Долгожданный Ivy Bridge. Успех или провал? Инструменты для разгона. Тестовый стенд AMD

ВведениеЛюбые статьи, посвящённые новым интеловским процессорам, принято начинать с рассказа о принципе «тик-так» и о, том, какое место в нём занимают новинки. У кого-то даже может сложиться впечатление, что Intel действительно неизвестно зачем слепо следует этому эмпирическому правилу. Однако в реальности все шаги по разработке и внедрению новых микроархитектур и новых производственных технологий делаются по другим законам – законам бизнеса. Тик-так же – это просто наглядная иллюстрация технического прогресса, когда-то пришедшаяся очень к месту и со временем приобретшая статус непреложной истины.

Поэтому рано или поздно принцип «тик-так» должен был быть нарушен. И случилось это теперь, в момент выхода процессоров семейства Ivy Bridge. Согласно изначальной концепции, сейчас должна происходить итерация «тик», означающая простой перевод старой микроархитектуры Sandy Bridge на новые технологические рельсы с 22-нм нормами. Но по факту Ivy Bridge несёт в себе серьёзную переработку прошлого наследия. Конечно, Intel пока ещё как-то пытается спасти своё «правило маятника», и говорит о Ivy Bridge, как о фазе «тик+», но на самом деле представители фирмы кривят душой, и новинка вполне могла быть отнесена и к противоположному такту.



Практическим результатом усовершенствований в технологическом процессе является возможность беспрепятственного снижения их рабочего напряжения и, как следствие, соответствующее падение тепловыделения. Так, с вводом 22-нм техпроцесса Intel уменьшает напряжение питания своих процессоров примерно на 0.2 В, что на практике выливается примерно в 20-процентное падение энергопотребления и тепловыделения.

Однако этим дело не ограничивается. Новый техпроцесс делает возможным усложнение процессорного кристалла, позволяя нарастить его транзисторный бюджет без ущерба для рабочих характеристик.



Обычно в этом случае разработчики увеличивают объёмы кэш-памяти, однако в Ivy Bridge открывшиеся возможности использованы по-другому.



Говоря вкратце, изменения в микроархитектуре Ivy Bridge сделаны по многим фронтам. Но ключевые улучшения, наиболее бросающиеся в глаза после знакомства с новинками, следующие:

Внедрён новый подход к управлению тепловыделением: конфигурируемый TDP;
Графическое ядро Ivy Bridge получило дополнительные исполнительные устройства и поддержку DirectX 11;
Технология Quick Sync обновлена до второй версии;
В процессоре добавился встроенный аппаратный генератор случайных чисел и защита ОС от атак типа «повышение привилегий»;
Контроллер памяти получил поддержку более скоростной и низковольтовой памяти;
Встроенный в процессор контроллер PCI Express получил поддержку PCI Express 3.0.

При этом принципы построения процессоров с микроархитектурой Ivy Bridge остались такими же, как и у Sandy Bridge. Так же как и предшественники, новые процессоры базируются на едином полупроводниковом кристалле, включающем одновременно вычислительные и графическое ядра. Кеш третьего уровня сохранил модульную структуру и доступен для всех процессорных блоков, включая графическое ядро. На своём месте в процессоре остались интегрированные контроллеры памяти и шины PCI Express. А все перечисленные составные компоненты CPU объединены в единое целое хорошо зарекомендовавшей себя кольцевой шиной.



Также, осталась без изменений и шина DMI 2.0, предназначенная для коммуникаций между процессором и чипсетом. Это означает, что Ivy Bridge может работать в тех же LGA 1155 системах, что и Sandy Bridge безо всяких ограничений. Конечно, вместе с новинками Intel предлагает использовать новые наборы логики седьмой серии во главе с Z77, однако острой необходимости в этом нет, а тот же Z77 отличается от предшествующего Z68, главным образом, внедрением шины USB 3.0.



Непосредственно в вычислительных ядрах Ivy Bridge изменений сделано не так уж и много. В первую очередь интерес вызывает появление в процессоре аппаратного датчика случайных чисел, который будет незаменим в криптографических задачах.



Здесь речь идёт не о псевдослучайном датчике, который выдаёт числа в соответствии с какой-то математической последовательностью, а о самом настоящем случайном датчике, использующем для генерации случайных чисел физический процесс с неопределённым состоянием. Часто для этой цели используется счётчик Гейгера, но Intel придумала схему, основанную на неопределённости состояния хитрой электронной полупроводниковой схемы. Это позволяет генерировать поток случайных чисел в соответствии с требованиями криптографических стандартов. Причём с высокой производительностью, достигающей 2-3 Гбит/с.

Ещё одно крайне полезное улучшение - режим Supervisory Mode Execute Protection, который должен помочь в защите от использования уязвимостей типа «повышение привилегий».



Смысл этого нововведения состоит в том, чтобы закрыть для посторонних приложений доступ в имеющие более высокие привилегии сервисы операционной системы и не дать возможности пользовательским приложениям внедрять свои данные «куда не следует». Для решения этой задачи память, задействующаяся обычными программами, может маркироваться специальным флагом, делающим невозможным исполнение её содержимого в режимах с супервизорскими полномочиями.

Кое-что сделано и для простого увеличения вычислительной производительности. Правда, Intel говорит, что на серьёзное увеличение числа исполняемых за такт инструкций рассчитывать не следует, рост быстродействия на одной тактовой частоте по сравнению с Sandy Bridge должен составить порядка 4-6 %. Основное ускорение будет наблюдаться на операциях деления целых и вещественных чисел, при преобразовании данных между 16-битным и 32-битным форматом и при перемещениях строковых данных. Помимо этого, определённые улучшения внесены в менеджмент разделяемых процессорных ресурсов при работе технологии Hyper-Threading.

Основные же переделки микроархитектуры касаются графического ядра. Именно оно поглотило почти 400 млн. транзисторов, на которые полупроводниковые Ivy Bridge превосходят своих предшественников. Это и неудивительно. Несмотря на то, что графика в Sandy Bridge стала существенно лучше, чем было раньше, пользователям явно не хватало полноценной поддержки DirectX 11, GPGPU-вычислений и более-менее нормальной производительности, по крайней мере, при мобильных применениях процессора. Теперь же, в Ivy Bridge, всё это есть. Это вполне может поставить Ivy Bridge в один ряд с AMD Llano, то есть новый интеловский процессор – это в какой-то мере даже APU.

Блок-схема графического ядра приведена на следующем рисунке:



Рост производительности графического ядра обуславливается увеличением количества исполнительных устройств. В Sandy Bridge максимальное количество таких устройств - 12, при этом на каждое из них приходится по одному текстурному блоку. В Ivy Bridge максимальное число исполнительных устройств выросло до 16, причём на каждое устройство полагается по два блока текстурирования. Ещё одно важное изменение - добавление в графическое ядро собственной быстрой кеш-памяти.

Нововведения в GPU носят не только экстенсивный характер. В графическое ядро Ivy Bridge добавлены блоки для аппаратной тесселяции, а также внесена поддержка Shader Array (что, собственно, и позволило добиться совместимости с Shader Model 5.0 и DirectX 11). Много изменений направлено и на ускорение или улучшение каких-то конкретных операций. Например, в корне переработаны алгоритмы анизотропной фильтрации, которая работает теперь на порядок качественнее.

Инновации не обошли стороной и технологию Quick Sync. Её вторая версия обещает не только возросшую производительность, но и дополнительные функции, обеспечивающие улучшение качества кодирования. Параллельно изменения претерпел и аппаратный видеодекодер. Его мощности рассчитаны теперь на одновременное воспроизведение не менее 16 видеопотоков высокого разрешения, и к тому же он сможет работать с пост-Full HD-видеоконтентом в формате 4096x2304.

Определённую работу специалисты Intel провели и в части совершенствования возможностей вывода изображения. Графика Ivy Bridge при условии использования этих процессоров вместе с материнскими платами на чипсетах седьмой серии может выводить изображение на три независимых дисплея (Sandy Bridge умеет только на два).




Впрочем, многие пользователи десктопных систем вряд ли заметят изменения графического ядра. В большинстве настольных компьютеров используется внешняя графическая карта, а встроенная в процессор графика отключается. Однако даже в этом случае процессорам Ivy Bridge есть чем похвастать. Встроенный контроллер графической шины PCI Express получил в новых CPU поддержку третьей версии данной спецификации. Это означает не только почти двукратное увеличение её пропускной способности, но и возможность подключения к шестнадцати процессорным линиям PCIe до трёх устройств, которыми могут быть не только работающие в режимах SLI и CrossfireX видеокарты, но и контроллеры шины Thunderbolt.

