Как работает сеть мобильной связи. Как работает сотовая связь. Услуги сотовой связи

"В любой области науки профессора предпочитают свои собственные
теории истине, потому что их теории - их личная собственность, а истина - всеобщее достояние"
Чарлз Колтон

Принцип построения сети и базовые элементы сети

Изучение любого предмета начинается с основ, что является тем базисом, на котором выстраивается иерархия древа знаний. Без этого любая, даже самая хитрая структура рассыплется, как карточный домик. Только глупцы начинают строить дом с крыши… Хотя если речь идет о метростроителях или шахтерах, то это правило не действует. Но и их работа не сводится к бездумному перебрасыванию земельных недр на железные вагонетки. Один наш знакомый самостоятельно знакомился с каждым событием или формой, начиная с азов. Любой разговор с ним, на самую пустяковую тему мог затянуться на несколько часов. Он тщательно обрабатывал свою жертву, методично накачивая ее мозг максимумом информации о предмете разговора. Иными словами, если бы вы спросили у него о принципе работы эмиттерного повторителя, то изначально вам пришлось бы прослушать часовую лекцию о создании и эволюции полупроводников. Занудство? Большинству из нас может показаться именно так. Однако настоящий фундаментальный подход к знаниям лежит именно в этом. Можно долго и заумно говорить о сложных вещах, но если вы не имеете базовых знаний, то все сказанное так же красиво и быстротечно, как и брызги шампанского. Сегодня мы выстроим определенный базис знаний о сотовой связи. Мы расскажем об основах построения современной мобильной телефонной сети.

Сети сотовой связи

Телефонная связь так глубоко проникла в нашу среду, что мы не представляем жизнь без нее. Поднять трубку, набрать номер и услышать голос друга или близкого человека? Что может быть проще? Но за этим стоит огромный труд физиков, технологов, электриков и людей других специальностей. В 1947 году произошло событие, которое послужило отправной точкой для создания сотовой связи. Сотрудник Bell Laboratories, Д. Ринг, во внутреннем меморандуме выдвинул идею сотового принципа организации сетей подвижной связи. Инженер предложил основные идеи, которые по сей день лежат в основе современных сотовых сетей. С одной стороны, сотовая связь проста и понятна, как движение колеса, но как только мы начинаем рассматривать ее более пристально, то открываются всевозможные технические тонкости, подкрепленные десятками патентов и авторских свидетельств. На расстоянии эти подробности теряются и опять открывается вид неделимого целого - комплекса сотовой связи. Итак, давайте обсудим построение системы сотовой связи. Следует обозначить основные проблемы, с которыми мы столкнемся при ее создании. Для создания сотовой сети нужно получить набор частот или частотный диапазон. Именно в нем базовая станция будет общаться с вашим мобильным терминалом. Основным принципом работы сотовых сетей считают принцип повторного использования частот. Именно он позволяет существенно повысить ее емкость и покрывать практически неограниченное пространство, применяя при этом конечный набор частот. Обратим внимание на рисунок.

В нашем распоряжении есть три частоты (f1, f2, f3). В первой соте (ячейке) мы используем частоту f1. Во второй соте (ячейке) использовать ту же частоту, то есть f1, мы не можем из-за явления интерференции. Интерференция – физическое явление, которое возникает при наложении двух (или более) волн от одинаковых источников и приводит к усилению или ослаблению амплитуды волны. Поэтому борьба с интерференцией – одна из основных задач при частотном планировании, то есть распределении частот по сотам (ячейкам). Итак, поскольку во второй соте (ячейке) мы не можем использовать частоту f1 - используем частоту f2. В третьей соте мы используем частоту f3, а в четвертой соте мы опять можем использовать частоту f1. Картина предельно проста. Однако на практике инженеры сталкиваются с серьезными проблемами. Действительно, нарисовать границы сот тонкими прямыми линиями удается только на бумаге. Реальный ландшафт, особенно городской, накладывает серьезные ограничения на геометрию зоны покрытия каждой базовой станции. Поэтому фактическое покрытие можно проверить только экспериментальным путем. Так как количество точек в пространстве бесконечно, то проверить их все невозможно. Даже если аппроксимировать каждое место пространства в зоне действия базовой станции до кубического метра, то работа невыполнима. Отсюда появление белых пятен на карте покрытия и мест с активной интерференцией, которая ведет к помехам. В соответствии с рекомендациями CEPT, стандарт GSM-900 предусматривает работу передатчиков в двух диапазонах частот. Полоса частот (частоты на которых передается информация) 890–915 МГц используется для передачи информации с мобильной станции (мобильный телефон) на базовую станцию (uplink). Полоса частот 935–960 МГц – для передачи информации с базовой станции на мобильную станцию (downlink). При переключении каналов во время сеанса связи дуплексный разнос (разность между частотами передачи и приема) постоянен и равен 45 МГц. Разнос частот между соседними каналами связи составляет 200 кГц. Таким образом, в отведенной для приема/передачи полосе частот шириной 25 МГц размещаются 124 канала связи (124 канала для всех операторов GSM данного региона). Кроме этого, в нашей стране хорошо известен еще один популярный диапазон - GSM-1800. Полоса частот передачи информации от мобильной станции (телефона) к базовой станции (uplink) составляет 1710–1785 МГц и полоса частот для передачи информации от базовой станции к мобильной станции (downlink) составляет 1805–1880 МГц. Дуплексный разнос- 95 МГц. В полосе частот шириной 75 МГц размещается 374 канала связи. Использование GSM-1800 целесообразно в городских условиях. Плотность абонентов тут больше, и поэтому дополнительная канальность приходится очень кстати. Кроме того, электромагнитные колебания высокой частоты имеют лучшую проникающую способность через всевозможные технические строения, коих в городах великое множество. В чем прелесть GSM-900? Так как диапазон этот живет, то у него есть свои преимущества. Главным достоянием можно считать его достаточную чистоту и доступность в силу родоначальности. С этим можно спорить. Однако мы считаем, что это так. Разумеется, в нем сидят и военные, и специальные службы, но все знают, что там, подобно локомотиву, мчится GSM. Это огромная машина, которая практически срослась с государством и дает ему очень много денег. Кроме этого, GSM-900 лучше работает на дальних расстояниях. К этому вопросу мы вернемся чуть позже. Обсуждение других частотных диапазонов лежит вне поля наших интересов, так как они не прижились в России и Европе. Хочется заметить только одно – там нет существенных отличий. Все практически так же. Только другой частотный диапазон. Итак, мы обсудили основную рабочую среду сотовой сети GSM. Настало время препарировать ее содержимое, которое расскажет нам, что, где и за что отвечает.

Основные элементы GSM-сети

Структура и номенклатура – два понятия ведут нас к пониманию любой сущности. Представьте, что у вас в руках одна из самых важных шифровок, которая раскрывает смерть президента Джона Кеннеди. Ценность этой депеши прямо пропорциональна тому, владеете ли вы кодом от нее. Или предположим, сидите вы в ресторане, а официант, который подошел к вам, говорит только на редком африканском наречии. В том и другом случае важно понимать, о чем с вами говорят. Поэтому мы начинаем разговор об основных элементах сети GSM. Структура сети GSM включает в себя:
  • BSS (Base Station Subsystem) - подсистема базовых станций.
  • SSS (Switching Subsystem) - подсистема коммутации
  • OSS (Operation Subsystem) - подсистема эксплуатации и технического обслуживания.

