимый звук и его он усилит и мы услышим "пииии", пока есть в эфире несущая и тишину (шумы эфира) когда нет.
Кстати, когда включаются двое на передачу одновременно, эффект "пииии" возникающий от сложения и вычитания несущих в приёмнике, думаю, замечали многие. То что слышно - разница между сигналами несущих возникающая в нашем приёмнике.

FM модуляция (ЧМ, частотная модуляция)

Собственно суть частотной модуляции проста: частота несущей в такт напряжению на выходе микрофона немного меняется. Когда напряжение на микрофоне увеличивается, увеличивается и частота, когда уменьшается напряжение на выходе микрофона, то уменьшается и частота несущей.
Уменьшение и увеличение частоты несущей происходит в небольших пределах, например для Си-Би радиостанций это плюс/минус 3000Гц при частоте несущей порядка 27000000Гц, для радиовещательных станций FM диапазона, это плюс/минус 100000Гц.
Параметр ЧМ модуляции - индекс модуляции. Соотношение звука максимальной частоты которую пропустит микрофонный усилитель передатчика к максимальному изменению частоты несущей при самом громком звуке. Не трудно заметить, что для Си-Би это 1 (или 3000/3000), а для вещательных станций FM это примерно 6 ... 7 (100000/15000).
При ЧМ модуляции несущая по уровню (мощность сигнала передатчика) всегда постоянна, она не меняется от громкости звуков перед микрофоном.
В графическом виде, на выходе передатчика ЧМ модуляция выглядит так:

При ЧМ модуляции, как и при АМ на выходе передатчика есть и несущая и две боковые полосы, так как частота несущей болтается в такт модулирующему сигналу, отступая от центра:

DSB, ДЧТ, фазовая и другие виды модуляции

Справедливости ради, нужно отметить, что существуют и другие виды модуляции несущей:
DSB - две боковые полосы и отсутствующая несущая. DSB, по сути АМ модуляция у которой удалена (вырезана, подавлена) несущая.
ДЧТ - двухчастотный телеграф, по сути, есть не что иное, как частотная модуляция, но нажатиями телеграфного ключа. Например, точке соответствует сдвиг несущей на 1000Гц, а тире на 1500Гц.
Фазовая модуляция - модуляция фазы несущей. Частотная модуляция при малых индексах 1-2 по сути есть фазовая модуляция.

В некоторых системах (телевидение, FM стерео радиовещание) модуляция несущей осуществляется ещё одной промодулированной несущей, а она уже и несёт полезную информацию.
Например, упрощённо, FM стерео вещательный сигнал, это несущая промодулированная частотной модуляцией, сигналом который сам есть несущая промодулированная DSB модуляций, где одна боковая - это сигнал левого канала, а другая боковая полоса это сигнал правого канала звука.

Важные аспекты приёма и передачи сигналов АМ, ЧМ и SSB

Так как АМ и SSB это модуляции, у которых выходной сигнал передатчика пропорционален напряжению, поступающему с микрофона, то важно, что бы он линейно усиливался, как на приёмной, так и на передающей стороне. То есть если усилитель усиливает в 10 раз, то при напряжении на его входе 1 вольт на выходе должно быть 10 вольт, а при 17 вольтах на входе на выходе должно быть точно 170 вольт. Если усилитель будет не линеен, то есть при напряжении на входе 1 вольт усиление 10 и на выходе 10 вольт, а при 17 вольтах на входе усиление окажется лишь 5 и на выходе будет 85 вольт, то появятся искажения - хрипы и хрюки при громких звуках перед микрофоном. Если усиление будет наоборот меньше для малых входных сигналах, то будут хрипы при тихих звуках и неприятные призвуки даже при громких (потому что в начале своего колебания любой звук проходит зону близкую к нулю).
Особенна важна линейность усилителей для SSB модуляции.

Для выравнивания уровней сигналов в приёмниках АМ и SSB используются специальные узлы схемы - автоматические регуляторы усиления (схемы АРУ). Задача АРУ выбирать такое усиление узлов приёмника, что бы и сильный сигнал (от близкого корреспондента) и слабый (от удалённого), в конце концов, оказались примерно одинаковыми. Если АРУ не использовать, то слабые сигналы будут слышны тихо-тихо, а сильные разорвут излучатель звука приёмника в клочки, как капля никотина разрывает хомяка. Если же АРУ будет слишком быстро реагировать на изменение уровня, то она начнёт не просто выравнивать уровни сигналов от близких и далёких корреспондентов, но и внутри сигнала "душить" модуляцию - уменьшая усиление при повышении напряжения и повышая при понижении, сводя всю модуляцию к немодулированному сигналу.

Для ЧМ модуляции не требуется особой линейности усилителей, при ЧМ модуляции информацию несёт изменение частоты и никакое искажение или ограничение уровня сигнала не может изменить частоту сигнала. Собственно в приёмнике ЧМ вообще обязательно установлен ограничитель уровня сигнала, так как уровень не важен, важна частота, а изменение уровня будет только мешать выделить изменения частоты и превратить ЧМ несущую в звук сигнала, которым она промодулирована.
К слову сказать, именно из-за того, что в ЧМ приёмнике все сигналы ограничиваются, то есть слабые шумы имеют почти тот же уровень, что и сильный полезный сигнал, в отсутствии сигнала ЧМ детектор (демодулятор) так сильно шумит - он пытается выделить изменение частоты шумов на входе приёмника и шумов самого приёмника, а в шумах изменение частоты сильно велико и случайно, вот и слышны случайные сильные звуки: громкий шум.
В АМ и SSB приёмнике шума при отсутствии сигнала меньше, так как сам шум приёмника по уровню всё же мал и шумы на входе по сравнению с полезным сигналом по уровню малы, а для AM и SSB важен именно уровень.