Модельный ряд Ivy Bridge

В целом, для десктопных пользователей образ Ivy Bridge вырисовывается не слишком привлекательным. Если не брать в рассмотрение графическое ядро, которое без лишних преувеличений можно отнести к новому поколению встраиваемых в процессоры GPU, основные улучшения новинки – это появление поддержки PCI Express 3.0 и сниженное тепловыделение. Однако самого главного, а именно увеличения числа обрабатываемых за такт инструкций, Ivy Bridge предложить не может. Тем не менее, это совершенно не помешало маркетологам Intel использовать для нумерации новых процессоров номера из трёхтысячной серии. Процессоры Ivy Bridge позиционируются как более новая замена Sandy Bridge, и они будут постепенно вытеснять предшественников из ассортимента Intel.

Надо заметить, что запуск семейства Ivy Bridge проходит не таким «широким фронтом», как это было в январе 2011 года, когда на рынок пришли Sandy Bridge. Внедрение новой 22-нм технологии породило определённые производственные проблемы, поэтому процессоры нового поколения будут появляться постепенно. Так, сегодня Intel представляет только четырёхъядерные модификации: мобильные и десктопные Core i7 и исключительно десктопные Core i5 нового поколения.



Прочие модели процессоров, использующих дизайн Ivy Bridge, будут приходить на рынок небольшими группами до конца этого года.

В сфере нашего прямого интереса находятся модели для десктопов. Их всего девять, из них четыре относится к числу энергоэффективных моделей. В следующей таблице мы приводим полный перечень Ivy Bridge для настольных систем, которые станут доступны в магазинах, начиная со следующей недели:



Первое, что бросается в глаза при знакомстве с формальными характеристиками новых процессоров, это – снизившееся расчётное тепловыделение старших моделей. Если наиболее быстрые процессоры поколения Sandy Bridge обладали 95-ваттным тепловым пакетом, то аналогичные по позиционированию Ivy Bridge выделяют не более 77 Вт тепла. Повышенная экономичность – результат внедрения нового технологического процесса. Но, к сожалению, частота новинок лежит ниже отметки 3.5 ГГц, а ведь именно такую частоту имеет Core i7-2700K, относящийся к предыдущему поколению. Получается, что быстрее стали разве только экономичные модели, у которых уровень TDP остался тем же, а частоты немного подросли. Обычные же модели предлагают лучшее соотношение производительности на ватт, но не более высокие тактовые частоты. Всё это вновь подводит к мысли о том, что наиболее весомым преимуществом новых процессоров выступает улучшенное графическое ядро, которое, к слову, присутствует в максимальной конфигурации как в любых процессорах Core i7, так и в старшем Core i5.

К счастью, для тех систем, которые комплектуются обычными не энергоэффективными CPU и используют внешние видеокарты, то есть для большинства десктопов, Ivy Bridge может предложить не только пониженное тепловыделение. Чтобы новые процессоры показывали более высокое быстродействие в реальных задачах, инженеры Intel провели в новинках ребаланс технологии Turbo Boost. Хотя интервал изменения частоты в рамках этой технологии и остался примерно тем же, что и раньше, теперь авторазгон процессора происходит агрессивнее. Даже в случае загрузки работой всех вычислительных ядер, тактовая частота может повышаться на 200 МГц выше номинала. Именно этот факт во многих случаях и обуславливает превосходство в тестах новых процессоров над старыми, имеющими аналогичные формальные характеристики.

Как мы тестировали

Для тестирования возможностей процессоров семейства Ivy Bridge компания Intel предоставила нам образец старшего процессора в линейке, Core i7-3770K.


Основным соперником для этой новинки выступил более ранний LGA 1155-процессор аналогичного класса, относящиеся к поколению Sandy Bridge - Core i7-2700K. Кроме того, в тестирование мы включили и представителей платформы LGA 2011 – процессоры семейства Sandy Bridge-E: Core i7-3930K и Сore i7-3820. И вдобавок, скорее следуя традиции, а не реальной необходимости, в испытаниях принял участие и старший процессор, предлагаемый компанией AMD, FX-8150.

Соответственно, состав тестовых систем включал следующие программные и аппаратные компоненты:

Процессоры:

AMD FX-8150 (Zambezi, 8 ядер, 3.6-4.2 ГГц, 8 Мбайт L3);
Intel Core i7-2700K (Sandy Bridge, 4 ядра + HT, 3.5-3.9 ГГц, 8 Мбайт L3);
Intel Core i7-3770K (Ivy Bridge, 4 ядра + HT, 3.5-3.9 ГГц, 8 Мбайт L3);
Intel Core i7-3820 (Sandy Bridge-E, 4 ядра + HT, 3.6-3.9 ГГц, 10 Мбайт L3);
Intel Core i7-3930K (Sandy Bridge-E, 6 ядер + HT, 3.2-3.8 ГГц, 12 Мбайт L3).

Процессорный кулер: NZXT Havik 140;
Материнские платы:

ASUS Crosshair V Formula (Socket AM3+, AMD 990FX + SB950);
ASUS P8Z77-V Deluxe (LGA1155, Intel Z77 Express);
ASUS Rampage IV Formula (LGA2011, Intel X79 Express).

Память:

2 x 4 GB, DDR3-1866 SDRAM, 9-11-9-27 (Kingston KHX1866C9D3K2/8GX);
4 x 4 GB, DDR3-1866 SDRAM, 9-11-9-27 (2 x Kingston KHX1866C9D3K2/8GX).

Графическая карта: EVGA GeForce GTX 580 Classified 3 GB (03G-P3-1588-AR);
Жёсткий диск: Intel SSD 520 240 GB (SSDSC2CW240A3K5).
Блок питания: Tagan TG880-U33II (880 Вт).
Операционная система: Microsoft Windows 7 SP1 Ultimate x64.
Драйверы:

AMD Chipset Driver 12.3;
Intel Chipset Driver 9.3.0.1019;
Intel Management Engine Driver 8.0.0.1399;
Intel Rapid Storage Technology 11.1.0.1006;
NVIDIA GeForce 296.10 Driver.

При тестировании системы, основанной на процессоре AMD FX-8150, патчи операционной системы KB2645594 и KB2646060 были установлены.

Производительность

Общая производительность

Для оценки производительности процессоров в общеупотребительных задачах мы традиционно используем тест Bapco SYSmark 2012, моделирующий работу пользователя в распространённых современных офисных программах и приложениях для создания и обработки цифрового контента. Идея теста очень проста: он выдаёт единственную метрику, характеризующую средневзвешенную скорость компьютера.



Ivy Bridge выглядит как определённый, хотя и небольшой шаг вперёд. Core i7-3770K предлагает на 4-5 процентов более высокую производительность, чем четырёхъядерные Sandy Bridge, относящиеся к семейству Core i7. Его преимущество базируется не только на микроархитектурных улучшениях. Напомним, новинки обладают более агрессивной реализацией технологии Turbo Boost, которая поднимает частоту процессоров при их полной загрузке работой не на 100, а на 200 мегагерц.

Более глубокое понимание результатов SYSmark 2012 способно дать знакомство с оценками производительности, получаемое в различных сценариях использования системы. Сценарий Office Productivity моделирует типичную офисную работу: подготовку текстов, обработку электронных таблиц, работу с электронной почтой и посещение Интернет-сайтов. Сценарий задействует следующий набор приложений: ABBYY FineReader Pro 10.0, Adobe Acrobat Pro 9, Adobe Flash Player 10.1, Microsoft Excel 2010, Microsoft Internet Explorer 9, Microsoft Outlook 2010, Microsoft PowerPoint 2010, Microsoft Word 2010 и WinZip Pro 14.5.



В сценарии Media Creation моделируется создание рекламного ролика с использованием предварительно отснятых цифровых изображений и видео. Для этой цели применяются популярные пакеты компании Adobe: Photoshop CS5 Extended, Premiere Pro CS5 и After Effects CS5.



Web Development - сценарий, в рамках которого моделируется создание web-сайта. Используются приложения: Adobe Photoshop CS5 Extended, Adobe Premiere Pro CS5, Adobe Dreamweaver CS5, Mozilla Firefox 3.6.8 и Microsoft Internet Explorer 9.



Сценарий Data/Financial Analysis посвящён статистическому анализу и прогнозированию рыночных тенденций, которые выполняются в Microsoft Excel 2010.



Сценарий 3D Modeling всецело посвящён созданию трёхмерных объектов и рендерингу статичных и динамических сцен с использованием Adobe Photoshop CS5 Extended, Autodesk 3ds Max 2011, Autodesk AutoCAD 2011 и Google SketchUp Pro 8.



В последнем сценарии, System Management, выполняется создание бэкапов и установка программного обеспечения и апдейтов. Здесь задействуются несколько различных версий Mozilla Firefox Installer и WinZip Pro 14.5.



Заметьте, Ivy Bridge хорошо выглядит при любых вариантах нагрузки. Похоже, на фоне Sandy Bridge у него нет явных слабых мест. Да и взяться им, откровенно говоря, неоткуда. Вычислительные ядра новинок, контроллер памяти и кэш-память практически полностью копируют микроархитектуру Sandy Bridge, предлагая лишь незначительные оптимизации, проявление которых мы и видим на диаграммах.