Итак, схема логически разбивается на три квадрата. Каждый из них представляет собой замкнутую систему, которая выполняет определенную, отведенную для нее роль. Опыт показал, что такое разделение целесообразно, с точки зрения контроля, отслеживания ошибок и сбоев, и строительства сети. Нам предстоит разобрать все элементы этой схемы. Для начала возьмем в рассмотрение подсистему базовых станций BSS (Base Station Subsystem) . Она состоит из:

  • - базовые приемо-передающие станции;
  • - контроллер базовых станций;
  • - транскодер.
Перед нами практически интерфейс, с которым говорит ваш сотовый телефон. Он помогает «вести» ваш мобильный аппарат на территории каждой базовой станции. Каждая BTS (Base Transceiver Station) – (базовая приемо-передающая станция) обеспечивает для работы сети следующие функции:
  • радиопокрытие;
  • получение и передачу данных и служебной информации от/к мобильной станции;
  • управление мощностью мобильной станции;
  • контроль качества передачи информации и т.д.
Базовые приемо-передающие станции бывают разных видов. Прежде всего, их можно разделять по принципу локации: стационарная и передвижная. В нашей стране практикуется установка только стационарных БС. С одной стороны, это простой способ, с точки зрения планирования сот и инфраструктуры (подвод электричества). С другой стороны, перегрузки сети часто связывают с тем, что в одно время на одной соте находятся и одновременно говорят очень много абонентов. Например, всевозможные городские праздники давно стали головной болью для сотовых операторов. Разумно было подвести одну или две передвижных базовых станций, развернуть генераторы и дать народу связь. Однако не все так просто. Вернее, с технической стороны тут нет непреодолимых проблем, а с юридической - полный казус. Насколько известно, сейчас в нашей стране нет ни одного правового документа, который регламентирует развертывание и эксплуатацию передвижных базовых станций. Возможно, в будущем эта проблема будет решена. Сотовые операторы любят говорить о количестве своих базовых станций. Однако не стоит считать, что чем больше у компании БС, тем больше территория покрытия. Это утверждение верно лишь частично.

Как мы уже писали выше, основу базовой станции GSM составляют приемопередатчики. Они позволяют оператору использовать до восьми каналов. Стандарт GSM говорит, что для управления и обмена информацией необходимы два канала. Количество передатчиков на каждой базовой станции может достигать 24 штук. Это зависит от типа базовой станции и ее назначения. Отметим, что одна базовая станция может конфигурировать до четырех сот. Эксперименты по интерференции волн и создании удаленных сот полностью провалены. О конфигурировании сотовых станций мы поговорим в следующем материале, когда будем рассматривать интерфейсы и принципы GSM-связи. Установка базовых станций и расчет количества передатчиков на них - это отдельное искусство. Прежде всего, надо провести радиоразведку территории. Например, недопустим случай, когда вы высоко подняли одну из базовых станций и обеспечили хорошую связь с нее на большие расстояния, где уже действуют другие соты. Мобильники повально будут вешаться на соту с хорошим сигналом и «испортят» ее нормальную работу. Очень важным надо считать количество передатчиков на одной БС. Если соотношение БС/передатчик окажется меньше 1:5, то очень часто сеть будет выдавать сигнал «перегрузка». Любая базовая станция оборудована дополнительной радиорелейной связью. Это сделано для приложения дополнительных коммуникационных мостов внутри сети. Частотный диапазон для этой связи составляет 3-40 ГГц. Мощность передатчиков может составлять десятки Вт и регламентируется специальными документами. Для связи с мобильным телефоном передатчик базовой станции излучает мощность от пяти до десяти Вт. Все вы, наверное, обращали внимание на антенны передатчиков базовых станций. Их хорошо видно на вышках. В нашей стране мы встречали только два типа антенн:

  • слабонаправленные с круговой диаграммой направленности (ДН) в горизонтальной плоскости (тип "Omni")
  • направленные (секторные) с углом раствора (шириной) основного лепестка ДН в горизонтальной плоскости обычно 60 или 120 градусов
Настал момент перейти к другому важному элементу нашей схемы - BSC (Base Station Controller) - контроллер базовых станций. Это мощный компьютер, обеспечивающий управление работой базовых станций (BTS) и осуществляющий контроль работоспособности всех блоков базовой станции (BTS), а также отвечающий за процедуру handover (передача обслуживания мобильной станции от одной базовой станции к другой в режиме разговора). Контроллер базовых станций управляет одновременно несколькими базовыми станциям (BTS). Их количество определяется, главным образом, объемами потоков вызовов, то есть телефонной нагрузкой. Например, в густонаселенной территории может располагаться большое количество BTS, подключенных к нескольким BSC. Последним элементом первой подсистемы является TRAU (Transcoding Rate Adapter Unit) - транскодер. Он отвечает за преобразование скорости передачи данных между BSS и SSS. Скорость передачи информации в подсистеме базовых станций (BSS) равна 16 кбит/с, а в подсистеме коммутации – 64 кбит/с. Таким образом, основная задача транскодера преобразовывать скорость из 16 кбит/с в 64 кбит/с, и наоборот. Если проводить аналогии между сотовой сетью и человеческим организмом, то, безусловно, подсистема коммутации (SSS) служит телом. Сюда стекаются сигналы из «головы», «ног» и «рук». Существует ошибочное представление, что подсистема коммуникации должна находиться в середине зоны покрытия. Это так же верно, как то, что рабочая столовая должна быть в сердце завода. Давайте рассмотрим структуру SSS (Switching Subsystem) - подсистемы коммутации. Она состоит из:
  • – центра коммутации;
  • HLR (Home Location Register) – домашнего регистра местоположения;
  • – гостевого регистра местоположения;
  • AuC (Authentication Center) – центра аутентификации.
MSC (Mobile Switching Center) - центр коммутации. Это мозговой центр и одновременно диспетчерский пункт системы сотовой связи, где замыкаются потоки информации о вызовах абонентов, где осуществляется выход на другие сети. Основные назначения MSC:
  • маршрутизация (направление) сигнала, то есть анализ номера для исходящих и входящих вызовов;
  • установление, контроль и разъединение соединений.
Также в центре коммутации формируются CDR-файлы (Call Data Recorder) для предоставления в биллинговую систему. Они содержат информацию о месте и времени начала и завершения звонка. Как правило, при организации сети стандарта GSM один или два MSC используются на территории, где проживает до одного миллиона пользователей (включая потенциальных). MSC осуществляет «мониторинг» мобильных станций (мобильных телефонов), используя регистры: HLR (Home Location Register) - домашний регистр местоположения
VLR (Visitor Location Register) - гостевой регистр местоположения. HLR (Home Location Register) - домашний регистр местоположения представляет собой компьютерную базу данных о домашних абонентах – пользователях мобильной связи, вне зависимости от состояния мобильного телефона (вкл. или выкл.). В ней содержатся опознавательные номера и адреса, а также параметры подлинности абонентов, список услуг связи. Записанные данные позволяют абоненту использовать определенные основные и дополнительные услуги, обеспечиваемые системой. В HLR также хранится та часть информации о местоположении мобильной станции, которая позволяет центру коммутации (MSC) доставить вызов этой станции. Домашний регистр местоположения (HLR) содержит международный идентификационный номер подвижного абонента (IMSI-International Mobile Subscriber Identity). Он используется для опознавания мобильной станции в центре аутентификации (AuC). К данным, содержащимся в HLR, дистанционный доступ имеют все MSC и VLR. Если в сети имеются несколько HLR, то каждый HLR представляет определенную часть общей базы данных сети об абонентах. VLR (Visitor Location Register) - гостевой регистр местоположения содержит примерно такие же данные, как и HLR, но только об активных абонентах, то есть о тех, кто в данный момент находится в зоне действия коммутатора (MSC), к которому принадлежит VLR. Количество гостевых регистров местоположения (VLR) равно количеству коммутаторов (MSC). Каждый гостевой регистр местоположения приписан к определенному коммутатору. VLR содержит базу данных о роумерах (роумеры- абоненты другой системы GSM, временно использующие услуги данной системы в рамках процедуры «роуминга»), находящихся в зоне VLR. Итак, подсистема коммуникации берет на себя очень много функций. Центр коммутации GSM-связи напрямую обслуживает группу сот и обеспечивает все виды соединений (голосовые, передача сообщений и передача данных). Теоретически MSC повторяет работу коммутационной станции ISDN. Он представляет собой интерфейс между фиксированными сетями и сетью подвижной связи. Конечно, вам не удастся работать по принципу «Барышня? Соедините…». Однако технически этот шлюз не многим сложнее современных коммутаторов, которые устанавливаются для стационарных сетей. Он обеспечивает маршрутизацию вызовов и функции управления вызовами. Однако его важное отличие в том, что при этом ему приходится решать проблемы коммутации радиоканалов. Из-за этого достигается непрерывность связи при перемещении подвижной станции из соты в соту. Кроме этого, центр коммуникации решает о переключении рабочих каналов в соте при появлении помех или неисправностях. Огромные кипы служебной информации непрерывным потоком стекают с него в центр управления и обслуживания. Это статистические данные, необходимые для контроля работы и оптимизации сети. Помимо этого, MSC поддерживает процедуры безопасности, применяемые для управления доступами к радиоканалам. Вы слышали о роуминге? Думаем, что да. Когда два оператора договариваются о роуминге своих абонентов, то это значит, что они могут пользоваться HLR (Home Location Register) и VLR (Visitor Location Register) совместно. Вернее, каждый из них получает доступ к гостевому регистру друг друга. С домашним регистром все немного сложнее. Более детально мы поговорим об этом в следующих главах. Небольшим квадратом на схеме к домашнему регистру местоположения примостился центр аутентификации (AuC). AuC (Authentication Center) - центр аутентификации формирует параметры для процедуры аутентификации и определяет ключи шифрования мобильных станций абонентов. Процедура аутентификации – процедура подтверждения подлинности абонента (действительности, законности, наличия прав на пользование услугами сотовой связи) сети GSM. Выполнение данной процедуры исключает наличие несанкционированных пользователей («сотовых двойников») услугами GSM. На данный момент работа этого блока в сетях GSM доведена до фантастического уровня. Разумеется, это только машина, управляемая программой, которую писал человек. Однако годы работы не прошли бесследно. Центр аутентификации обмануть извне системы практически невозможно. Попытки клонировать GSM-аппараты практически повсеместно потерпели крах. Теоретическая возможность осталась. Однако экономически такой двойник абсолютно не обоснован. Нам осталось познакомиться с последней подсистемой - эксплуатации и технического обслуживания (OSS). OSS (Operation Subsystem) - подсистема эксплуатации и технического обслуживания обеспечивает контроль качества работы сети и управление ее компонентами. OSS может устранять неисправности сети автоматически или при активном вмешательстве персонала; позволяет производить управление нагрузкой сети, обеспечивать проверку состояния оборудования. OSS состоит из двух компонентов:
  • - центр эксплуатации и технического обслуживания;
  • - центр управления сетью.
Несколько слов об их функциях: OMC (Operation and Maintenance Centre) - центр эксплуатации и технического обслуживания, выполняющий функции текущего руководства функционирования сети, ее технического обслуживания, обновления системы, проведения операций по загрузке команд и программного обеспечения на BSS, MSC, HLR, VLR и AuC. NMC (Network Management Centre) - центр управления сетью. Это центральный пункт наблюдения за сетью GSM и анализа ее функционирования.