Для телеграфа тоже не очень важна линейность, там информацию несёт само наличие или отсутствие несущей, а её уровень лишь побочный параметр.

ЧМ, АМ и SSB на слух

В сигналах АМ и SSB гораздо заметнее импульсные помехи, такие как треск неисправного зажигания автомобилей, щелчки грозовых разрядов или рокот от импульсных преобразователей напряжения.
Чем слабее сигнал, чем меньше его мощность, тем тише звук на выходе приёмника, а чем сильнее, тем громче. Хотя АРУ и делает своё дело, выравнивая уровни сигналов, но её возможности не бесконечны.
Для SSB модуляции практически невозможно пользоваться шумоподавителем и вообще понять, когда другой корреспондент отпустил передачу, так как при молчании перед микрофоном в SSB передатчик в эфир ничего не излучает - нет несущей, а если перед микрофоном тишина, то нет и боковых полос.

ЧМ сигналы меньше подвержены влиянию импульсных помех, но из-за сильного шума ЧМ детектора в отсутствии сигнала просто невыносимо сидеть без шумоподавителя. Каждое выключение передачи корреспондента в приёмнике сопровождается характерным "пшык" - детектор уже начал переводить шумы в звук, а шумоподавитель ещё не закрылся.

Если слушать АМ на ЧМ приёмник или наоборот, то будет слышно хрюканье, но разобрать о чём речь всё же можно. Если на ЧМ или АМ приёмник послушать SSB, то будет только дикая аудио-каша из "хрю-жу-жу-бжу" и совершенно никакой разборчивости.
На SSB приёмник можно прекрасно послушать CW (телеграф), АМ, а с некоторыми искажениями и ЧМ с малыми индексами модуляции.

Если включаются одновременно две или больше АМ или ЧМ радиостанций на одной частоте, то получается каша из несущих, этакий писк и визг среди которого ничего не разобрать.
Если же включатся два или больше SSB передатчика на одной частоте, то в приёмнике будет слышно всех, кто говорил, так как несущей у SSB нет и биться (смешиваться до свиста) нечему. Слышно всех, так, словно все сидят в одной комнате и разом заговорили.

Если у АМ или ЧМ частота приёмника не точно совпадает с частотой передатчика, то появляются искажения на громких звуках, "подхрипывания".
Если у SSB передатчика частота меняется в такт уровню сигнала (например, аппаратура не тянет по питанию), то в голосе слышно бульканье. Если плавает частота приёмника или передатчика, то звук плавает по частоте, то "бубнит", то "чирикает".

Эффективность видов модуляции - АМ, ЧМ и SSB

Теоретически, подчёркиваю - теоретически, при равной мощности передатчика, дальность связи от вида модуляции будет зависеть так:
АМ = Расстояние * 1
ЧМ = Расстояние * 1
SSB = Расстояние * 2
В той самой теории, энергетически, SSB выигрывает у АМ в 4 раза по мощности, или в 2 раза по напряжению. Выигрыш появляется за счёт того, что мощность передатчика не расходуется на излучение бесполезной несущей и попусту дублирующей информацию второй боковой полосы.
На практике выигрыш меньше, так как мозг человека не привык слышать шумы эфира в паузах между громкими звуками и несколько страдает разборчивость.
ЧМ тоже модуляция "с сюрпризом" - одни умные книги говорят, что АМ и ЧМ одна другой не лучше, а то и вовсе ЧМ хуже, другие утверждают, что при малых индексах модуляции (а это Си-Би и радиолюбительские радиостанции) ЧМ выигрывает у АМ в 1,5 раза. На деле, по субъективному мнению автора ЧМ "пробивнее", чем АМ примерно в 1,5 раза, прежде всего, потому что ЧМ менее подвержена импульсным помехам и качаниям уровня сигнала.

Аппаратура АМ, ЧМ и SSB в плане сложности и переделки одного в другое

Самая сложная аппаратура это SSB.
По сути SSB аппарат с лёгкостью может работать в AM или ЧМ после ничтожно малой переделки.
Переделать АМ или ЧМ приёмопередатчик в SSB почти невозможно (потребуется ввести в схему очень, очень много дополнительных узлов и полностью переделать блок передатчика).
От автора: переделка АМ или ЧМ аппарата в SSB лично мне кажется полным безумием.
SSB аппарат "с нуля" - собирал, но что бы переделать АМ или ЧМ в SSB - нет.

Второй по сложности, это ЧМ аппарат.
По сути ЧМ аппарат уже содержит в приёмнике всё, что нужно для детектирования АМ сигналов, так как у него тоже есть АРУ (автоматическая регулировка усиления) и следовательно детектор уровня принимаемой несущей, то есть по сути полноценный АМ приёмник, только работающий где-то там, внутри (от этой части схемы работает и пороговый шумоподавитель).
С передатчиком будет сложнее, так как почти все его каскады работают в не линейном режиме.
От автора: переделать можно, но никогда в этом не было нужды.

АМ аппаратура самая простая.
Что бы переделать АМ приёмник в ЧМ, потребуется ввести новые узлы - ограничитель и ЧМ детектор. По факту ограничитель и ЧМ детектор, это 1 микросхема и чуть-чуть деталей.
Переделка АМ передатчика в ЧМ значительно проще, так как нужно лишь ввести цепочку, которая будет "болтать" частоту несущей в такт напряжению, поступающему с микрофона.
От автора: пару раз переделывал АМ трансивер в АМ/ЧМ, в частности Си-Би радиостанции "Cobra 23 plus" и "Cobra 19 plus".

В данной статье речь пойдет о спектре сигнала с угловой модуляцией. Сначала рассмотрим однотональную угловую модуляцию, после чего рассмотрим более общий случай при произвольном модулирующем сигнале. Необходимо отметить, что в аналитическом виде можно получить выражение для спектра только в случае однотональной угловой модуляции.