Игровая производительность

Как известно, производительность платформ, оснащенных высокопроизводительными процессорами, в подавляющем большинстве современных игр определяется мощностью графической подсистемы. Именно поэтому при тестировании процессоров мы стараемся проводить испытания так, чтобы по возможности снять нагрузку с видеокарты: выбираются наиболее процессорозависимые игры, а тесты проводятся без включения сглаживания и с установкой далеко не самых высоких разрешений. То есть, полученные результаты дают возможность оценить не столько уровень fps, достижимый в системах с современными видеокартами, сколько то, насколько хорошо проявляют себя процессоры с игровой нагрузкой в принципе. Следовательно, основываясь на приведённых результатах, вполне можно строить догадки о том, как будут вести себя процессоры и в будущем, когда на рынке появятся более быстрые варианты графических ускорителей.


















Честно говоря, флагманские процессоры Intel в большинстве современных игр показывают очень близкие результаты. Дело в том, что их производительности с лихвой хватает для нужд существующих игровых движков, а быстродействие почти всегда упирается в мощность графической подсистемы. Тем не менее, преимущество Ivy Bridge можно заметить и тут, хотя его величина не превышает и 5 процентов.

В дополнение к игровым тестам приведём и результаты синтетического бенчмарка Futuremark 3DMark 11, запущенного с профилем Performance.






Вполне естественно, что наилучшую производительность демонстрирует шестиядерный процессор Core i7-3930K. Если же сопоставлять между собой результаты четырёхъядерников, Core i7-3820, Core i7-3770K и Core i7-2700K, то представитель семейства Ivy Bridge за счёт микроархитектурных улучшений побеждает в физическом тесте. Правда, по общему показателю на первом месте – представитель платформы LGA 2011, которая обладает четырёхканальной памятью.

Тесты в приложениях

Уже к этому моменту можно с уверенностью говорить о том, что чудес быстродействия от Ivy Bridge ожидать не стоит. Эти процессоры могут предложить лишь небольшое ускорение по сравнению со своими предшественниками. По крайней мере, до тех пор, пока мы не касаемся производительности встроенного графического ядра, о котором мы поговорим подробно в одном из наших следующих материалов. Впрочем, давайте посмотрим, каким быстродействием может похвастать Core i7-3770K в различных ресурсоёмких приложениях.

Для измерения быстродействия процессоров при компрессии информации мы пользуемся архиватором WinRAR, при помощи которого с максимальной степенью сжатия архивируем папку с различными файлами общим объёмом 1.4 Гбайт.



Как и положено новинке, по сравнению с Core i7-2700K она показывает небольшое преимущество в скорости архивации. Однако четырёхъядерный Sandy Bridge-E для платформы LGA 2011 существенно быстрее – ему помогает более вместительный кэш третьего уровня и четырёхканальный контроллер памяти.

При тестировании скорости перекодирования аудио используется утилита Apple iTunes, при помощи которой осуществляется преобразование содержимого CD-диска в AAC-формат. Заметим, что характерной особенностью этой программы является способность использования лишь пары процессорных ядер.



Здесь преимущество Core i7-3770K над Core i7-2700K и Core i7-3820 составляет порядка 7-8 процентов.

Измерение производительности в Adobe Photoshop мы проводим с использованием собственного теста, представляющего собой творчески переработанный Retouch Artists Photoshop Speed Test, включающий типичную обработку четырёх 10-мегапиксельных изображений, сделанных цифровой камерой.



В Photoshop CS5 новая микроархитектура обеспечивает вполне типичный прирост в быстродействии, благодаря чему скорость Core i7-3770K доходит до уровня Core i7-3820.

С выходом восьмой версии популярного пакета для научных вычислений Wolfram Mathematica мы решили вернуть его в число используемых тестов. Для оценки производительности систем в нём используется встроенный в эту систему бенчмарк MathematicaMark8.



Свои стандартные 5 процентов отвоёвывает у четырёхъядерных носителей микроархитектуры Sandy Bridge Core i7-3770K и тут.

Производительность в Adobe Premiere Pro тестируется измерением времени рендеринга в формат H.264 Blu-Ray проекта, содержащего HDV 1080p25 видеоряд с наложением различных эффектов.



Работа в видеоконтентом относится к такому типу нагрузок, который раскрывает потенциал Ivy Bridge наиболее полно. Core i7-3770K опережает Core i7-2700K почти на 8 процентов.

Для измерения скорости перекодирования видео в формат H.264 используется x264 HD Benchmark 4.0, основанный на измерении времени обработки исходного видео в формате MPEG-2, записанного в разрешении 720p с потоком 4 Мбит/сек. Следует отметить, что результаты этого теста имеют огромное практическое значение, так как используемый в нём кодек x264 лежит в основе многочисленных популярных утилит для перекодирования, например, HandBrake, MeGUI, VirtualDub и проч.






Подобный предыдущему случаю результат можно наблюдать и при выполнении транскодирования кодеком x264. Правда, здесь процессору Ivy Bridge удаётся развить почти 10-процентное преимущество над флагманом предшествующего семейства.

По просьбам наших читателей используемый набор приложений пополнился и ещё одним бенчмарком, показывающим скорость работы с видеоконтентом высокого разрешения, - SVPmark3. Это специализированный тест производительности системы при работе с пакетом SmoothVideo Project, направленным на повышение плавности видео путём добавления в видеоряд новых кадров, содержащих промежуточные положения объектов. Приведённые в диаграмме числа – это результат бенчмарка на реальных FullHD-видеофрагментах без привлечения к расчётам мощностей графической карты.



Ещё один, прекрасно вписывающийся в общую картину, результат. Core i7-3770K оказывается в верхней части диаграммы, уступая лишь шестиядерному процессору для платформы LGA 2011. Иными словами, в лице представителя семейства Ivy Bridge мы имеем один из самых быстрых на сегодняшний день четырёхъядерников.

Вычислительную производительность и скорость рендеринга в Autodesk 3ds max 2011 мы измеряем, прибегая к услугам специализированного теста SPECapc for 3ds Max 2011.






Новинка прекрасно справляется и с нагрузкой, свойственной рабочим станциям. Хотя разница в производительности Core i7-3770K и Core i7-2700K тут немного меньше, чем обычно.

Ещё одним бенчмарком, направленным на измерение скорости финального рендеринга в пакетах трёхмерного моделирования, стало измерение скорости рендеринга тестового изображения в пакете Blender 2.6.



Зато при рендеринге в Blender преимущество Core i7-3770K над Core i7-2700K достигает 9 процентов.

В заключение мы провели небольшой вычислительный тест производительности в Microsoft Excel 2010. Его суть заключалась в обсчёте специально подготовленной таблицы с большим количеством формул.



И вновь - вполне типичный результат. Проведя тестирования представителя семейства Ivy Bridge в более чем десятке различных приложений, мы можем с уверенностью говорить о том, что он всегда работает быстрее, чем Sandy Bridge, имеющий аналогичные формальные характеристики. Уровень этого превосходства составляет около 6 процентов.

Более того, Core i7-3770K часто удаётся обойти и LGA 2011-процессор для платформы более высокого класса, Core i7-3820. Это происходит в том случае, когда приложения не требуют высокой скорости работы с памятью. Иными словами, по вычислительной производительности у Core i7-3770K, похоже, на сегодня нет достойных четырёхъядерных конкурентов.

Энергопотребление

Если небольшое улучшение производительности у процессоров нового поколения было вполне ожидаемо, то ситуация с энергопотреблением не столь однозначная. Понятно, что Ivy Bridge должны серьёзно превосходить по экономичности своих предшественников, но насколько?

Масла в огонь подливают и слухи о том, что Intel увеличила величину расчётного тепловыделения для старших моделей 22-нм процессоров до стандартных 95 Вт, хотя изначально предполагалось уменьшение этой величины до 77 Вт. Однако, как нам пояснили представители Intel, слухи эти с действительностью не имеют ничего общего. Реальный тепловой пакет новинок, включая и старшую модель Core i7-3770K, действительно ограничен величиной 77 Вт. Разночтения же появляются из-за того, что на коробках с новыми процессорами написана другая величина – 95 Вт. Но сделано это по политическим причинам, дабы не ломать стандартную и привычную шкалу 35/65/95 Вт, на которую ориентируются многочисленные партнёры Intel. То есть, приобретая Ivy Bridge, мы в любом случае вправе рассчитывать на примерно 20-процентное снижение энергопотребление по сравнению с 95-ваттными процессорами с предшествующей микроархитектурой.