Заключительное слово

На этом мы заканчиваем знакомство с мобильной связью GSM. Выражаем благодарность компании

Сети GSM. Взгляд изнутри.

Немного истории

На заре развития мобильной связи (а было это не так давно - в начале восьмидесятых) Европа покрывалась аналоговыми сетями самых разных стандартов - Скандинавия развивала свои системы, Великобритания свои… Сейчас уже сложно сказать, кто был инициатором последовавшей очень скоро революции - "верхи" в виде производителей оборудования, вынужденные разрабатывать для каждой сети собственные устройства, или "низы" в качестве пользователей, недовольные ограниченной зоной действия своего телефона. Так или иначе, в 1982 году Европейской Комиссией по Телекоммуникациям (CEPT) была создана специальная группа для разработки принципиально новой, общеевропейской системы мобильной связи. Основными требованиями, предъявляемыми к новому стандарту, были: эффективное использование частотного спектра, возможность автоматического роуминга, повышенное качество речи и защиты от несанкционированного доступа по сравнению с предшествующими технологиями, а также, очевидно, совместимость с другими существующими системами связи (в том числе проводными) и тому подобное.

Плодом упорного труда многих людей из разных стран (честно говоря, мне даже страшно представить себе объем проделанной ими работы!) стала представленная в 1990 году спецификация общеевропейской сети мобильной связи, названная Global System for Mobile Communications или просто GSM. А дальше все замелькало, как в калейдоскопе - первый оператор GSM принял абонентов в 1991 году, к началу 1994 года сети, основанные на рассматриваемом стандарте, имели уже 1.3 миллиона подписчиков, а к концу 1995 их число увеличилось до 10 миллионов! Воистину, "GSM шагает по планете" - в настоящее время телефоны этого стандарта имеют около 200 миллионов человек, а GSM-сети можно найти по всему миру.

Давайте же попробуем разобраться, как организованы и на каких принципах функционируют сети GSM. Сразу скажу, что задача предстоит не из легких, однако, поверьте - в результате мы получим истинное наслаждение от красоты технических решений, используемых в этой системе связи.

За рамками рассмотрения останутся два очень важных вопроса: во-первых, частотно-временное разделение каналов (с этим можно ознакомиться ) и, во-вторых, системы шифрования и защиты передаваемой речи (это настолько специфичная и обширная тема, что, возможно, в будущем ей будет посвящен отдельный материал).

Основные части системы GSM, их назначение и взаимодействие друг с другом.

Начнем с самого сложного и, пожалуй, скучного - рассмотрения скелета (или, как принято говорить на военной кафедре моего Alma Mater, блок-схемы) сети. При описании я буду придерживаться принятых во всем мире англоязычных сокращений, конечно, давая при этом их русскую трактовку.

Взгляните на рис. 1:

Рис.1 Упрощенная архитектура сети GSM.

Самая простая часть структурной схемы - переносной телефон, состоит из двух частей: собственно "трубки" - МЕ (Mobile Equipment - мобильное устройство) и смарт-карты SIM (Subscriber Identity Module - модуль идентификации абонента), получаемой при заключении контракта с оператором. Как любой автомобиль снабжен уникальным номером кузова, так и сотовый телефон имеет собственный номер - IMEI (International Mobile Equipment Identity - международный идентификатор мобильного устройства), который может передаваться сети по ее запросу (более подробно про IMEI можно узнать ). SIM , в свою очередь, содержит так называемый IMSI (International Mobile Subscriber Identity - международный идентификационный номер подписчика). Думаю, разница между IMEI и IMSI ясна - IMEI соответствует конкретному телефону, а IMSI - определенному абоненту.

"Центральной нервной системой" сети является NSS (Network and Switching Subsystem - подсистема сети и коммутации), а компонент, выполняющей функции "мозга" называется MSC (Mobile services Switching Center - центр коммутации). Именно последний всуе называют (иногда с придыханием) "коммутатор", а также, при проблемах со связью, винят во всех смертных грехах. MSC в сети может быть и не один (в данном случае очень уместна аналогия с многопроцессорными компьютерными системами) - например, на момент написания статьи московский оператор Билайн внедрял второй коммутатор (производства Alcatel). MSC занимается маршрутизацией вызовов, формированием данных для биллинговой системы, управляет многими процедурами - проще сказать, что НЕ входит в обязанности коммутатора, чем перечислять все его функции.

Следующими по важности компонентами сети, также входящими в NSS , я бы назвал HLR (Home Location Register - реестр собственных абонентов) и VLR (Visitor Location Register - реестр перемещений). Обратите внимание на эти части, в дальнейшем мы будем часто упоминать их. HLR , грубо говоря, представляет собой базу данных обо всех абонентах, заключивших с рассматриваемой сетью контракт. В ней хранится информация о номерах пользователей (под номерами подразумеваются, во-первых, упоминавшийся выше IMSI , а во-вторых, так называемый MSISDN -Mobile Subscriber ISDN, т.е. телефонный номер в его обычном понимании), перечень доступных услуг и многое другое - далее по тексту часто будут описываться параметры, находящиеся в HLR .

В отличие от HLR , который в системе один, VLR `ов может быть и несколько - каждый из них контролирует свою часть сети. В VLR содержатся данные об абонентах, которые находятся на его (и только его!) территории (причем обслуживаются не только свои подписчики, но и зарегистрированные в сети роумеры). Как только пользователь покидает зону действия какого-то VLR , информация о нем копируется в новый VLR , а из старого удаляется. Фактически, между тем, что есть об абоненте в VLR и в HLR , очень много общего - посмотрите таблицы, где приведен перечень долгосрочных (табл.1) и временных (табл.2 и 3) данных об абонентах, хранящихся в этих реестрах. Еще раз обращаю внимание читателя на принципиальное отличие HLR от VLR : в первом расположена информация обо всех подписчиках сети, независимо от их местоположения, а во втором - данные только о тех, кто находится на подведомственной этому VLR территории. В HLR для каждого абонента постоянно присутствует ссылка на тот VLR , который с ним (абонентом) сейчас работает (при этом сам VLR может принадлежать чужой сети, расположенной, например, на другом конце Земли).