Предварительно приведем некоторые математические соотношения из теории функций Бесселя и комплексных чисел, которые будут нам необходимы при анализе.

В математике доказывается, что функция раскладывается в бесконечный ряд:

(1)

Где - функция Бесселя первого рода целого порядка аргумента , - мнимая единица. Аналогично функция представляется рядом:

Вспомним из теории комплексных функций что:

Где - модулирующий сигнал, - индекс фазовой модуляции, - несущая частота, - случайная начальная фаза несущего колебания. Рассмотрим случай однотональной фазовой модуляции, когда где - частота модулирующего сигнала, - начальная фаза модулирующего сигнала. Тогда

Разложим на три суммы:

Возьмем теперь реальную часть:

(12)

Анализ спектра сигнала с однотональной угловой модуляцией

Теперь разбираемся. Спектр бесконечен и состоит из гармоник кратных частоте модулирующего сигнала вправо и влево от центральной частоты. Амплитуды гармоник зависят от индекса модуляции . При этом пять слагаемых показывают поведение спектра.

Первое слагаемое показывает, что амплитуды четных гармоник ниже центральной частоты равны , при этом фаза этих гармоник равна , при этом каждая четвертая гармоника, начиная со второй (2,6,10,14,18... гармоники) приобретает сдвиг на из-за множителя . Амплитудный и фазовый спектры для первого слагаемого сигнала представлены на рисунке 1 малиновым цветом.

Второе слагаемое показывает амплитуды и фазы нечетных гармоник ниже центральной частоты. Амплитуды нечетных гармоник ниже центральной частоты равны , а фазы . Сдвиг фазы на из-за того, что во вторую сумму входят синусы, а не косинусы. Как и в первом слагаемом каждая четвертая гармоника, начиная с первой (1,5,9,13,17...) приобретает сдвиг на из-за множителя . Амплитудный и фазовый спектры для второго слагаемого сигнала представлены на рисунке 1 синим цветом.

Третье слагаемое показывает гармонику несущей частоты. Ее амплитуда , фаза . На рисунке 1 гармоника центральной частоты — черная.

Четвертое слагаемое показывает амплитуды и фазы четных гармоник выше центральной частоты. Амплитуды такие же как и у четных гармоник ниже центральной частоты, а фазы равны , причем уже известный множитель сдвигает каждую четвертую фазу на , начиная со второй. На рисунке 1 гармоники четвертого слагаемого показаны красным цветом.

И наконец последнее пятое слагаемое соответствует нечетным гармоникам выше центральной. Амплитуды те же что и у нечетных гармоник ниже центральной частоты, фазы равны . Сдвиг фазы на из-за того, что в сумму входят синусы, а не косинусы, ну и конечно же каждая четвертая гармоника сдвинута на начиная с первой. На рисунке 1 гармоники пятого слагаемого показаны зеленым.


Рисунок 1: Амплитудный и фазовый спектры сигнала с фазовой модуляцией при m = 10

Несколько комментариев к рисунку 1. Полоса сигнала с угловой модуляцией по уровню 0,5 (-3 дБ) зависит от индекса модуляции и частоты модулирующего сигнала:

(13)

Где - девиация частоты. Чем выше частота модулирующего сигнала и чем выше индекс модуляции, тем полоса сигнала шире. Из рисунка 1 хорошо видно, что при ровно 10 гармоник справа и слева имеют амплитуду выше половины максимума. На фазовом спектре показаны параллельные прямые проведенные через фазовый спектр касающиеся каждую четвертую гармонику и показывающие сдвиг фаз при изменении номера гармоники. При этом необходимо отметить, что приведенный на рисунке 1 фазовый спектр не учитывается периодичность фазы. Фазовый спектр с учетом периодичности фазы представлен на рисунке 2.


Рисунок 2: Фазовый спектр с учетом периодичности фазы

При этом полученный спектр с однотональной фазовой модуляцией при частоте модулирующего сигнала и индексе модуляции соответствует спектру сигнала с однотональной частотной модуляцией при девиации частоты Таким образом, однотональная фазовая и частотная модуляции неотличимы. Различия будут наблюдаться если частота модулирующего сигнала будет меняться. Рассмотрим это на конкретном примере.

Пусть имеется модулирующий сигнал с частотой 10 кГц.

(14)

Рассмотрим два сигнала - PM сигнал и - FM сигнал. Девиацию фазы при PM зададим , девиацию частоты при FM зададим . Несущую частоту обоих сигналов зададим равной

Амплитудные спектры FM и PM сигналов при данных параметрах приведены на рисунке 3.


Рисунок 3: Спектры FM и PM сигналов при частоте модулирующего сигнала 10 кГц

Амплитудные спектры получились одинаковые, так как при заданных параметрах FM сигнала получаем девиацию фазы FM сигнала как у PM . Таким образом, получили сигналы в полосе 200 кГц с одинаковым количеством гармоник справа и слева от несущей .

Теперь уменьшим частоту модулирующего сигнала в 2 раза, то есть Несущую частоту, а также девиацию частоты и фазы не меняем. Амплитудные спектры в этом случае приведены на рисунке 4.


Рисунок 4: Спектры FM и PM сигналов при частоте модулирующего сигнала 5 кГц

Спектры изменились. Давайте разберемся. Шаг между гармониками уменьшился в 2 раза (по сравнению с рисунком 3), так как шаг между гармониками равен частоте модулирующего сигнала, а она уменьшилась в 2 раза.

Поскольку при FM задается девиация частоты, то полоса FM сигнала не изменилась по сравнению с полосой FM сигнала на рисунке 3. Поскольку девиация частоты и девиация фазы связаны соотношением то девиация фазы при FM выросла в 2 раза за счет уменьшения частоты модулирующего сигнала (девиация частоты при FM не может изменятся).