На следующих ниже графиках, если иное не оговаривается отдельно, приводится полное потребление систем (без монитора), измеренное «после» блока питания и представляющее собой сумму энергопотребления всех задействованных в системе компонентов. КПД же самого блока питания в данном случае не учитывается. Во время измерений нагрузка на процессоры создавалась 64-битной версией утилиты LinX 0.6.4-AVX. Кроме того, для правильной оценки энергопотребления в простое мы активировали турбо-режим и все имеющиеся энергосберегающие технологии: C1E, C6 и Enhanced Intel SpeedStep.



В состоянии простоя системы на базе процессоров Ivy Bridge потребляют примерно столько же, сколько и аналогичные конфигурации, использующие в своей основе CPU поколения Sandy Bridge. Это объясняется тем, что уровень напряжения, устанавливаемый у Ivy Bridge технологией EIST при бездействии, составляет порядка 0.9 В и мало отличается от минимальных напряжений питания процессорных ядер Sandy Bridge. Да и современные процессоры в состоянии покоя требуют настолько мало электроэнергии, что их вклад в общее энергопотребление платформы оказывается минимальным.



При полной загрузке процессора работой прогресс, произошедший при внедрении техпроцесса с 22-нм нормами и трёхмерными транзисторами, сразу же выпячивается на первый план. Система с Core i7-3770K потребляет меньше, чем платформа с Core i7-2700K, на 20 процентов, и по экономичности новинкам, действительно, среди процессоров аналогичного класса, похоже, нет равных. И это пока мы ещё не видели энергоэффективных вариантов Ivy Bridge!



Тестирование энергопотребления при однопоточной нагрузке интересно тем, что в этом случае современные CPU включают турбо-режим, обеспечивая повышение производительности при сохранении тепловыделения и энергопотребления в допустимых пределах. Однако и тут Core i7-3770K оказывается заметно менее требователен по сравнению с Sandy Bridge.

Таким образом, с точки зрения соотношения производительности на ватт процессорам Ivy Bridge нет равных. И это, пожалуй, наиболее весомое их преимущество, особенно если принять во внимание то, что случилось с его разгонным потенциалом. Впрочем, об этом – ниже.

Разгон Ivy Bridge

С внедрением новых технологических процессов энтузиасты обычно связывают и улучшение разгонного потенциала процессоров. К этому есть объективные предпосылки и в случае с Ivy Bridge: даже у старших представителей этого семейства снизилось энергопотребление, а максимальная температура, при которой включается троттлинг, возросла до 105 градусов.

Кроме этого определённые надежды были и на то, что процессорам Ivy Bridge, в отличие от их предшественников, вернётся возможность разгона через изменение опорной частоты. Однако в этом отношении никаких хороших новостей нет: платформа LGA 1155 предполагает использование единого тактового генератора, который формирует частоту процессора вместе с частотами встроенных в чипсет контроллеров периферии и шин PCIe и DMI. Так что даже с использованием самого свежего набора системной логики Intel Z77, отклонение частоты базового тактового генератора, выходящее за пределы 105-107 МГц, приводит к неработоспособности всей системы.



Поэтому также как и ранее, разгон процессоров Ivy Bridge возможен лишь путём изменения коэффициентов умножения, которых у них предусмотрено три:

Основной множитель, задающий частоту вычислительных ядер процессора. Этот множитель полностью разблокирован у процессоров, относящихся к K-серии, у остальных же моделей допускается его увеличение на 4 шага выше номинала.
Множитель частоты графического ядра, позволяющий увеличение частоты процессорной графики с шагом в 50 МГц. Данный множитель доступен для изменения у любых моделей CPU.
Коэффициент, задающий частоту работы памяти. У процессоров Ivy Bridge возможно её изменение как с шагом 200, так и с шагом 266 МГц, что делает возможным огромное разнообразие режимов работы DDR3.

По сравнению с Sandy Bridge улучшений немного, но они есть. Максимально доступный множитель для процессоров K-серии вырос до 63, а, кроме того, появилась возможность гораздо более гибкого разгона оперативной памяти.



Вот, например, как выглядит список доступных режимов DDR3 на типичной LGA 1155 материнской плате с установленным процессором Ivy Bridge:



Надо заметить, что с приходом платформы LGA 1155 процедура разгона существенно упростилась. Кроме увеличения соответствующих множителей энтузиастам лишь требуется варьировать несколько напряжений, которые влияют на оверклокерские возможности.



У процессоров Ivy Bridge, как, впрочем, и у Sandy Bridge, таких напряжений пять:

Основное напряжение питания вычислительных ядер Vcc . Напрямую влияет на разгонный потенциал процессора. Номинальные значения для Ivy Bridge составляют порядка обычно 1.0 В или чуть более.
Напряжение питания графического ядра VCCAXG. Его увеличение помогает при увеличении частоты работы встроенной в процессор графики.
Напряжение VPLL. В большинстве случаев не оказывает влияния на разгон, по крайней мере до тех пор, пока речь не идёт об установлении рекордов с применением экстремальных методов охлаждения.
Напряжение питания системного агента VCCSA. Номинальное значение этого напряжение для Ivy Bridge установлено в 0.925 В. Его увеличение позволяет обеспечивать стабильность работы процессорного контроллера памяти при высоких частотах на памяти.
Напряжение питания памяти VDDQ. Изменение данного напряжения помогает при разгоне памяти, однако во избежание повреждения процессора Intel не рекомендует повышать его свыше 1.65 В.

И, как и ранее, отодвигает предельную частоту процессора, при которой он сохраняет стабильность, главным образом единственная величина – напряжение Vcc. Таким образом, с позиции теории процессоры Ivy Bridge выглядят как достаточно простые объекты для оверклокинга.

К сожалению, на практике выясняются неприятные нюансы. В нашей лаборатории было протестировано два экземпляра процессора семейства Ivy Bridge, но ни от одного из них мы так и не смогли добиться работоспособности на частотах, доступных при разгоне их предшественникам, относящимся к прошлому поколению. С применением входящего в нашу тестовую платформу воздушного кулера NZXT Havik 140 процессор Core i7-3770K мы смогли разогнать только до 4.6 ГГц.



При проведении оверклокерских испытаний напряжение питания CPU повышалось до 1.2 В. Как и с другими процессорами, в случае с Ivy Bridge увеличение этой величины положительно сказывается на раскрытии разгонного потенциала. Однако следует иметь в виду, что чрезмерное завышение напряжения может быть чревато деградацией и выходом процессоров из строя. Поэтому в данный момент, пока энтузиастами не накоплено никакой статистики по процессорам Ivy Bridge, выпускаемым по новому 22-нм техпроцессу, мы не рекомендуем прибегать к установке слишком больших значений Vcc. Учитывая же, что номинальное напряжение новинок лежит в окрестности 1.0 В, долгосрочная эксплуатация даже при 1.2 В может быть чревата неприятными последствиями. Именно поэтому от экспериментов по разгону при более высоких напряжениях мы пока воздержались.

Как бы то ни было, но частотный потенциал Ivy Bridge ожиданий не оправдывает. Мы даже не смогли разогнать процессоры этого семейства до рубежей, типичных для Sandy Bridge. Так что налицо ухудшение оверклокерских возможностей, которое, скорее всего, связано с сокращением геометрических размеров кристалла Ivy Bridge. По сравнению с Sandy Bridge он стал на 25 % меньше по общей площади, а вычислительные ядра так и вовсе сократились почти вдвое. Однако с современными схемами охлаждения процессорного кристалла обеспечить пропорциональное увеличение плотности теплового потока не удаётся, что при разгоне приводит к локальному перегреву участков вычислительных ядер. Косвенно подтверждают существование этой проблемы и высокие температуры ядер CPU во время работы, в то время как процессорный кулер остаётся почти холодным.



Слева – Sandy Bridge, справа – Ivy Bridge


В итоге, похоже, что с выходом Ivy Bridge звание лучшей платформы для энтузиастов по праву достаётся LGA 2011. Процессоры в этом исполнении не только имеют дополнительные возможности, позволяющие разгон увеличением частоты BCLK, но и предлагают лучший оверклокерский потенциал. Если же платформа LGA 2011 представляется вам слишком дорогой, то хорошей альтернативой для Ivy Bridge могут быть и старые процессоры Sandy Bridge. Тем более что при одинаковых тактовых частотах они проигрывают новинкам по вычислительной производительности не слишком заметно.

Выводы

Вне всяких сомнений, Ivy Bridge это – уверенный эволюционный шаг вперёд. Хотя принципиальных отличий от предшественников в части быстродействия никто и не обещал, интеловские разработчики смогли обеспечить достаточно заметный прирост производительности по сравнению с CPU предшествующего поколения в пределах 5-7 процентов. Конечно, достигается он не только микроархитектурными улучшениями, но и увеличением тактовых частот, однако это не столь важно, поскольку новые Core третьего поколения стоят не дороже представителей семейства Sandy Bridge, на смену которым они и приходят.