1. Международный идентификационный номер подписчика (IMSI )
2. Телефонный номер абонента в обычном смысле (MSISDN )
3. Категория подвижной станции
4. Ключ идентификации абонента (Ki )
5. Виды обеспечения дополнительными услугами
6. Индекс закрытой группы пользователей
7. Код блокировки закрытой группы пользователей
8. Состав основных вызовов, которые могут быть переданы
9. Оповещение вызывающего абонента
10. Идентификация номера вызываемого абонента
11. График работы
12. Оповещение вызываемого абонента
13. Контроль сигнализации при соединении абонентов
14. Характеристики закрытой группы пользователей
15. Льготы закрытой группы пользователей
16. Запрещенные исходящие вызовы в закрытой группе пользователей
17. Максимальное количество абонентов
18. Используемые пароли
19. Класс приоритетного доступа
Таблица 1. Полный состав долгосрочных данных, хранимых в HLR и VLR .
1. Параметры идентификации и шифрования
2. Временный номер мобильного абонента (TMSI )
3. Адрес реестра перемещения, в котором находится абонент (VLR )
4. Зоны перемещения подвижной станции
5. Номер соты при эстафетной передаче
6. Регистрационный статус
7. Таймер отсутствия ответа
8. Состав используемых в данный момент паролей
9. Активность связи
Таблица 2. Полный состав временных данных, хранимых в HLR .
Таблица 3. Полный состав временных данных, хранимых в VLR .

NSS содержит еще два компонента - AuC (Authentication Center - центр авторизации) и EIR (Equipment Identity Register - реестр идентификации оборудования). Первый блок используется для процедур установления подлинности абонента, а второй, как следует из названия, отвечает за допуск к эксплуатации в сети только разрешенных сотовых телефонов. Подробно работа этих систем будет рассмотрена в следующем разделе, посвященном регистрации абонента в сети.

Исполнительной, если так можно выразиться, частью сотовой сети, является BSS (Base Station Subsystem - подсистема базовых станций). Если продолжать аналогию с человеческим организмом, то эту подсистему можно назвать конечностями тела. BSS состоит из нескольких "рук" и "ног" - BSC (Base Station Controller - контроллер базовых станций), а также множества "пальцев" - BTS (Base Transceiver Station - базовая станция). Базовые станции можно наблюдать повсюду - в городах, полях (чуть не сказал "и реках") - фактически это просто приемно-передающие устройства, содержащие от одного до шестнадцати излучателей. Каждый BSC контролирует целую группу BTS и отвечает за управление и распределение каналов, уровень мощности базовых станций и тому подобное. Обычно BSC в сети не один, а целое множество (базовых станций же вообще сотни).

Управляется и координируется работа сети с помощью OSS (Operating and Support Subsystem - подсистема управления и поддержки). OSS состоит из всякого рода служб и систем, контролирующих работу и трафик - дабы не перегружать читателя информацией, работа OSS ниже рассматриваться не будет.

Регистрация в сети.

При каждом включении телефона после выбора сети начинается процедура регистрации. Рассмотрим наиболее общий случай - регистрацию не в домашней, а в чужой, так называемой гостевой, сети (будем предполагать, что услуга роуминга абоненту разрешена).

Пусть сеть найдена. По запросу сети телефон передает IMSI абонента. IMSI начинается с кода страны "приписки" его владельца, далее следуют цифры, определяющие домашнюю сеть, а уже потом - уникальный номер конкретного подписчика. Например, начало IMSI 25099… соответствует российскому оператору Билайн. (250-Россия, 99 - Билайн). По номеру IMSI VLR гостевой сети определяет домашнюю сеть и связывается с ее HLR . Последний передает всю необходимую информацию об абоненте в VLR , который сделал запрос, а у себя размещает ссылку на этот VLR , чтобы в случае необходимости знать, "где искать" абонента.

Очень интересен процесс определения подлинности абонента. При регистрации AuC домашней сети генерирует 128-битовое случайное число - RAND, пересылаемое телефону. Внутри SIM с помощью ключа Ki (ключ идентификации - так же как и IMSI , он содержится в SIM ) и алгоритма идентификации А3 вычисляется 32-битовый ответ - SRES (Signed RESult) по формуле SRES = Ki * RAND. Точно такие же вычисления проделываются одновременно и в AuC (по выбранному из HLR Ki пользователя). Если SRES , вычисленный в телефоне, совпадет со SRES , рассчитанным AuC , то процесс авторизации считается успешным и абоненту присваивается TMSI (Temporary Mobile Subscriber Identity-временный номер мобильного абонента). TMSI служит исключительно для повышения безопасности взаимодействия подписчика с сетью и может периодически меняться (в том числе при смене VLR ).

Теоретически, при регистрации должен передаваться и номер IMEI , но у меня есть большие сомнения насчет того, что московские операторы отслеживают IMEI используемых абонентами телефонов. Давайте будем рассматривать некую "идеальную" сеть, функционирующую так, как было задумано создателями GSM. Так вот, при получении IMEI сетью, он направляется в EIR , где сравнивается с так называемыми "списками" номеров. Белый список содержит номера санкционированных к использованию телефонов, черный список состоит из IMEI , украденных или по какой-либо иной причине не допущенных к эксплуатации телефонов, и, наконец, серый список - "трубки" с проблемами, работа которых разрешается системой, но за которыми ведется постоянное наблюдение.

После процедуры идентификации и взаимодействия гостевого VLR с домашним HLR запускается счетчик времени, задающий момент перерегистрации в случае отсутствия каких-либо сеансов связи. Обычно период обязательной регистрации составляет несколько часов. Перерегистрация необходима для того, чтобы сеть получила подтверждение, что телефон по-прежнему находится в зоне ее действия. Дело в том, что в режиме ожидания "трубка" только отслеживает сигналы, передаваемые сетью, но сама ничего не излучает - процесс передачи начинается только в случае установления соединения, а также при значительных перемещениях относительно сети (ниже это будет рассмотрено подробно) - в таких случаях таймер, отсчитывающий время до следующей перерегистрации, запускается заново. Поэтому при "выпадении" телефона из сети (например, был отсоединен аккумулятор, или владелец аппарата зашел в метро, не выключив телефон) система об этом не узнает.

Все пользователи случайным образом разбиваются на 10 равноправных классов доступа (с номерами от 0 до 9). Кроме того, существует несколько специальных классов с номерами с 11 по 15 (разного рода аварийные и экстренные службы, служебный персонал сети). Информация о классе доступа хранится в SIM . Особый, 10 класс доступа, позволяет совершать экстренные звонки (по номеру 112), если пользователь не принадлежит к какому-либо разрешенному классу, или вообще не имеет IMSI (SIM ). В случае чрезвычайных ситуаций или перегрузки сети некоторым классам может быть на время закрыт доступ в сеть.

Территориальное деление сети и handover .

Как уже было сказано, сеть состоит из множества BTS - базовых станций (одна BTS - одна "сота", ячейка). Для упрощения функционирования системы и снижения служебного трафика, BTS объединяют в группы - домены, получившие название LA (Location Area - области расположения). Каждой LA соответствует свой код LAI (Location Area Identity). Один VLR может контролировать несколько LA . И именно LAI помещается в VLR для задания местоположения мобильного абонента. В случае необходимости именно в соответствующей LA (а не в отдельной соте, заметьте) будет произведен поиск абонента. При перемещении абонента из одной соты в другую в пределах одной LA перерегистрация и изменение записей в VLR /HLR не производится, но стоит ему (абоненту) попасть на территорию другой LA , как начнется взаимодействие телефона с сетью. Каждому пользователю, наверное, не раз приходилось слышать периодические помехи (типа хрюк-хрюк---хрюк-хрюк---хрюк-хрюк:-)) в музыкальной системе своего автомобиля от находящегося в режиме ожидания телефона - зачастую это является следствием проводимой перерегистрации при пересечении границ LA . При смене LA код старой области стирается из VLR и заменяется новым LAI , если же следующий LA контролируется другим VLR , то произойдет смена VLR и обновление записи в HLR .