Действительно, количество гармоник в полосе сигнала FM увеличилось в 2 раза. В PM, наоборот, задается девиация фазы, то есть количество гармоник в спектре, поэтому при уменьшении расстояния между гармониками девиация частоты PM сигнала уменьшается, в данном случае в 2 раза по сравнению с рисунком 3. Спектр PM как бы сжался по оси частот, не изменив формы, а спектр FM наоборот приобретает больше гармоник. Если же еще уменьшить частоту модулирующего колебания например до 2 кГц, то спектр FM останется таким же широким, так как девиация частоты не изменилась, но будет еще более насыщен гармониками, так как девиация фазы будет равна спектр PM же еще более «сожмется» оставив тоже количество гармоник. Девиация частоты при PM будет всего В этом можно убедится рассмотрев рисунок 5.


Рисунок 5: Спектры FM и PM сигналов при частоте модулирующего сигнала 2 кГц

Общий случай спектра сигнала с угловой модуляцией

В случае однотональной угловой модуляции спектр сигнала симметричен, однако в общем случае спектр сигнала с угловой модуляцией не является симметричным. Симметричность спектра возникает в том случае, когда форма модулирующего сигнала сверху и снизу будет одинакова на рисунке приведен пример модулирующего сигнала, угловая модуляция которого приведет к несимметричному относительно центральной частоты спектру. В обоих случаях центральная частота равна 200кГц.



Рисунок 6: Несимметричный спектр FM и PM сигнала


Из рисунка явно видно, что спектры FM и PM сигналов несимметричны относительно 200 кГц, также формы спектров явно различаются. Несимметричность спектров сигналов с угловой модуляцией приводит к тому, что невозможно осуществить однополосную угловую модуляцию.

Выводы

Таким образом, мы получили аналитическое выражение для спектра сигнала с угловой модуляцией рассмотрели разницу FM и PM сигналов при изменении частоты модулирующего сигнала, а также показали несимметричность спектра сигнала с угловой модуляции при произвольном модулирующим сигнале.

Сравним указанные виды модуляции по их двум основным характеристикам: средней за период высокой частоты мощности и ширине спектра.

Для АМ-сигналов средняя за период высокой частоты мощность изменяется, так как изменяется амплитуда сигнала. Эта мощность в максимальном режиме в (1+m АМ ) 2 раз больше мощности молчания. Ширина спектра АМ сигнала зависит от величины максимальной частоты модуляции и равна 2 max .

Для ЧМ-сигналов средняя за период высокой частоты мощность постоянна, так как амплитуда колебаний неизменна (U ω 1 =const ). Ширина спектра ЧМ-сигнала, равна2 ω g , зависит только от амплитуды модулирующего сигнала и не зависит от его частоты.

Для ФМ-колебаний средняя за период высокой частоты мощность также неизменна, ибо U ω 1 =const . Ширина спектра равна2m =2 ω g , и зависит как от амплитуды модулирующего сигнала, так и от его частоты.

Таким образом, практическая ширина спектра колебаний с угловой модуляцией в m раз больше ширины спектра АМ-колебаний.

2.6 Одновременная модуляция по амплитуде и по частоте

В ряде случаев возникает необходимость в передаче двух сообщений с помощью одного носителя. Тогда одним сообщением носитель модулируют по частоте, а другим – по амплитуде. Наиболее простой по составу спектр сигнала с двойной модуляцией получится при гармоническом законе изменения, как частоты, так и амплитуды. Пусть по частоте носитель модулируется сообщением с частотой  1 , а по амплитуде – с частотой 2 . Тогда частота и амплитуда носителя будут изменяться в соответствии с выражениями

Модулированное по частоте напряжение было получено выше при постоянной амплитуде U ω 1 (2.32). При изменении амплитуды в этом выражении следует заменить постоянную амплитудуU ω1 изменяющейся в соответствии с (2.39). Тогда получим:

По сравнению с напряжением, модулированным только по частоте, здесь появляются дополнительные составляющие двух видов:

Чтобы яснее выявить спектральный состав сигнала, предположим сначала, что  1 >> 2 , т.е. изменение амплитуды происходит значительно медленнее, чем изменение частоты. Тогда можно считать, что в спектре частотно-модулированного сигнала около несущего колебания с частотойω 1 и боковых составляющих с частотамиω 1 n  1 появилось дополнительно по два спутника с частотами, отличающимися на 2 . Спектр такого сигнала показан на рисунке 2.14.

Рисунок 2.14 – Спектр сигнала при одновременной модуляции

по частоте и амплитуде при  1 >> 2

Для систем телемеханики интерес представляет второй случай, а именно спектр сигнала при  1 << 2 . Тогда можно считать, что у каждой из трех спектральных линий АМ сигнала (несущей с частотойω 1 , нижней (ω 1 - 2) и верхней (ω 1 + 2) боковых составляющих) появились дополнительно по две боковые дискретные полосы: верхняя с частотами +n 1 и нижняя с частотами -n 1 . Спектр сигнала для этого случая двойной модуляции показан на рисунке 2.15.

Рисунок 2.15 – Спектр сигнала при одновременной модуляции

по частоте и амплитуде при  1 << 2

Практически необходимая ширина спектра сигнала примерно равна сумме необходимых спектров только при амплитудной модуляции ω АМ и только при частотной модуляцииω ЧМ (рисунки 2.14, 2.15). При малом индексе частотной модуляции (m ЧМ <1) необходимая ширина спектра сигнала лишь немногим больше, чем при амплитудной модуляции.

Вопрос 14, 16

При частотной модуляции (ЧМ) изменяется частота гармони­ческого сигнала соответственно значащей позиции сигнала данных. Единичные элементы, соответствующие символам данных 1 и 0, представляются в виде (рис.3.7):

где

Разность называют девиацией частоты, отношение -индексом модуляции, а и - характеристи­ческими частотами. Спектр ЧМ сигнала занимает значительно боль­шую полосу частот, чем при ДМ (естественно при одинаковой скорости передачи).