Более того, Ivy Bridge предлагают существенный прогресс в части электрических и тепловых характеристик. Их экономичность поднялась на принципиально новый уровень и позволяет добиться примерно 20-ваттного снижения потребления современных LGA 1155-систем при полной нагрузке.

Особенно приятно, что получение этих дивидендов не требует обновления платформы – новые процессоры способны работать в старых, купленных более года тому назад, LGA 1155-системах. Так что, в качестве варианта апгрейда новинки подходят очень хорошо. Тем более, что со сменой процессора платформа LGA 1155 приобретает поддержку более скоростного варианта графической шины PCI Express 3.0 и расширенного диапазона частот DDR3.

Думается, всего перечисленного уже вполне достаточно для того, чтобы назвать Ivy Bridge вполне удачным обновлением линейки интеловских процессоров. А, ведь, кроме этого, новинки способны предложить пользователям принципиально новое графическое ядро Intel HD 4000. Которое, в отличие от встроенной интеловской графики из Sandy Bridge, поддерживает DirectX 11, обладает GPGPU-функциональностью и может обеспечить неплохую производительность начального уровня.

Судя по всему, Ivy Bridge должен в первую очередь стать отличным вариантом для мобильных систем, и именно с прицелом на них он и разрабатывался. Поэтому с точки зрения пользователей десктопов большинство его плюсов несколько специфично, но, тем не менее, даже они не смогут высказать в адрес новинки никаких особенных претензий.

Единственная категория людей, которая может быть недовольна возможностями Ivy Bridge – это оверклокеры. Частотный потенциал новых процессоров, производимых по самому современному 22-нм технологическому процессу, неожиданно оказался немного хуже, чем у предшественников. Поэтому для использования в разогнанных системах Core третьего поколения пока подходит не лучшим образом. Однако мы ожидаем постепенного исправления этой ситуации. По мере совершенствования производства и выхода новых степпингов ядра предельные доступные для Ivy Bridge частоты должны отодвинуться и прийти в приемлемое для энтузиастов состояние.

Отсутствие стоящего конкурента в сегменте настольных центральных процессоров не мешает и не демотивирует Intel следовать своим традициям. Первая традиция закон Гордона Мура. Вторая традиция — реализация концепции «тик-так». Казалось бы, только вчера мы охали и ахали, удивляясь тому уровню производительности, что могли предоставить нам «камни» архитектуры Intel Sandy Bridge. А уже сегодня просим любить и жаловать новый виток эволюции кремниевого оверлорда — Intel Ivy Bridge!

Вот новый поворот

Думаем, очередной раз про закон Мура рассказывать нет смысла. Лучше более детально остановимся на концепции «тик-так». Согласно ей. Intel сначала выпускает процессор на новом техпроцессе, но старой архитектуры («тик»), а затем, наоборот, выпускает процессор на базе все того же техпроцесса, но с новой архитектурой («так»). Например. 32-нанометровые «камни» архитектуры Westmere (Intel Core І7-990Х) «тик-процессоры». А 32-нанометровые Intel Sandy Bridge (Intel Core І7-2700К) — «так-процессоры». Наконец, новые Intel Ivy Bridge и Intel Core І7-3770 в частности — опять «тик-процессоры».

Насиженное место

Примечательно, что Intel продолжает еще одну свою старую традицию. Уже давно новое поколение процессоров «тик-так» совместимо со старой платформой: Intel Core (архитектура Nehalem. 45 нм) — LGA1156/1366; Intel Core I3/І5/І7 первого поколения (Westmere 32 нм) — LGA1156/1366; Intel Core І3/І5/І7 второго поколения процессоров (Sandy Bridge 32 нм) — LGA1155/2011; наконец. Intel Core І5/І7 третьего поколения (Ivy Bridge. 22 нм) — снова LGA1155. Что тут сказать? Всем нам очень приятно! Материнские платы как на основе новых чипсетов Intel H67/P67/Z68 Express, так и на базе Intel Z77/ Н77/В75 Express с радостью подружатся с новыми 22-нанометровыми «камнями». Следовательно, у всех обладателей вышеперечисленных плат есть маневры для дальнейшего апгрейда системы.

В формате 3D

Теперь перейдем к самому главному, к обзору новейшей архитектуры. Хотя в случае «тик-процессоров» все довольно-таки условно. Так. основные черты Intel Ivy Bridge не претерпели изменений в сравнении с Intel Sandy Bridge (Intel Sandy Bridge-E выносим за скобки. не забывая о том. что, возможно, со временем выйдут свои (условно) Intel Ivy Bridge-E для платформы LGA2011). Топовые «камни» по-прежнему имеют до 4 физических ядер, но за счет технологии HyperThreading пользователь может рассчитывать на все восемь потоков. Как обычно, 22-нанометровые Intel Core І5 поддержки данной технологии будут лишены. Непосредственное кристалл интегрированы двухканальный набор памяти DDR3 и 16 разделяемых линий PCI Express последнего, третьего поколения с пропускной способностью 128 Гбит/с в одну сторону.
За счет перехода на более тонкий техпроцесс (хотя куда уже тоньше?) Intel Core І7-3770 имеет в своем распоряжении 1.4 миллиарда транзисторов. Для сравнения. Intel Core І7-2700К насчитывает всего 995 миллионов кремниевых затворов.
Площадь кристалла составляет 160 квадратных миллиметров, что на 30% меньше, нежели у кристалла Intel Sandy Bridge. Подобный рост транзисторов Intel Ivy Bridge связан не только с –«липосэкцией», но и с нетрадиционным расположением кремниевых элементов. Есть что-то общее с технологией LTO Ultrium, которая применяется для надежности хранения больших объемов данных. Эта технология нашла сове применение в катриджах LTO Ultrium. Дешевые ленты LTO можно купить на сайте storusint.com. С помощью этих лент можно хранить объемы до 800 Гб. Конструкция Tri-Gate подразумевает установку на подложке специального кремниевого ребра, покрытого так называемым High-K диэлектриком, расположенного вертикально и проходящего непосредственно сквозь затвор.
Таким образом, в Intel добились улучшенного переключения транзисторов и заметного уменьшения потребляемой электрической энергии. TDP топового на сегодняшний день Intel Ivy Bridge составляет всего (sic!) 77 Вт! И уж точно, если Intel Core І7-3770 может похвастать такой энергоэффективностью, то легко представить, каким уровнем потребления энергии будут обладать мобильные процессоры на базе этой архитектуры! Похоже, ноутбучные 22-нанометровые «камни» обречены на успех, причем полный и безоговорочный.

Очередной апгрейд

При том росте транзисторов, что мы наблюдаем в Intel Ivy Bridge, объем всех трех уровней SRAM-памяти совершенно не изменился. Обычно с ростом физических характеристик увеличивается и емкость кэша. Здесь же мы наблюдаем привычные 32 Кбайт для инструкций и данных, привычные 256 Кбайт для L2. а также привычные 8 Мбайт для L3. У Intel Core І5 (на данный момент заявлены три модели) кэш-память 3 уровня «весит» всего 6 Мбайт. Большая часть транзисторов Intel Ivy Bridge была потрачена на новое граф. ядро — Intel HD Graphics 4000. Видеосоставляющая «камня» может похвастать сразу 16 исполнительными блоками вместо 12 у Intel Sandy Bridge (читай — Intel HD Graphics 3000). Появилась и поддержка DirectX 11 вместе с шейдерами версии 5.0 и DirectCompiJte. Правда, в современные игры на высоких разрешениях и с максимальным качеством графики поиграть все равно не получится. Маловато будет! Тем не менее. Intel HD Graphics вполне хватит для сборки достаточно производительного НТРС. Встроенная графика поддерживает подключение до трех мониторов. Отметим, ч ю младшие Intel Ivy Bridge будут оснащаться менее производительным видеоядром Intel HD Graphics 2500.