Вообще говоря, разбиение сети на LA довольно непростая инженерная задача, решаемая при построении каждой сети индивидуально. Слишком мелкие LA приведут к частым перерегистрациям телефонов и, как следствие, к возрастанию трафика разного рода сервисных сигналов и более быстрой разрядке батарей мобильных телефонов. Если же сделать LA большими, то, в случае необходимости соединения с абонентом, сигнал вызова придется подавать всем сотам, входящим в LA , что также ведет к неоправданному росту передачи служебной информации и перегрузке внутренних каналов сети.

Теперь рассмотрим очень красивый алгоритм так называемого handover `ра (такое название получила смена используемого канала в процессе соединения). Во время разговора по мобильному телефону вследствие ряда причин (удаление "трубки" от базовой станции, многолучевая интерференция, перемещение абонента в зону так называемой тени и т.п.) мощность (и качество) сигнала может ухудшиться. В этом случае произойдет переключение на канал (может быть, другой BTS ) с лучшим качеством сигнала без прерывания текущего соединения (добавлю - ни сам абонент, ни его собеседник, как правило, не замечают произошедшего handover `а). Handover`ы принято разделять на четыре типа:

  • смена каналов в пределах одной базовой станции
  • смена канала одной базовой станции на канал другой станции, но находящейся под патронажем того же BSC .
  • переключение каналов между базовыми станциями, контролируемыми разными BSC , но одним MSC
  • переключение каналов между базовыми станциями, за которые отвечают не только разные BSC , но и MSC .

В общем случае, проведение handover `а - задача MSC . Но в двух первых случаях, называемых внутренними handover `ами, чтобы снизить нагрузку на коммутатор и служебные линии связи, процесс смены каналов управляется BSC , а MSC лишь информируется о происшедшем.

Во время разговора мобильный телефон постоянно контролирует уровень сигнала от соседних BTS (список каналов (до 16), за которыми необходимо вести наблюдение, задается базовой станцией). На основании этих измерений выбираются шесть лучших кандидатов, данные о которых постоянно (не реже раза в секунду) передаются BSC и MSC для организации возможного переключения. Существуют две основные схемы handover `а:

  • "Режим наименьших переключений" (Minimum acceptable performance). В этом случае, при ухудшении качества связи мобильный телефон повышает мощность своего передатчика до тех пор, пока это возможно. Если же, несмотря на повышение уровня сигнала, связь не улучшается (или мощность достигла максимума), то происходит handover .
  • "Энергосберегающий режим" (Power budget). При этом мощность передатчика мобильного телефона остается неизменной, а в случае ухудшения качества меняется канал связи (handover ).

Интересно, что инициировать смену каналов может не только мобильный телефон, но и MSC , например, для лучшего распределения трафика.

Маршрутизация вызовов.

Поговорим теперь, каким образом происходит маршрутизация входящих вызовов мобильного телефона. Как и раньше, будем рассматривать наиболее общий случай, когда абонент находится в зоне действия гостевой сети, регистрация прошла успешно, а телефон находится в режиме ожидания.

При поступлении запроса (рис.2) на соединение от проводной телефонной (или другой сотовой) системы на MSC домашней сети (вызов "находит" нужный коммутатор по набранному номеру мобильного абонента MSISDN , который содержит код страны и сети).


Рис.2 Взаимодействие основных блоков сети при поступлении входящего вызова.

MSC пересылает в HLR номер (MSISDN ) абонента. HLR , в свою очередь, обращается с запросом к VLR гостевой сети, в которой находится абонент. VLR выделяет один из имеющихся в ее распоряжении MSRN (Mobile Station Roaming Number - номер "блуждающей" мобильной станции). Идеология назначения MSRN очень напоминает динамическое присвоение адресов IP при коммутируемом доступе в Интернет через модем. HLR домашней сети получает от VLR присвоенный абоненту MSRN и, сопроводив его IMSI пользователя, передает коммутатору домашней сети. Заключительной стадией установления соединения является направление вызова, сопровождаемого IMSI и MSRN , коммутатору гостевой сети, который формирует специальный сигнал, передаваемый по PAGCH (PAGer CHannel - канал вызова) по всей LA , где находится абонент.

Маршрутизация исходящих вызовов не представляет с идеологической точки зрения ничего нового и интересного. Приведу лишь некоторые из диагностических сигналов (таблица 4), свидетельствующие о невозможности установить соединение и которые пользователь может получить в ответ на попытку установления соединения.

Таблица 4. Основные диагностические сигналы об ошибке при установлении соединения.

Заключение

Конечно, в мире нет ничего идеального. Рассмотренные выше сотовые системы GSM не исключение. Ограниченное число каналов создает проблемы в деловых центрах мегаполисов (а в последнее время, ознаменованное бурным ростом абонентской базы, и на их окраинах) - чтобы позвонить, часто приходится ждать уменьшения нагрузки системы. Малая, по современным меркам, скорость передачи данных (9600 бит/с) не позволяет пересылать объемные файлы, не говоря о видеоматериалах. Да и роуминговые возможности не так уж безграничны - Америка и Япония развивают свои, несовместимые с GSM, цифровые системы беспроводной связи.

Конечно, рано говорить, что дни GSM сочтены, но нельзя и не замечать появления на горизонте так называемых 3G -систем, олицетворяющих начало новой эры в развитии сотовой телефонии и лишенных перечисленных недостатков. Как хочется заглянуть на несколько лет вперед и посмотреть, какие возможности получим все мы от новых технологий! Впрочем, ждать осталось не так долго - начало коммерческой эксплуатации первой сети третьего поколения намечается на начало 2001 года… А вот какая судьба уготована новым системам - взрывообразный рост, как GSM, или разорение и уничтожение, как Iridium, покажет время…

Центр коммутации мобильной связи (MSC)

выполняет функции коммутации для мобильной связи. Данный центр контролирует все входящие и исходящие вызовы, поступающие из других телефонных сетей и сетей передачи данных. К данным сетям можно отнести PSTN, ISDN, сети данных общего пользования, корпоративные сети, а также сети мобильной связи других операторов. Функции проверки подлинности абонентов также выполняются в MSC. MSC обеспечивает маршрутизацию вызовов и функции управления вызовами. На MSC возлагаются функции коммутации радиоканалов. К ним относятся «эстафетная передача», в процессе которой достигается непрерывность связи при перемещении мобильной станции из соты в соту, и переключение рабочих каналов в соте при появлении помех или неисправностях.формирует данные, необходимые для выписки счетов за предоставленные сетью услуги связи, накапливает данные по состоявшимся разговорам и передаёт их в центр расчётов (биллинг-центр). MSC составляет также статистические данные, необходимые для контроля работы и оптимизации сети.не только участвует в управлении вызовами, но также управляет процедурами регистрации местоположения и передачи управления.

Центр коммутации постоянно осуществляет постоянное слежение за мобильными станциями, используя регистры положения (HLR) и перемещения (VLR).

Опорный регистр местоположения (HLR)

В системе GSM каждый оператор располагает базой данных, содержащей информацию обо всех абонентах принадлежащих своей PLMN. Эта база данных может быть организована в одном или более HLR

Информация об абоненте заносится в HLR в момент регистрации абонента (заключения абонентом контракта на обслуживание) и хранится до тех пор, пока абонент не расторгнет контракт и не будет удалён из регистра HLR.

Хранящаяся информация в HLR включает в себя:

Идентификатор абонента.

Дополнительные услуги, закрепленные за абонентом.

Информацию о местоположении абонента.

Аутентификационную информацию абонента.

HLR может быть выполнен как в собственном узле сети, так и отдельно. Если емкость HLR исчерпана, то может быть добавлен дополнительный HLR. И в случае организации нескольких HLR база данных остаётся единой - распределённой. Запись данных об абоненте всегда остаётся единственной. К данным, хранящихся в HLR, могут получить доступ MSC и VLR, относящиеся к другим сетям, в рамках обеспечения межсетевого роуминга абонентов.

Визитный регистр (VLR)

База данных VLR содержит информацию о всех абонентах мобильной связи, расположенных в данный момент в зоне обслуживания MSC. Таким образом, для каждого MSC на сети существует свой VLR. В VLR временно хранится информация об абонировании, и благодаря этому связанный с ним MSC может обслуживать всех абонентов, находящихся в зоне обслуживания данного MSC. VLR может рассматриваться как распределенный HLR, поскольку в VLR хранится копия информации об абоненте, хранящейся в HLR.