За счет ограничения спектра возникает переходный процесс как по амплитуде, так и по частоте. Длительность установления частоты от до зависит от отношения где - необходимая полоса частот, устанавливаемая для пере­дачи двоичного ЧМ сигнала. Компромисс между допустимыми иска­жениями и необходимой полосой частот достигается при значени­ях .

Таким образом, необходимая полоса частот для передачи двоичного ЧМ сигнала с допустимыми искажениями определяется выражением

Удельная скорость передачи при m>1 близка к значение 0,5 бит/с*Гц

Установлено, что при m <1 основная энергия сигнала сосредоточена вблизи несущей частоты , поэтому можно достичь удельной скорости передачи 1бит/с*Гц. Например, при

Тогда

Для формирования ЧМ сигнала используются управляемый генератор (УГ), частота которого может изменяться без скачков фазы и со скачками фазы. Реализация ЧМ без разрыва фазы осуществляется непосредственным воздействием первичного сигнала А(t) на частоту генератора несущего колебания. ЧМ с разрывом фазы получается использованием независимых генераторов, наст­роенных на требуемые частоты, и спектр амплитуд модулирован­ного сигнала занимает более широкую полосу частот, чем при формировании без разрыва фазы.

Демодуляция ЧМ сигналов может осуществляться когерентным и некогерентным методом. Последний широко используется при передаче данных с низкой удельной скоростью. Общим принципом демодуляции является частотное детектирование (ЧД) с помощью дискриминаторов, которые преобразуют изменение частоты в из­менение амплитуды.

Так как изменяемым параметром сигнала является частота, то для уменьшения влияния помех применяют ограничители ампли­туд Огр, что существенно повышает помехозащищенность ЧМ по сравнению с АМ. На рис.3.8 представлена структурная схема модема с ЧМ.

Сигнал данных управляет частотой генератора УГ несущего колебания. Подавление побочных продуктов модуляции на передаче и помех на приеме производят соответственно фильтры передачи Ф пер и приема Ф пр. Ограничитель Огр снижает амплитудные иска­жения. Дискриминатор Д преобразует изменения частоты сигнала в изменение амплитуды. Фильтр нижних частот ФНЧ подавляет составляющие преобразованного сигнала частотами и др. Решение о принимаемом сигнале принимается решающим уст­ройством РУ.



Модемы с ЧМ благодаря несложной технической реализации и сравнительно высокой помехозащищенности рекомендованы МККТТ для передачи данных по стандартным каналам ТЧ со скоростью до 1200 бит/с.

Частотной модуляции присущ недостаток - высокая чувстви­тельность к изменению частоты сигнала при передаче по каналу ТЧ

Тая как в дискриминаторе происходит преобразование ЧМ сигнала в AM сигнал, то при неизменном пороге регистрации сдвиг по частоте переходит в сдвиг по длительности, т.е. появляются так называемые искажения типа преобладания «когда длительность посылок одной полярности превосходит длительность посылок дру­гой полярности. На рис.3.9 показана пунктиром передача двухполюсной последовательности сигналов данных ("точек") по кана­лу без изменения частоты сигнала, и сплошной линией - по кана­лу с изменением частоты сигнала на . На рисунке -длительность единичного элемента сигнала данных характеристические частоты.

Для устранения подобного рода искажений в процессе настройки дискретного канала с ЧМ всегда производится регулировка на нейтральность.

Фазовая модуляция

При фазовой модуляции переносчиком информации является изменение фазы гармонического колебания. Единичные элементы представляются в виде:

где - индекс фазовой модуляции;

Начальная фаза.

Соответствие ФМ сигнала символам и сигналам данных пока­зано на рис.3.10.

Как видно на рис.3.10, изменение фазы происходит при каж­дом изменении полярности сигнала данных.

Отметим, что при ФМ принципиальным является жесткое соответствие начальных фаз приемника и передатчика. Однако при похождении ФМ сигнала по каналу ТЧ за счёт изменения фазы передаваемого сигнала (переключения генераторного оборудова­ния каналообразующей аппаратуры) возникает так называемая "обратная работа", когда вместо передаваемого символа 1 при­нимается символ 0. Поэтому на практике ФМ не используется, а применяют ее видоизменение. Советский ученый К.Т.Петрович предложил относительную фазовую модуляцию (ОФМ).

При ОФМ представляющим параметром сигнала, несущим информацию, является изменение фазы при передаче каждого единичного интервала только одной полярности, например, как показано на рис.3.11, положительной. Так, при длительной передаче только положительных посылок частота изменения фазы будет соответство­вать скорости передачи единичных элементов.

Для осуществления ОФМ необходимо единое соответствие между значениями полярности посылок и значениями разности фаз для передатчика и приемника.

Если символу данных 1 соответствует положительная посылка, а символу 0 - отрицательная, то алгоритм модуляции при ОФМ формулируется так: при передаче i-й посылки, соответствующей 1, фаза несущего колебания скачком изменяется на 180° по отношению к фазе предыдущей (i-1)-й посылки, а при передаче по­сылки, соответствующей 0, она остается такой же, что у (i-1)-й посылки.

На рис.3.12 приведены схемы передатчика и приемника, поясняющие принцип формирования и обработки ОФМ - сигналов.

В качестве кодера используется триггер с управляющим на его входе транзистором. При каждой положительной посылке (Rтранз. - высокое) срабатывает триггер и переключает диоды фазового модулятора (т.е. изменяется фаза несущего колебания).

Прием ОФМ - сигнала возможен двумя методами:

  • сравнением фаз;
  • сравнением полярностей,

Чаще применяется первый метод, так как при этом искаже­ние одного единичного элемента приводит к одной ошибке, а при методе сравнения полярностей, если искажена середина единично­го элемента, то возможны и две ошибки.