Дела оверклокерские

Как обычно, процессоры Intel Core делятся на модели с заблокированным и разблокированным множителем. О благородстве того или иного «камня» говорит литера «К» в названии устройства. Как ты уже догадался, к нам попал процессор без возможности самостоятельно управлять частотой кремниевого девайса за счет увеличения множителя. Обидно. Максимальный множитель Intel Ivy Bridge был увеличен до х63. В свою очередь, максимальный коэффициент умножения у Intel Sandy Bridge находился на отметке х59. Кстати, Intel Core І7-3770К еще и работает на частоте 3.5 ГГц, что ровно на 100 МГц выше, нежели у Intel Core І7-3770.
Отметим, что все Ivy Bridge оснащены большим количеством делителей памяти. Если Intel Sandy Bridge могут работать с «мозгами» на частоте 2400 МГц, то тот же Intel Core І7-3770 поддерживает киты с частотой 2666 МГц и 2800 МГц!
К моменту написания данной статьи на ресурсе hwbot.org уже появился целый ряд интереснейших результатов. Так. при помощи воздушной системы охлаждения чешский энтузиаст gzhir сумел разогнать Intel Core І7-3770К до 5127 МГц! Понимаем, что с «камнем» может повезти не всем, однако стабильные 4500 МГц у абсолютного большинства Intel Ivy Bridge достижимы. Российскому оверклокеру KENTAVR777 при помощи СВО удалось поднять частоту «корки» до 5300 МГц. Для этого наш соотечественник просто увеличил множитель CPU до х53. а напряжение — до 1.6 В. Наконец, на момент написания статьи мировой рекорд по разгону Intel Core І7-3770К принадлежал тайваньскому оверклокеру AndreYang. Житель Формозы при помощи жидкого азота смог снять валидацию на отметке 6936 МГц! Учитывая, что BIOS’ы материнских плат, а также непосредственно сам степпинг процессоров постоянно будут обновляться, мы гарантируем, что в самом ближайшем будущем топовые Intel Ivy Bridge покорят психологическую отметку в 7000 МГц!

Evolutio

По сути Intel Ivy Bridge не является чем-то революционным. Нет, скорее эволюционным. В новых «камнях» прогнозируемо увеличила свою производительность как х86составляющая, так и графическое ядро. Так как основная цель Intel была перенести имеющуюся архитектуру на плечи нового техпроцесса, то и залихватского прироста производительности мы не видим. Поэтому в сравнении хотя бы с Intel Core І7-2600К на штатных частотах смысла прямо сейчас бежать в магазин и менять свой Intel Sandy Bridge на Intel Ivy Bridge нет. Но если ты только-только планируешь собрать себе десктоп на базе платформы Intel, то «плющевые» процессоры подойдут как никогда кстати: они быстрее, холоднее, совместимы с любой LA1155-платой и имеют вполне адекватную стоимость.

Разгонный потенциал

В статье уже было сказано, что 99% процента Intel Ivy Bridge смогут стабильно работать на частоте 4500 МГц с применением воздушного охлаждения. Для этого необходимо увеличить напряжение «камня» с 0.9 В до 1.2 В. Но множество тестов со сторонних ресурсов показывают, что без применения экстремальных видов систем охлаждения новые 22-нанометровые «камни» гонятся хуже, нежели те же Intel Sandy Bridge. А вот с применением жидкого азота наоборот. Как только к нам в тестовую лабораторию доставят полноценный семпл Intel Core І7-3770К, мы обязательно уделим разгону этого «камня» самое что ни на есть пристальное внимание. Не пропусти!

И снова про разгонный потенциал

Стало известно, что тайваньский оверклокер HiCookie поставил очередной мировой рекорд по разгону процессор Intel Core І7-3770К. Азиатскоский энтузиаст в ходе отбора нескольких процессоров сумел найти тот неповторимый и единственный «камень», который под действием жидкого азота покорил психологическую отметку 7000! Если быть более точным, то HiCookie разогнал топовый Intel Ivy Bridge до 7032.7 МГц. При этом экстремал использовал отнюдь не самую топовую материнскую плату — GIGABYTE GA-Z77X-UD3H.
Буквально спустя несколько часов еще один тайваньский оверклокер — AndreYang — покорил результат своего соотечественника и разогнал Intel Core І7-3770К до 7074 МГц!
Наконец, громаднейший делитель памяти позволил установить мировой рекорд по разгону DDR3-памяти — 3280 МГц! И это с учетом того, что BCLK плат практически не гонится!

Результаты тестирования:

  • wPrime 1.55 1024т: 191.024 с
  • CINEBENCH R11.5 : 7.95 pts
  • WinRAR : 3738 Ибзйг/с
  • Super PI 1.5XS lm : 9.344 с
  • 3DMark Vantage, performance (CPU): 30460 (73178) баллов
  • 3DMark Vantage, performance, Intel HD Graphics 4000: 4037 баллов
  • 3DMark’06 : 6648 баллов
  • Battlefield 3 :61.92 FPS
  • The Elder Scrolls V : Skyrim: 60.5 FPS

Мы решили заняться немного другим сегментом компьютерных платформ, сходным с изученным по назначению, но претендующим на несколько иной уровень производительности. Если говорить проще, то объектами сегодняшнего тестирования будут процессоры семейства Core i7 от Intel. Тоже снабженные интегрированным графическим ядром (что у компании уже стало стандартом практически на всех уровнях, кроме совсем уж топового), пусть и более слабым, чем у конкурента, зато имеющие более производительную процессорную часть. Причем во всех трех моделях сходную по характеристикам - везде по четыре ядра (способных одновременно выполнять восемь потоков вычисления), одинаковые тактовые частоты, одинаковые емкости кэш-памяти разных уровней, но разная микроархитектура. Ну а GPU - совсем разные и по функциональности, и по производительности. Как это все будет выглядеть в приложениях? А вот это-то мы и проверим.

Конфигурация тестовых стендов

Процессор Intel Core i7-2700K Intel Core i7-3770K Intel Core i7-4770K
Название ядра Sandy Bridge Ivy Bridge Haswell
Технология пр-ва 32 нм 22 нм 22 нм
Частота ядра std/max, ГГц 3,5/3,9 3,5/3,9 3,5/3,9
Кол-во ядер(модулей)/потоков вычисления 4/8 4/8 4/8
Кэш L1 (сумм.), I/D, КБ 128/128 128/128 128/128
Кэш L2, КБ 4×256 4×256 4×256
Кэш L3, МиБ 8 8 8
Оперативная память 2×DDR3-1333 2×DDR3-1600 2×DDR3-1600
TDP, Вт 95 77 84
Графика HDG 3000 HDG 4000 HDG 4600
Кол-во ГП 48 64 80
Частота std/max, МГц 850/1350 650/1150 350/1250

Core i7-2700K не является старшим представителем семейства Sandy Bridge, да и в свежайшем Haswell уже появился Core i7-4790K , но мы взяли именно эту тройку по озвученной выше причине - равные тактовые частоты (как номинальные, так и в буст-режиме). Как видим, если не касаться графической части, они сходны вплоть до полной формальной идентичности, ну а две модели из трех вообще работают на одинаковых системных платах. Графика - очень разная, но именно на GPU и были сосредоточены основные усилия разработчиков последние годы, так что ничего удивительного.

Но есть и нюансы - если в Ivy Bridge и Haswell графические ядра различаются лишь количественно, но не качественно, то в Sandy Bridge GPU более слабый и функционально. В частности, эти процессоры способны исполнять OpenCL-код только при помощи процессорных ядер, что делает их плохим выбором для гетерогенных вычислений. Кроме того, они не поддерживают DirectX 11, что может сказаться в игровых приложениях, да и с декодированием видеопотока не все гладко, в чем мы уже не раз убеждались. В общем, во времена господства этой архитектуры на рынке многие пользователи предпочитали не полагаться на возможности встроенного GPU, а приобретать какую-нибудь бюджетную дискретную «затычку для сокета». Мы опробовали и такой вариант, в качестве «затычки» взяв Radeon HD 6450 с пассивной системой охлаждения. Карта, безусловно, слабая, но функционально она GPU Sandy Bridge превосходит, да и ее сравнение с интегрированной графикой последующих поколений интересно.

Остается только упомянуть, что все процессоры мы тестировали с 8 ГБ памяти типа DDR3, работающей на максимальной штатно-поддерживаемой процессорами частоте. Также использовался одинаковый SSD Toshiba THNSNH256GMCT 256 ГБ, что позволяет сравнивать процессоры и по скорости загрузки приложений и контента (в бенчмарке iXBT Notebook Benchmark v.1.0, напомним, есть и такой тест) в одинаковых условиях.

Методика тестирования

Для оценки производительности мы использовали нашу методику измерения производительности с применением бенчмарков и . Все результаты тестирования в бенчмарке iXBT Notebook Benchmark v.1.0 мы нормировали относительно результатов Pentium G3250 с 8 ГБ памяти и SSD Intel 520 240 ГБ, а сама методика вычисления интегрального результата осталась неизменной. Еще одна программа, которую мы как обычно добавили к тестовому набору - бенчмарк Basemark CL 1.0.1.4, созданный для измерения производительности OpenCL-кода.

iXBT Notebook Benchmark v.1.0

Эта программа поддерживает GPGPU, но, как видим, «ускорительные» способности Radeon HD 6450 слишком малы, чтобы серьезно принимать их во внимание. Пожалуй что и к IGP более новых семейств Intel это тоже относится, так что в случае старших настольных моделей Core i7 данный тест можно относить к «процессорным». И хорошо демонстрирующий разницу между поколениям процессорных ядер - ≈+10% на каждом шаге. Что неплохо для перехода от Sandy Bridge к Ivy Bridge (напомним - происходившим без смены платформы), но, разумеется, маловато для широко разрекламированного обновления архитектуры в виде Haswell.