Когда абонент перемещается в зону обслуживания нового MSC, VLR, подключенный к данному MSC, запрашивает информацию об абоненте из того HLR, в котором хранятся данные этого абонента. HLR посылает копию информации в VLR и обновляет у себя информацию о местоположении абонента. Когда абонент звонит из новой зоны обслуживания, VLR уже располагает всей информацией, необходимой для обслуживания вызова. В случае роуминга абонента в зону действия другого MSC, VLR запрашивает данные об абоненте из HLR, к которому принадлежит данный абонент. HLR в свою очередь передаёт копию данных об абоненте в запрашивающий VLR и в свою очередь обновляет информацию о новом местоположении абонента. После того как информация обновится, MS может осуществлять исходящие/входящие соединения.

Статья в тему

Способы и информационные технологии получения знаний
Наступивший XXI век станет этапным для проникновения новых информационных технологий и создаваемых на их основе высокопроизводительных компьютерных систем во все сферы человеческой деятельности - управление, производство, науку, образование и т.д. Конструируемые посредством этих технологий интеллект...

Принцип работы радиосвязи

Радио (лат.radio- излучаю, испускаю лучи radius- луч) - разновидность беспроводной связи, при которой в качестве носителя сигнала используются радиоволны, свободно распространяемые в пространстве.

Принцип работы
Передача происходит следующим образом: на передающей стороне формируется сигнал с требуемыми характеристиками (частота и амплитуда сигнала). Далее передаваемыйсигналмодулируетболее высокочастотное колебание (несущее). Полученный модулированный сигнал излучается антенной в пространство. На приёмной стороне радиоволны наводят модулированный сигнал в антенне, после чего он демодулируется (детектируется) и фильтруется ФНЧ (избавляясь тем самым от высокочастотной составляющей- несущей).Полученный модулированный сигнал излучается антенной в пространство.
На приёмной стороне радиоволны наводят модулированный сигнал в антенне, после чего он демодулируется (детектируется) и фильтруется ФНЧ (избавляясь тем самым от высокочастотной составляющей- несущей).). Таким образом, происходит извлечение полезного сигнала. Получаемый сигнал может несколько отличаться от передаваемого передатчиком (искажения вследствие помех и наводок).

Частотные диапазоны
Частотная сетка, используемая в радиосвязи, условно разбита на диапазоны:

  • Длинные волны(ДВ)- f = 150-450 кГц (л = 2000-670 м)
  • Средние волны(СВ)- f = 500-1600 кГц (л = 600-190 м)
  • Короткие волны(КВ)- f = 3-30 МГц (л = 100-10 м)
  • Ультракороткие волны(УКВ)- f = 30 МГц- 300 МГц (л = 10-1 м)
  • Высокие частоты (ВЧ- сантиметровый диапазон)- f = 300 МГц- 3 ГГц (л = 1-0,1 м)
  • Крайне высокие частоты (КВЧ- миллиметровый диапазон)- f = 3 ГГц- 30 ГГц (л = 0,1-0,01 м)
  • Гипервысокие частоты (ГВЧ- микрометровый диапазон)- f = 30 ГГц- 300 ГГц (л = 0,01-0,001 м)

В зависимости от диапазона радиоволны имеют свои особенности и законы распространения:

  • ДВ сильно поглощаются ионосферой, основное значение имеют приземные волны, которые распространяются, огибая землю. Их интенсивность по мере удаления от передатчика уменьшается сравнительно быстро.
  • СВ сильно поглощаются ионосферой днём, и район действия определяется приземной волной, вечером хорошо отражаются от ионосферы и район действия определяется отражённой волной.
  • КВ распространяются исключительно посредством отражения ионосферой, поэтому вокруг передатчика существует т.н.зона радиомолчания. Днём лучше распространяются более короткие волны (30 МГц), ночью- более длинные (3 МГц). Короткие волны могут распространяться на большиме расстояния при малой мощности передатчика.
  • УКВ распространяются прямолинейно и, как правило, не отражаются ионосферой. Легко огибают препятствия и имеют высокую проникающую способность.
  • ВЧ не огибают препятствия, распространяются в пределах прямой видимости. Используются в WiFi, сотовой связи ит.д.
  • КВЧ не огибают препятствия, отражаются большинством препятствий, распространяются в пределах прямой видимости. Используются для спутниковой связи.
  • Гипервысокие частоты не огибают препятствия, отражаются подобно свету, распространяются в пределах прямой видимости. Использование ограничено.

Распространение радиоволн
Радиоволны распространяются в пустоте и в атмосфере; земная твердь и вода для них непрозрачны. Однако, благодаря эффектам дифракции и отражения, возможна связь между точками земной поверхности, не имеющими прямой видимости (в частности, находящимися на большом расстоянии).
Распространение радиоволн от источника к приёмнику может происходить несколькими путями одновременно. Такое распространение называетсямноголучёвостью. Вследствие многолучёвости и изменений параметров среды, возникаютзамирания(англ.fading)- изменение уровня принимаемого сигнала во времени. При многолучёвости изменение уровня сигнала происходит вследствие интерференции, то есть в точке приёма электромагнитное поле представляет собой сумму смещённых во времени радиоволн диапазона.

Радиолокация

Радиолока́ция - область науки и техники, объединяющая методы и средства обнаружения, измерения координат, а также определение свойств и характеристик различных объектов, основанных на использовании радиоволн. Близким и отчасти перекрывающимся термином является радионавигация, однако в радионавигации более активную роль играет объект, координаты которого измеряются, чаще всего это определение собственных координат. Основное техническое приспособление радиолокации - радиолокационная станция (англ. Radar).

Различают активную, полуактивную, активную с пассивным ответом и пассивную РЛ. Подразделяются по используемому диапазону радиоволн, по виду зондирующего сигнала, числу применяемых каналов, числу и виду измеряемых координат, месту установки РЛС.

Принцип действия

Радиолокация основана на следующих физических явлениях:

  • Радиоволны рассеиваются на встретившихся на пути их распространения электрических неоднородностях (объектами с другими электрическими свойствами, отличными от свойств среды распространения). При этом отражённая волна, также, как и собственно, излучение цели, позволяет обнаружить цель.
  • На больших расстояниях от источника излучения можно считать, что радиоволны распространяются прямолинейно и с постоянной скоростью, благодаря чему имеется возможность измерять дальность и угловые координаты цели (Отклонения от этих правил, справедливых только в первом приближении, изучает специальная отрасль радиотехники - Распространение радиоволн. В радиолокации эти отклонения приводят к ошибкам измерения).
  • Частота принятого сигнала отличается от частоты излучаемых колебаний при взаимном перемещении точек приёма и излучения (эффект Доплера), что позволяет измерять радиальные скорости движения цели относительно РЛС.
  • Пассивная радиолокация использует излучение электромагнитных волн наблюдаемыми объектами, это может быть тепловое излучение, свойственное всем объектам, активное излучение, создаваемое техническими средствами объекта, или побочное излучение, создаваемое любыми объектами с работающими электрическими устройствами.

Сотовая связь

Сотовая связь , сеть подвижной связи - один из видов мобильной радиосвязи, в основе которого лежит сотовая сеть . Ключевая особенность заключается в том, что общая зона покрытия делится на ячейки (соты), определяющиеся зонами покрытия отдельных базовых станций (БС). Соты частично перекрываются и вместе образуют сеть. На идеальной (ровной и без застройки) поверхности зона покрытия одной БС представляет собой круг, поэтому составленная из них сеть имеет вид сот с шестиугольными ячейками (сотами).

Сеть составляют разнесённые в пространстве приёмопередатчики, работающие в одном и том же частотном диапазоне, и коммутирующее оборудование, позволяющее определять текущее местоположение подвижных абонентов и обеспечивать непрерывность связи при перемещении абонента из зоны действия одного приёмопередатчика в зону действия другого.

Принцип действия сотовой связи

Основные составляющие сотовой сети - это сотовые телефоны и базовые станции, которые обычно располагают на крышах зданий и вышках. Будучи включённым, сотовый телефон прослушивает эфир, находя сигнал базовой станции. После этого телефон посылает станции свой уникальный идентификационный код. Телефон и станция поддерживают постоянный радиоконтакт, периодически обмениваясь пакетами. Связь телефона со станцией может идти по аналоговому протоколу (AMPS, NAMPS, NMT-450) или по цифровому (DAMPS, CDMA, GSM, UMTS). Если телефон выходит из поля действия базовой станции (или качество радиосигнала сервисной соты ухудшается), он налаживает связь с другой (англ. handover ).