При методе сравнения фаз в фазовом детекторе (ФД) сравни­ваются на несущей частоте фазы i-го и (i-1)-го единичных элементов. Указанное сравнение осуществляется с помощью элемента памяти линии задержки (ЛЗ), создающего задержку, равную длительности элемента. Такой метод не требует знания начальной фазы сигнала.

Спектр ОФМ сигнала занимает полосу частот такую же, как и при АМ-ДБП (рис.3.6), но отличается значениями амплитудонесущей частоты и боковых частот. Поэтому максимальная удельная скорость передачи равна 1 бит/с Гц.

При ОФМ также можно воспользоваться ограничением одной из боковых полос частот и тем самым получить ОФМ с одной боковой полосой частот ОФМ-ОБП с максимальной удельной скоростью передачи 2 бит/с*Гц.

Модемы с OФM по сравнению с AM и ЧМ реализуются технически более сложно, но зато обладают более высокой помехозащищенностью при одинаковой скорости передачи.

Однако самым важным достоинством ОФМ, обусловившим ее широкое применение, является возможность использования многих значений (крат) фаз и получения многократных ОФМ, например, двукратной - ДОФМ, трехкратной - ТОФМ, и тем самым увеличение скорости передачи в число крат раз.

Вопрос № 14

Баскаков стр. 100 – 101

Вопрос № 16

Вопрос № 17

Устройства, генерирующие автоколебания, называются автоколебательными системами или автогенераторами.

амплитуды, частоты или фазы колебания, может служить причиной возникновения помех в канале радиосвязи. Требование монохроматичности включает в себя также и требование стабильности частоты автоколебания.

Вопрос №18

Баскаков стр. 374-376.

Гоноровский 1986г:

Вопрос № 19

Баскаков стр. 122 – 124

Вопрос №20

Случайные процессы, основные определения.

Случайными сигналами (процессами) называются сигналы, математическим описанием которых являются случайные функции времени. Случайный процесс представляет собой изменения во времени какой-либо физической величины, которые заранее предсказать невозможно.

Случайной называется функция , значения которой при каждом значении аргумента являются случайными величинами. Случайная функция времени , описывающая случайный процесс, в результате опыта может принять ту или иную конкретную форму , неизвестную заранее (рис.1). Эти возможные формы случайной функции называются реализациями случайного процесса.В фиксированный момент времени значения случайного процесса являются случайной величиной с определенным распределением вероятностей. Случайные процессы могут быть непрерывными и дискретными. Реализации первых являются непрерывными функциями времени

Вероятностные характеристики.

Если рассматривать не каждую реализацию в отдельности, а совокупность их большого числа, то окажется, что некоторые средние результаты обладают статистической устойчивостью, т.е. могут быть оценены количественно. Устойчивость средних результатов носит вероятностный характер.

Пусть имеется случайный процесс , который задан совокупностью N реализации (рис. 2). Произведем сечение случайного процесса в некоторый фиксированный момент времени t . Выделим из общего числа N те реализаций, значения которых в момент времени меньше некоторого уровня . При достаточно большом N относительная доля реализации, находящихся в момент времени ниже уровня , будет обладать статистической устойчивостью, т.е. будет оставаться приблизительно постоянной, колеблясь при изменении N и вокруг некоторого среднего значения. Это среднее значение определяет вероятность пребывания значений случайного процесса ниже уровня . Функция ,определяющая вероятность нахождения значений случайного процесса момент времени ниже уровня , называется одномерной интегральной функцией распределения вероятностей случайного процесса. Ее производная, если она существует, называется одномерной плотностью вероятности или дифференциальной функцией распределения случайного процесса.

Введенные функции , и дают представление о процессе лишь для изолированных друг от друга моментов времени . Для более полной характеристики процесса необходимо учитывать статистическую связь между значениями случайного процесса в различные моменты времени. Эту связь для двух моментов времени учитывает двумерная интегральная функция распределения вероятностей определяющая вероятность того, что значения случайного процесса в момент времени , будут находиться ниже уровня , а в момент времени - ниже уровня . Частная производная второго порядка

называется двумерной плотностью вероятностей случайного процесса. Эти функции зависят уже от четырех аргументов.

Аналогично определяются многомерные интегральная и дифференциальная функции распределения случайного процесса

которые зависят от 2n -аргументов.

Если значения случайного процесса при любых значениях t зависимы, то многомерная функция распределения равна произведению одномерных

1. Числовые характеристики случайных сигналов.

Простейшей характеристикой случайного процесса является его среднее значение или математическое ожидание

Дисперсией случайного процесса называется неслучайная функция, значения которой для каждого момента времени t равны, т.е. математическому ожиданию квадрата отклонения случайного процесса от его среднего значения:

Следовательно, дисперсия определяет степень разброса значений случайного процесса около среднего значения. Среднее значение и дисперсия характеризуют поведение случайного процесса в отдельные моменты времени. В качестве характеристики, учитывающей статистическую зависимость между значениями случайного процесса в различные моменты времени, используется корреляционная (иначе - автокорреляционная) функция случайного процесса

определяемая как математическое ожидание от произведения значений процесса в два различных момента времени. Корреляционная функция определяет степень линейной зависимости между значениями случайного процесса в различные моменты времени. На рис. 3.5 и 3.6 показаны соответственно два случайных процесса с сильной и слабой статистической зависимостью их значений в моменты времени и .

Из определения корреляционной функции следует

т.е. она является симметричной относительно начала отсчета времени.

Для совокупности двух случайных и статистическая зависимость между их значениями в различные моменты времени определяется функцией взаимной корреляции

В некоторых случаях вместо корреляционной функции вводится нормированная корреляционная функция или кратко коэффициент корреляции

Свойства плотности вероятности и функции распределения.