И выше был еще не самый плохой случай - в этих программах преимущества обновлений процессорных архитектур во-первых еще более эфемерны, а во-вторых «первый шаг» еще и вдвое «весомей» второго.

В Photoshop сам по себе прирост производительности выше, однако опять убеждаемся в том, что важным был выход Ivy Bridge. А Haswell на его фоне теряется.

И даже так бывает: +10% в рамках одной платформы и жирный ноль при ее смене.

Вот в распознавании текста 4770К от 3770К оторвался заметнее, нежели преимущество последнего над 2700К. Но все равно как-то маловато:)

Впрочем, в архиваторах все еще смешнее.

«Житейское быстродействие» всех трех систем одинаково - как и предполагалось.

Как мы помним, AMD сумела увеличить производительность процессорной части своих APU за три года на 20%, причем в основном это было связано с переходом с FM1 на FM2, а внедрение FM2+ не дало вообще ничего. У Intel увеличение производительности за тот же срок еще меньше, но радует хотя бы то, что Haswell нигде не отстал от предшественника.

Что еще забавно - снижение производительности при использовании дискретной видеокарты. Что ж - и такое в наше время бывает, что не может не радовать. Не в смысле снижения, а в том, что его нет при задействовании интегрированной графики, хотя лет 15 назад такое происходило сплошь и рядом.

OpenCL

А вот, пожалуй, объяснение - почему даже поддержка OpenCL не вытянула пару из i7-2700K и Radeon HD 6450: этот процессор даже в программном режиме способен интерпретировать такой код всего в полтора раза медленнее указанной видеокарты. Медленнее. Но в полтора раза причем в бенчмарке. Так что использование GPGPU не позволяет ничего ускорить в конечном итоге, поскольку весь выигрыш оказывается «съеден» необходимостью в пересылке данных и т.п. А GPU Core i7-3770K уже вдвое быстрее, чем Radeon HD 6450 и выходит на уровень старых AMD A8. HDG 4600 же в свою очередь способен конкурировать уже и со старыми А10. В общем, вот тут-то прогресс хорошо заметен.

Игры

Поскольку для качественных настроек недостаточно даже А10 (в чем мы недавно убедились), мы не стали использовать этот режим, ограничившись лишь «минималками», но в двух разрешениях.

На HDG 3000 бенчмарк не запускается, поскольку требует поддержки DirectX 11. Но хорошо заметно, что медленные решения с поддержкой этого стандарта для игры непригодны. Интегрированная же графика современных процессоров Intel спокойно «тянет» ее в низком разрешении и уже подбирается к «порогу играбельности» в FHD.

В Bioshok на Haswell уже можно попробовать играть и в FHD. Предыдущие поколения слабее, но HDG 4000 достаточно по крайней мере на низкое разрешение.

«Танчики» прекрасно себя чувствуют даже на Sandy Bridge, не говоря уже о более новых процессорах - «на минималках» можно спокойно играть и в FHD.

Ivy Bridge опять оказался точкой раздела - он уже и с FHD справляется. Ну а в целом - игра несложная для современных интегрированных решений.

Чего не скажешь про Metro - только Haswell приблизился к приемлемой частоте кадров, и только в низком разрешении.

Вот с Hitman он уже даже справляется.

В общем и целом, интегрированная графика Intel пока, безусловно, слабее, чем может предложить покупателю AMD - во всяком случае это верно для массовых настольных решений. Однако, как видим, поиграть уже можно во многое. Лучше, чем на некоторых до сих пор встречающихся в продаже видеокартах.

Итого

В приницпе, все уже в основном было сказано выше. Последним существенным изменением процессорной составляющей было появление микроархитектуры Sandy Bridge: использующие ее топовые модели Core i7 задрали планку производительности столь высоко, что существенно превысить этот уровень последующим процессорам не удалось. Разумеется, Core i7-2600K работал, все же, помедленнее, чем 2700К, а 4790К - на 10% быстрее, чем 4770К, но принципиально это дела не меняет: все старшие Core i7 вот уже три года как можно считать примерно одинаковыми в плане х86-производительности.

Что изменилось за эти годы радикально, так это интегрированное графическое ядро. Intel не только устанавливает его практически во все процессоры - компания добилась того, что и пользоваться им можно добровольно, а не под принуждением:) Разумеется, справедливо это только для тех случаев, когда речь не идет об игровом компьютере - поиграть-то на встроенном видео иногда можно, но лишь при низких настройках качества и/или в низком разрешении. А для получения большего удовольствия от игрового процесса следует использовать дискретную видеокарту. Как и ранее. Однако со всеми остальными задачами уже справится и IGP.

ВведениеЭтим летом компания Intel совершила странное: она умудрилась сменить целых два поколения процессоров, ориентированных на общеупотребительные персональные компьютеры. Сначала на смену Haswell пришли процессоры с микроархитектурой Broadwell, но затем в течение буквально пары месяцев они утратили свой статус новинки и уступили место процессорам Skylake, которые будут оставаться наиболее прогрессивными CPU как минимум ещё года полтора. Такая чехарда со сменой поколений произошла главным образом в связи с проблемами Intel, возникшими при внедрении нового 14-нм техпроцесса, который применяется при производстве и Broadwell, и Skylake. Производительные носители микроархитектуры Broadwell по пути в настольные системы сильно задержались, а их последователи вышли по заранее намеченному графику, что привело к скомканности анонса процессоров Core пятого поколения и серьёзному сокращению их жизненного цикла. В результате всех этих пертурбаций, в десктопном сегменте Broadwell заняли совсем узкую нишу экономичных процессоров с мощным графическим ядром и довольствуются теперь лишь небольшим уровнем продаж, свойственным узкоспециализированным продуктам. Внимание же передовой части пользователей переключилось на последователей Broadwell – процессоры Skylake.

Надо заметить, что в последние несколько лет компания Intel совсем не радует своих поклонников ростом производительности предлагаемых продуктов. Каждое новое поколение процессоров прибавляет в удельном быстродействии лишь по несколько процентов, что в конечном итоге приводит к отсутствию у пользователей явных стимулов к модернизации старых систем. Но выход Skylake – поколения CPU, по пути к которому Intel, фактически, перепрыгнула через ступеньку – внушал определённые надежды на то, что мы получим действительно стоящее обновление самой распространённой вычислительной платформы. Однако, ничего подобного так и не случилось: Intel выступила в своём привычном репертуаре. Broadwell был представлен общественности в качестве некого ответвления от основной линии процессоров для настольных систем, а Skylake оказались быстрее Haswell в большинстве приложений совсем незначительно .

Поэтому несмотря на все ожидания, появление Skylake в продаже вызвало у многих скептическое отношение. Ознакомившись с результатами реальных тестов, многие покупатели попросту не увидели реального смысла в переходе на процессоры Core шестого поколения. И действительно, главным козырем свежих CPU выступает прежде всего новая платформа с ускоренными внутренними интерфейсами, но не новая процессорная микроархитектура. И это значит, что реальных стимулов к обновлению основанных систем прошлых поколений Skylake предлагает немного.

Впрочем, мы бы всё-таки не стали отговаривать от перехода Skylake всех без исключения пользователей. Дело в том, что пусть Intel и наращивает производительность своих процессоров очень сдержанными темпами, с момента появления Sandy Bridge, которые всё ещё трудятся во многих системах, сменилось уже четыре поколения микроархитектуры. Каждый шаг по пути прогресса вносил свой вклад в увеличение производительности, и к сегодняшнему дню Skylake способен предложить достаточно существенный прирост в производительности по сравнению со своими более ранними предшественниками. Только чтобы увидеть это, сравнивать его надо не с Haswell, а с более ранними представителями семейства Core, появившимися до него.

Собственно, именно таким сравнением мы сегодня и займёмся. Учитывая всё сказанное, мы решили посмотреть, насколько выросла производительность процессоров Core i7 с 2011 года, и собрали в едином тесте старшие Core i7, относящиеся к поколениям Sandy Bridge, Ivy Bridge, Haswell, Broadwell и Skylake. Получив же результаты такого тестирования, мы постараемся понять, обладателям каких процессоров целесообразно затевать модернизацию старых систем, а кто из них может повременить до появления последующих поколений CPU. Попутно мы посмотрим и на уровень производительности новых процессоров Core i7-5775C и Core i7-6700K поколений Broadwell и Skylake, которые до настоящего момента в нашей лаборатории ещё не тестировались.

Сравнительные характеристики протестированных CPU

От Sandy Bridge до Skylake: сравнение удельной производительности

Для того, чтобы вспомнить, как же менялась удельная производительность интеловских процессоров в течение последней пятилетки, мы решили начать с простого теста, в котором сопоставили скорость работы Sandy Bridge, Ivy Bridge, Haswell, Broadwell и Skylake, приведённых к одной и той же частоте 4,0 ГГц. В этом сравнении нами были использованы процессоры линейки Core i7, то есть, четырёхъядерники, обладающие технологией Hyper-Threading.