Сотовые сети могут состоять из базовых станций разного стандарта, что позволяет оптимизировать работу сети и улучшить её покрытие.

Сотовые сети разных операторов соединены друг с другом, а также со стационарной телефонной сетью. Это позволяет абонентам одного оператора делать звонки абонентам другого оператора, с мобильных телефонов на стационарные и со стационарных на мобильные.

Операторы могут заключать между собой договоры роуминга. Благодаря таким договорам абонент, находясь вне зоны покрытия своей сети, может совершать и принимать звонки через сеть другого оператора. Как правило, это осуществляется по повышенным тарифам. Возможность роуминга появилась лишь в стандартах 2G и является одним из главных отличий от сетей 1G.

Операторы могут совместно использовать инфраструктуру сети, сокращая затраты на развертывание сети и текущие издержки.

Услуги сотовой связи

Операторы сотовой связи предоставляют следующие услуги:

  • Голосовой звонок;
  • Автоответчик в сотовой связи (услуга);
  • Роуминг;
  • АОН (Автоматический определитель номера) и АнтиАОН;
  • Приём и передача коротких текстовых сообщений (SMS);
  • Приём и передача мультимедийных сообщений - изображений, мелодий, видео (MMS-сервис);
  • Мобильный банк (услуга);
  • Доступ в Интернет;
  • Видеозвонок и видеоконференция

Телевидение

Телеви́дение (греч. τήλε - далеко и лат. video - вижу; от новолатинского televisio - дальновидение) - комплекс устройств для передачи движущегося изображения и звука на расстояние. В обиходе используется также для обозначения организаций, занимающихся производством и распространением телевизионных программ.

Основные принципы

Телевидение основано на принципе последовательной передачи элементов изображения с помощью радиосигнала или по проводам. Разложение изображения на элементы происходит при помощи диска Нипкова, электронно-лучевой трубки или полупроводниковой матрицы. Количество элементов изображения выбирается в соответствии с полосой пропускания радиоканала и физиологическими критериями. Для сужения полосы передаваемых частот и уменьшения заметности мерцания экрана телевизора применяют чересстрочную развёртку. Также она позволяет увеличить плавность передачи движения.

Телевизионный тракт в общем виде включает в себя следующие устройства:

  1. Телевизионная передающая камера. Служит для преобразования изображения, получаемого при помощи объектива на мишени передающей трубки или полупроводниковой матрице, в телевизионный видеосигнал.
  2. Видеомагнитофон. Записывает и в нужный момент воспроизводит видеосигнал.
  3. Видеомикшер. Позволяет переключаться между несколькими источниками изображения: видеокамерами, видеомагнитофонами и другими.
  4. Передатчик. Сигнал радиочастоты модулируется телевизионным видеосигналом и передается по радио или по проводам.
  5. Приёмник - телевизор. С помощью синхроимпульсов, содержащихся в видеосигнале, телевизионное изображение воспроизводится на экране приемника (кинескоп, ЖК-дисплей, плазменная панель).

Кроме того, для создания телевизионной передачи используется звуковой тракт, аналогичный тракту радиопередачи. Звук передаётся на отдельной частоте обычно при помощи частотной модуляции, по технологии, аналогичной FM-радиостанциям. В цифровом телевидении звуковое сопровождение, часто многоканальное, передаётся в общем с изображением потоке данных.

В результате, физический канал между приемником и передатчиком определяется частотой, выделенными фреймами и номерами таймслотов в них. Обычно базовые станции используют один или несколько каналов ARFCN, один из которых используется для идентификации присутствия BTS в эфире. Первый таймслот (индекс 0) фреймов этого канала используется в качестве базового служебного канала (base-control channel или beacon-канал). Оставшаяся часть ARFCN распределяется оператором для CCH и TCH каналов на свое усмотрение.

2.3 Логические каналы

На основе физических каналов формируются логические. Um-интерфейс подразумевает обмен как пользовательской информацией, так и служебной. Согласно спецификации GSM, каждому виду информации соответствует специальный вид логических каналов, реализуемых посредством физических:

  • каналы трафика (TCH - Traffic Channel),
  • каналы служебной информации (CCH - Control Channel).
Каналы трафика делятся на два основных вида: TCH/F - Full rate канал с максимальной скоростью до 22,8 Кбит/с и TCH/H - Half rate канал с максимальной скоростью до 11,4 Кбит/с. Данные виды каналов могут быть использованы для передачи речи (TCH/FS, TCH/HS) и пользовательских данных (TCH/F9.6, TCH/F4.8, TCH/H4.8, TCH/F2.4, TCH/H2.4), например, SMS.

Каналы служебной информации делятся на:

  • Широковещательные (BCH - Broadcast Channels).
    • FCCH - Frequency Correction Channel (канал коррекции частоты). Предоставляет информацию, необходимую мобильному телефону для коррекции частоты.
    • SCH - Synchronization Channel (канал синхронизации). Предоставляет мобильному телефону информацию, необходимую для TDMA-синхронизации с базовой станцией (BTS), а также ее идентификационные данные BSIC .
    • BCCH - Broadcast Control Channel (широковещательный канал служебной информации). Передает основную информацию о базовой станции, такую как способ организации служебных каналов, количество блоков, зарезервированных для сообщений предоставления доступа, а также количество мультифреймов (объемом по 51 TDMA-фрейму) между Paging-запросами.
  • Каналы общего назначения (CCCH - Common Control Channels)
    • PCH - Paging Channel. Забегая вперед, расскажу, что Paging - это своего рода ping мобильного телефона, позволяющий определить его доступность в определенной зоне покрытия. Данный канал предназначен именно для этого.
    • RACH - Random Access Channel (канал произвольного доступа). Используется мобильными телефонами для запроса собственного служебного канала SDCCH. Исключительно Uplink-канал.
    • AGCH - Access Grant Channel (канал уведомлений о предоставлении доступа). На этом канале базовые станции отвечают на RACH-запросы мобильных телефонов, выделяя SDCCH, либо сразу TCH.
  • Собственные каналы (DCCH - Dedicated Control Channels)
    Собственные каналы, так же как и TCH, выделяются определенным мобильным телефонам. Существует несколько подвидов:
    • SDCCH - Stand-alone Dedicated Control Channel. Данный канал используется для аутентификации мобильного телефона, обмена ключами шифрования, процедуры обновления местоположения (location update), а также для осуществления голосовых вызовов и обмена SMS-сообщениями.
    • SACCH - Slow Associated Control Channel. Используется во время разговора, либо когда уже задействован канал SDCCH. С его помощью BTS передает телефону периодические инструкции об изменении таймингов и мощности сигнала. В обратную сторону идут данные об уровне принимаемого сигнала (RSSI), качестве TCH, а также уровень сигнала ближайших базовый станций (BTS Measurements).
    • FACCH - Fast Associated Control Channel. Данный канал предоставляется вместе с TCH и позволяет передавать срочные сообщения, например, во время перехода от одной базовой станции к другой (Handover).

2.4 Что такое burst?

Данные в эфире передаются в виде последовательностей битов, чаще всего называемых «burst», внутри таймслотов. Термин «burst», наиболее подходящим аналогом которому является слово «всплеск», должен быть знаком многим радиолюбителям, и появился, скорее всего, при составлении графических моделей для анализа радиоэфира, где любая активность похожа на водопады и всплески воды. Подробнее о них можно почитать в этой замечательной статье (источник изображений), мы остановимся на самом главном. Схематичное представление burst может выглядеть так:

Guard Period
Во избежание возникновения интерференции (т.е. наложения двух busrt друг на друга), продолжительность burst всегда меньше продолжительности таймслота на определенное значение (0,577 - 0,546 = 0,031 мс), называемое «Guard Period». Данный период представляет собой своего рода запас времени для компенсации возможных задержек по времени при передаче сигнала.

Tail Bits
Данные маркеры определяют начало и конец burst.

Info
Полезная нагрузка burst, например, данные абонентов, либо служебный трафик. Состоит из двух частей.