Баскаков стр. 144

Вопрос 21

Энергетический спектр случайного процесса, теорема Хинчина-Винера.

Баскаков стр. 164-166

Эффективная ширина спектра, её связь с интервалом корреляции.

Баскаков стр. 169-170

Широкополосные и узкополосные случайные процессы.

Узкополосный случайный процесс – это такой процесс непрерывный спектр, которого сосредоточен около некоторой фиксированной частоты ω 0 .

Δω<< ω 0 Если данное условие не выполняется, то спектр называется широкополосным.

Функции корреляции таких спектров будут существенно отличаться друг от друга.

Белый шум, его функция корреляции.

Баскаков стр. 170.

Вопрос № 22

Прохождение случайных сигналов через линейные инерционные цепи

Рассмотрим линейную инерционную систему с известной передаточной функцией или импульсной реакцией . Пусть на вход такой системы поступает стационарный случайный процесс с заданными характеристиками: плотностью вероятности , корреляционной функцией или энергетическим спектром . Определим характеристики процесса на выходе системы: , и .

Наиболее просто можно найти энергетический спектр процесса на выходе системы. Действительно, отдельные реализации процесса на входе являются детерминированными

функциями, и к ним применим аппарат Фурье. Пусть - усеченная реализация длительности Т случайного процесса на входе, а

(3.4.1)

Ее спектральная плотность. Спектральная плотность реализации на выходе линейной системы будет равна

Энергетический спектр процесса на выходе согласно (3.3.3) будет определиться выражением

(3.4.3)

т.е. будет равен энергетическому спектру процесса на входе, умноженному на квадрат амплитудно-частотной характеристики системы, и не будет зависеть от фазочастотной характеристики.

Корреляционная функция процесса на выходе линейной системы может быть определена как преобразование Фурье от энергетического спектра:

(3.4.4)

Следовательно, при воздействии случайного стационарного процесса на линейную систему на выходе получается также стационарный случайный процесс с энергетическим спектром и корреляционной функцией, определяемыми выражениями (3.4.3) и (3.4.4). Мощность процесса на выходе системы будет равна

(3.4.5)

Плотность распределения вероятности и числовые характеристики сигнала на выходе безынерционной нелинейной цепи.

Баскаков стр. 300 – 302

Прохождение случайных сигналов через нелинейные безинерционные цепи.

Рассмотрим теперь задачу о прохождении случайного процесса через нелинейную систему. В общем случае эта задача весьма сложная, но она значительно упрощается, когда нелинейная система является безынерционной. В безынерционных нелинейных системах значения выходного процесса в данный момент времени определяются значениями входного процесса в тот же самый момент времени. Для нелинейных безынерционных преобразований более простой задачей является определение функций распределения на выходе в гораздо более сложной – определение корреляционной функции или энергетического спектра.

Как отмечалось выше, n - мерная функция распределения случайного процесса по сути дела является функцией распределения n случайных величин, представляющих собой значения случайного процесса в n различных моментов времени, Определение законов распределения функционально преобразованных случайных величин является сравнительно простой задачей.

Лекция № 6 Модулированные сигналы

Под модуляцией понимают процесс (медленный по сравнению с периодом несущего колебания), при котором один или несколько параметров несущего колебания изменяют по закону передаваемого сообщения. Получаемые в процессе модуляции колебания называют радиосигналами.В зависимости от того, какой из названных параметров несущего колебания подвергается изменению, различают два основных вида аналоговой модуляции: амплитудную и угловую. Последний вид модуляции, в свою очередь, разделяется на частотную и фазовую.В современных цифровых системах передачи информации широкое распространение получила квадратурная (амплитудно-фазовая, или фазоамплитуд- ная - ФАМ; amplitude phase modulation) модуляция, при которой одновременно изменяются и амплитуда и фаза сигнала. Этот тип модуляции относят как к аналоговым, так и цифровым видам.

В радиосистемах часто применяются и будут применяться различные виды импульсной и цифровой модуляции, при которой радиосигналы представляются в виде так называемых радиоимульсов.

Радиосигналы с аналоговыми видами модуляции В процессе амплитудной модуляции несущего колебания (1)

его амплитуда должна изменяться по закону: (2)

где U H - амплитуда несущей в отсутствие модуляции; ω 0 - угловая частота; φ 0 - начальная фаза; ψ(t) = ω 0 + φ 0 - полная (текущая или мгновенная) фаза несущей; k А - безразмерный коэффициент пропорциональности; e(t) - модулирующий сигнал. U H (t) в радиотехнике принято называть огибающей амплитудно-модулированного сигнала (АМ-сигнала).

Подставив (2) в (1) получим общую формулу АМ- сигнала (3)

Однотональная амплитудная модуляция если модулирующий сигнал - гармоническое колебание (4)

где Е 0 - амплитуда; Ω = 2π/Т 1 = 2πF - угловая частота модуляции; F -

циклическая частота модуляции; Т 1 - период модуляции; θ 0 - начальная фаза.

Подставив формулу (4) в соотношение (3), получим выражение для АМ-сигнала (5)

Обозначив через ∆U = k A E 0 - максимальное отклонение амплитуды АМ- сигнала от амплитуды несущей U H и проведя несложные выкладки, получим (6)

Коэффициент или глубина амплитудной модуляции.

Спектр АМ-сигнала . Применив в выражении (5) тригонометрическую формулу произведения косинусов, после несложных выкладок получим (7)

Из формулы (7) видно, что при однотональной амплитудной модуляции спектр АМ-сигнала состоит из трех высокочастотных составляющих. Первая из них представляет собой исходное несущее колебание с постоянной амплитудой U H и частотой с ω 0 . Вторая и третья составляющие характеризуют новые гармонические колебания, появляющиеся в процессе амплитудной модуляции и отражающие передаваемый сигнал. Колебания с частотами ω 0 + Ω и ω 0 - Ω называются соответственно верхней (upper sideband - USB) и нижней (lower sideband - LSB) боковыми составляющими.

Реальная ширина спектра АМ-сигнала при однотональной модуляции (8)

На практике однотональные АМ-сигналы используются либо для учебных, либо для исследовательских целей. Реальный же модулирующий сигнал имеет сложный спектральный состав. Математически такой сигнал, состоящий из N гармоник, можно представить тригонометрическим рядом N (10)

Здесь амплитуды гармоник сложного модулирующего сигнала E i произвольны, а их частоты образуют упорядоченный спектр Ω 1 < Ω 2 < ...< Ω i < ...< Ω N . В отличие от ряда Фурье частоты Ω i не обязательно кратны друг другу. Подставляя (10) в (3), после несложных преобразований, получим выражение АМ-сигнала с начальной фазой несущего ф0 = О (11)

(12)

Совокупность парциальных (частичных) коэффициентов модуляции.Эти коэффициенты характеризуют влияние гармонических составляющих модулирующего сигнала на общее изменение амплитуды высокочастотного колебания. Воспользовавшись тригонометрической формулой произведения двух косинусов и проделав несложные преобразования, запишем (11) в виде (13)

Рис. 2. Спектральные диаграммы при модуляции сложным сигналом:

а - модулирующего сигнала; б - АМ-сигнала

Ширина спектра сложного АМ-сигнала равна удвоенному значению наивысшей частоты в спектре модулирующего сигнала Ω N , т. е. (14)

Частотная модуляция

При частотной модуляции (frequency modulation; FM) мгновенное значение несущей частоты ω(t) связано с модулирующим сигналом e(t) зависимостью (15)

здесь k Ч - размерный коэффициент пропорциональности между частотой и напряжением, рад/(В-с).

Полную фазу ЧМ-сигнала в любой момент времени t определим путем интегрирования мгновенной частоты, выраженной через формулу (15),

Рис. 3. Частотная однотональная модуляция:

а - несущее колебание; б - модулирующий сигнал; в - ЧМ-сигнал

Максимальное отклонение частоты от значения ω 0 , или девиация частоты (frequency deviation) при частотной модуляции;

Максимальное отклонение от текущей фазы ω 0 t или девиация фазы несущего колебания называется индексом частотной модуляции (index of frequency modulation). Данный парамер определяет интенсивность колебаний начальной фазы радиосигнала.

С учетом полученных соотношений (1) и (16) частотно-модулированный сигнал запишется в следующем виде:

Спектр ЧМ-сигнала при однотональной модуляции. Преобразуем полученное выражение (17)

Спектр ЧМ-сигнала при m«1 (такую угловую модуляцию называют узкополосной). В этом случае имеют место приближенные равенства: (18)

Подставив формулы (18) в выражение (17), после несложных математических преобразований получим (при начальных фазах модулирующего и несущего колебаний θ 0 = 0 и φ 0 = 0): (19)

Видим, что по аналитической записи спектр ЧМ-сигнала при однотональной модуляции напоминает спектр АМ- сигнала и также состоит из несущего колебания и двух боковых составляющих с частотами (ω 0 + Ω) и (ω 0 - Ω) причем и амплитуды их рассчитываются аналогично (только вместо коэффициента амплитудной модуляции М в формуле для ЧМ-сигнала фигурирует индекс угловой модуляции m). Но есть и принципиальное отличие, превращающее амплитудную модуляцию в частотную, знак минус перед одной из боковых составляющих.

Спектр ЧМ-сигнала при m > 1 . Из математики известно (20) (21)

где J n (m) - функция Бесселя 1 -го рода n-го порядка.

В
теории функций Бесселя доказывается, что функции с положительными и отрицательными индексами связаны между собой формулой (22)

Ряды (20) и (21) подставим в формулу (17), а затем заменим произведение косинусов и синусов полусуммами косинусов соответствующих аргументов. Тогда, с учетом (22), получим следующее выражение для ЧМ-сигнала (23)

Итак, спектр ЧМ-сигнала с однотональной модуляцией при индексе

модуляции m > 1 состоит из множества высокочастотных гармоник: несущего колебания и бесконечного числа боковых составляющих с частотами ω 0 + nΩ. и ω 0 -nΩ, расположенными попарно и симметрично относительно несущей частоты ω 0 .

При этом, исходя из (22), можно отметить, что начальные фазы боковых колебаний с частотами ω 0 + nΩ. и ω 0 -nΩ совпадают, если m - четное число, и отличаются на 180°, если m - нечетное. Теоретически спектр ЧМ- сигнала (так же и ФМ-сигнала) бесконечен, однако в реальных случаях он ограничен. Практическая ширина спектра сигналов с угловой модуляцией

ЧМ- и ФМ-сигналы, применяемые на практике в радиотехнике и связи, имеют индекс модуляции m>> 1, поэтому

Полоса частот ЧМ-сигнала с однотональной модуляцией равна удвоенной девиации частоты и не зависит от частоты модуляции.

Сравнение помехоустойчивости радиосистем с амплитудной и угловой модуляцией. Следует отметить, что радиосигналы с угловой модуляцией имеют ряд важных преимуществ перед амплитудно-модулированными колебаниями.

1. Поскольку при угловой модуляции амплитуда модулированных колебаний не несет в себе никакой информации и не требуется ее постоянства (в отличие от амплитудной модуляции), то практически любые вредные нелинейные изменения амплитуды радиосигнала в процессе осуществления связи не приводят к заметному искажению передаваемого сообщения.

2. Постоянство амплитуды радиосигнала при угловой модуляции позволяет полностью использовать энергетические возможности генератора несущей частоты, который работает при неизменной средней мощности колебаний.




Top