Stealing Flags
Эти два бита устанавливаются когда обе части данных burst канала TCH переданы по каналу FACCH. Один переданный бит вместо двух означает, что только одна часть burst передана по FACCH.

Training Sequence
Эта часть burst используется приемником для определения физических характеристик канала между телефоном и базовой станцией.

2.5 Виды burst

Каждому логическому каналу соответствуют определенные виды burst:

Normal Burst
Последовательности этого типа реализуют каналы трафика (TCH) между сетью и абонентами, а также все виды каналов управления (CCH): CCCH, BCCH и DCCH.

Frequency Correction Burst
Название говорит само за себя. Реализует односторонний downlink-канал FCCH, позволяющий мобильным телефонам более точно настраиваться на частоту BTS.

Synchronization Burst
Burst данного типа, так же как и Frequency Correction Burst, реализует downlink-канал, только уже SCH, который предназначен для идентификации присутствия базовых станций в эфире. По аналогии с beacon-пакетами в WiFi-сетях, каждый такой burst передается на полной мощности, а также содержит информацию о BTS, необходимую для синхронизации с ней: частота кадров, идентификационные данные (BSIC), и прочие.

Dummy Burst
Фиктивный burst, передаваемый базовой станцией для заполнения неиспользуемых таймслотов. Дело в том, что если на канале нет никакой активности, мощность сигнала текущего ARFCN будет значительно меньше. В этом случае мобильному телефону может показаться, что он далеко от базовой станции. Чтобы этого избежать, BTS заполняет неиспользуемые таймслоты бессмысленным трафиком.

Access Burst
При установлении соединения с BTS мобильный телефон посылает запрос выделенного канала SDCCH на канале RACH. Базовая станция, получив такой burst, назначает абоненту его тайминги системы FDMA и отвечает на канале AGCH, после чего мобильный телефон может получать и отправлять Normal Bursts. Стоит отметить увеличенную продолжительность Guard time, так как изначально ни телефону, ни базовой станции не известна информация о временных задержках. В случае, если RACH-запрос не попал в таймслот, мобильный телефон спустя псевдослучайный промежуток времени посылает его снова.

2.6 Frequency Hopping

Цитата из Википедии:

Псевдослучайная перестройка рабочей частоты (FHSS - англ. frequency-hopping spread spectrum) - метод передачи информации по радио, особенность которого заключается в частой смене несущей частоты. Частота меняется в соответствии с псевдослучайной последовательностью чисел, известной как отправителю, так и получателю. Метод повышает помехозащищённость канала связи.


3.1 Основные векторы атак

Посколько Um-интерфейс является радиоинтерфейсом, весь его трафик «виден» любому желающему, находящемуся в радиусе действия BTS. Причем анализировать данные, передаваемые через радиоэфир, можно даже не выходя из дома, используя специальное оборудование (например, старый мобильный телефон, поддерживаемый проектом OsmocomBB, или небольшой донгл RTL-SDR) и прямые руки самый обычный компьютер.

Выделяют два вида атаки: пассивная и активная. В первом случае атакующий никак не взаимодействует ни с сетью, ни с атакуемым абонентом - исключительно прием и обработка информации. Не трудно догадаться, что обнаружить такую атаку почти не возможно, но и перспектив у нее не так много, как у активной. Активная атака подразумевает взаимодействие атакующего с атакуемым абонентом и/или сотовой сетью.

Можно выделить наиболее опасные виды атак, которым подвержены абоненты сотовых сетей:

  • Сниффинг
  • Утечка персональных данных, СМС и голосовых звонков
  • Утечка данных о местоположении
  • Спуфинг (FakeBTS или IMSI Catcher)
  • Удаленный захват SIM-карты, исполнение произвольного кода (RCE)
  • Отказ в обслуживании (DoS)

3.2 Идентификация абонентов

Как уже упоминалось в начале статьи, идентификация абонентов выполняется по IMSI, который записан в SIM-карте абонента и HLR оператора. Идентификация мобильных телефонов выполняется по серийному номеру - IMEI. Однако, после аутентификации ни IMSI, ни IMEI в открытом виде по эфиру не летают. После процедуры Location Update абоненту присваивается временный идентификатор - TMSI (Temporary Mobile Subscriber Identity), и дальнейшее взаимодействие осуществляется именно с его помощью.

Способы атаки
В идеале, TMSI абонента известен только мобильному телефону и сотовой сети. Однако, существуют и способы обхода данной защиты. Если циклически звонить абоненту или отправлять SMS-сообщения (а лучше Silent SMS), наблюдая за каналом PCH и выполняя корреляцию, можно с определенной точностью выделить TMSI атакуемого абонента.

Кроме того, имея доступ к сети межоператорного взаимодействия SS7, по номеру телефона можно узнать IMSI и LAC его владельца. Проблема в том, что в сети SS7 все операторы «доверяют» друг другу, тем самым снижая уровень конфиденциальности данных своих абонентов.

3.3 Аутентификация

Для защиты от спуфинга, сеть выполняет аутентификацию абонента перед тем, как начать его обслуживание. Кроме IMSI, в SIM-карте хранится случайно сгенерированная последовательность, называемая Ki, которую она возвращает только в хэшированном виде. Также Ki хранится в HLR оператора и никогда не передается в открытом виде. Вцелом, процесс аутентификации основан на принципе четырехстороннего рукопожатия:

  1. Абонент выполняет Location Update Request, затем предоставляет IMSI.
  2. Сеть присылает псевдослучайное значение RAND.
  3. SIM-карта телефона хэширует Ki и RAND по алгоритму A3. A3(RAND, Ki) = SRAND.
  4. Сеть тоже хэширует Ki и RAND по алгоритму A3.
  5. Если значение SRAND со стороны абонента совпало с вычисленным на стороне сети, значит абонент прошел аутентификацию.

Способы атаки
Перебор Ki, имея значения RAND и SRAND, может занять довольно много времени. Кроме того, операторы могут использовать свои алгоритмы хэширования. В сети довольно мало информации о попытках перебора. Однако, не все SIM-карты идеально защищены. Некоторым исследователям удавалось получить прямой доступ к файловой системе SIM-карты, а затем извлечь Ki.

3.4 Шифрование трафика

Согласно спецификации, существует три алгоритма шифрования пользовательского трафика:
  • A5/0 - формальное обозначение отсутствия шифрования, так же как OPEN в WiFi-сетях. Сам я ни разу не встречал сетей без шифрования, однако, согласно gsmmap.org , в Сирии и Южной Корее используется A5/0.
  • A5/1 - самый распространенный алгоритм шифрования. Не смотря на то, что его взлом уже неоднократно демонстрировался на различных конференциях, используется везде и повсюду. Для расшифровки трафика достаточно иметь 2 Тб свободного места на диске, обычный персональный компьютер с Linux и программой Kraken на борту.
  • A5/2 - алгоритм шифрования с умышленно ослабленной защитой. Если где и используется, то только для красоты.
  • A5/3 - на данный момент самый стойкий алгоритм шифрования, разработанный еще в 2002 году. В интернете можно найти сведения о некоторых теоретически возможных уязвимостях, однако на практике его взлом еще никто не демонстрировал. Не знаю, почему наши операторы не хотят использовать его в своих 2G-сетях. Ведь для это далеко не помеха, т.к. ключи шифрования известны оператору и трафик можно довольно легко расшифровывать на его стороне. Да и все современные телефоны прекрасно его поддерживают. К счастью, его используют современные 3GPP-сети.
Способы атаки
Как уже говорилось, имея оборудование для сниффинга и компьютер с 2 Тб памяти и программой Kraken, можно довольно быстро (несколько секунд) находить сессионные ключи шифрования A5/1, а затем расшифровывать чей-угодно трафик. Немецкий криптолог Карстен Нол (Karsten Nohl) в 2009 году продемонстрировал способ взлома A5/1. А через несколько лет Карстен и Сильвиан Мюно продемонстрировали перехват и способ дешифровки телефонного разговора с помошью нескольких старых телефонов Motorola (проект OsmocomBB).

Заключение

Мой длинный рассказ подошел к концу. Более подробно и с практической стороны с принципами работы сотовых сетей можно будет познакомиться в цикле статей Знакомство с OsmocomBB , как только я допишу оставшиеся части. Надеюсь, у меня получилось рассказать Вам что-нибудь новое и интересное. Жду Ваших отзывов и замечаний! Добавить метки


Top