В качестве основного тестового инструмента был взят комплексный тест SYSmark 2014 1.5, который хорош тем, что воспроизводит типичную пользовательскую активность в общеупотребительных приложениях офисного характера, при создании и обработке мультимедийного контента и при решении вычислительных задач. На следующих графиках отображены полученные результаты. Для удобства восприятия они нормированы, за 100 процентов принята производительность Sandy Bridge.



Интегральный показатель SYSmark 2014 1.5 позволяет сделать следующие наблюдения. Переход от Sandy Bridge к Ivy Bridge увеличил удельную производительность совсем незначительно – примерно на 3-4 процента. Дальнейший шаг к Haswell оказался гораздо более результативным, он вылился в 12-процентное улучшение производительности. И это – максимальный прирост, который можно наблюдать на приведённом графике. Ведь дальше Broadwell обгоняет Haswell всего лишь на 7 процентов, а переход от Broadwell к Skylake и вовсе наращивает удельную производительность лишь на 1-2 процента. Весь же прогресс от Sandy Bridge до Skylake выливается в 26-процентное увеличение производительности при постоянстве тактовых частот.

Более подробную расшифровку полученных показателей SYSmark 2014 1.5 можно посмотреть на трёх следующих графиках, где интегральный индекс производительности разложен по составляющим по типу приложений.









Обратите внимание, наиболее заметно с вводом новых версий микроархитектур прибавляют в скорости исполнения мультимедийные приложения. В них микроархитектура Skylake превосходит Sandy Bridge на целых 33 процента. А вот в счётных задачах, напротив, прогресс проявляется меньше всего. И более того, при такой нагрузке шаг от Broadwell к Skylake даже оборачивается небольшим снижением удельной производительности.

Теперь, когда мы представляем себе, что же происходило с удельной производительностью процессоров Intel в течение последних нескольких лет, давайте попробуем разобраться, чем наблюдаемые изменения были обусловлены.

От Sandy Bridge до Skylake: что изменилось в процессорах Intel

Сделать точкой отсчёта в сравнении разных Core i7 представителя поколения Sandy Bridge мы решили не просто так. Именно данный дизайн подвёл крепкий фундамент под всё дальнейшее совершенствование производительных интеловских процессоров вплоть до сегодняшних Skylake. Так, представители семейства Sandy Bridge стали первыми высокоинтегрированными CPU, в которых в одном полупроводниковом кристалле были собраны и вычислительные, и графическое ядра, а также северный мост с L3-кешем и контроллером памяти. Кроме того, в них впервые стала использоваться внутренняя кольцевая шина, посредством которой была решена задача высокоэффективного взаимодействия всех структурных единиц, составляющих столь сложный процессор. Этим заложенным в микроархитектуре Sandy Bridge универсальным принципам построения продолжают следовать все последующие поколения CPU без каких бы то ни было серьёзных корректив.

Немалые изменения в Sandy Bridge претерпела внутренняя микроархитектура вычислительных ядер. В ней не только была реализована поддержка новых наборов команд AES-NI и AVX, но и нашли применение многочисленные крупные улучшения в недрах исполнительного конвейера. Именно в Sandy Bridge был добавлен отдельный кеш нулевого уровня для декодированных инструкций; появился абсолютно новый блок переупорядочивания команд, основанный на использовании физического регистрового файла; были заметно улучшены алгоритмы предсказания ветвлений; а кроме того, два из трёх исполнительных порта для работы с данными стали унифицированными. Такие разнородные реформы, проведённые сразу на всех этапах конвейера, позволили серьёзно увеличить удельную производительность Sandy Bridge, которая по сравнению с процессорами предыдущего поколения Nehalem сразу выросла почти на 15 процентов. К этому добавился 15-процентный рост номинальных тактовых частот и отличный разгонный потенциал, в результате чего в сумме получилось семейство процессоров, которое до сих пор ставится в пример Intel, как образцовое воплощение фазы «так» в принятой в компании маятниковой концепции разработки.

И правда, подобных по массовости и действенности улучшений в микроархитектуре после Sandy Bridge мы уже не видели. Все последующие поколения процессорных дизайнов проводят куда менее масштабные усовершенствования в вычислительных ядрах. Возможно, это является отражением отсутствия реальной конкуренции на процессорном рынке, возможно причина замедления прогресса кроется в желании Intel сосредоточить усилия на совершенствовании графических ядер, а может быть Sandy Bridge просто оказался настолько удачным проектом, что его дальнейшее развитие требует слишком больших трудозатрат.

Отлично иллюстрирует произошедший спад интенсивности инноваций переход от Sandy Bridge к Ivy Bridge. Несмотря на то, что следующее за Sandy Bridge поколение процессоров и было переведено на новую производственную технологию с 22-нм нормами, его тактовые частоты совсем не выросли. Сделанные же улучшения в дизайне в основном коснулись ставшего более гибким контроллера памяти и контроллера шины PCI Express, который получил совместимость с третьей версией данного стандарта. Что же касается непосредственно микроархитектуры вычислительных ядер, то отдельные косметические переделки позволили добиться ускорения выполнения операций деления и небольшого увеличения эффективности технологии Hyper-Threading, да и только. В результате, рост удельной производительности составил не более 5 процентов.

Вместе с тем, внедрение Ivy Bridge принесло и то, о чём теперь горько жалеет миллионная армия оверклокеров. Начиная с процессоров этого поколения, Intel отказалась от сопряжения полупроводникового кристалла CPU и закрывающей его крышки посредством бесфлюсовой пайки и перешла на заполнение пространства между ними полимерным термоинтерфейсным материалом с очень сомнительными теплопроводящими свойствами. Это искусственно ухудшило частотный потенциал и сделало процессоры Ivy Bridge, как и всех их последователей, заметно менее разгоняемыми по сравнению с очень бодрыми в этом плане «старичками» Sandy Bridge.

Впрочем, Ivy Bridge – это всего лишь «тик», а потому особых прорывов в этих процессорах никто и не обещал. Однако никакого воодушевляющего роста производительности не принесло и следующее поколение, Haswell, которое, в отличие от Ivy Bridge, относится уже к фазе «так». И это на самом деле немного странно, поскольку различных улучшений в микроархитектуре Haswell сделано немало, причём они рассредоточены по разным частям исполнительного конвейера, что в сумме вполне могло бы увеличить общий темп исполнения команд.

Например, во входной части конвейера была улучшена результативность предсказания переходов, а очередь декодированных инструкций стала делиться между параллельными потоками, сосуществующими в рамках технологии Hyper-Threading, динамически. Попутно произошло увеличение окна внеочередного исполнения команд, что в сумме должно было поднять долю параллельно выполняемого процессором кода. Непосредственно в исполнительном блоке были добавлены два дополнительных функциональных порта, нацеленных на обработку целочисленных команд, обслуживание ветвлений и сохранение данных. Благодаря этому Haswell стал способен обрабатывать до восьми микроопераций за такт – на треть больше предшественников. Более того, новая микроархитектура удвоила и пропускную способность кеш-памяти первого и второго уровней.

Таким образом, улучшения в микроархитектуре Haswell не затронули лишь скорость работы декодера, который, похоже, на данный момент стал самым узким местом в современных процессорах Core. Ведь несмотря на внушительный список улучшений, прирост удельной производительности у Haswell по сравнению с Ivy Bridge составил лишь около 5-10 процентов. Но справедливости ради нужно оговориться, что на векторных операциях ускорение заметно гораздо сильнее. А наибольший выигрыш можно увидеть в приложениях, использующих новые AVX2 и FMA-команды, поддержка которых также появилась в этой микроархитектуре.

Процессоры Haswell, как и Ivy Bridge, сперва тоже не особенно понравились энтузиастам. Особенно если учесть тот факт, что в первоначальной версии никакого увеличения тактовых частот они не предложили. Однако спустя год после своего дебюта Haswell стали казаться заметно привлекательнее. Во-первых, увеличилось количество приложений, обращающихся к наиболее сильным сторонам этой архитектуры и использующих векторные инструкции. Во-вторых, Intel смогла исправить ситуацию с частотами. Более поздние модификации Haswell, получившие собственное кодовое наименование Devil’s Canyon, смогли нарастить преимущество над предшественниками благодаря увеличению тактовой частоты, которая, наконец, пробила 4-гигагерцовый потолок. Кроме того, идя на поводу у оверклокеров, Intel улучшила полимерный термоинтерфейс под процессорной крышкой, что сделало Devil’s Canyon более подходящими объектами для разгона. Конечно, не такими податливыми, как Sandy Bridge, но тем не менее.

И вот с таким багажом Intel подошла к Broadwell. Поскольку основной ключевой особенностью этих процессоров должна была стать новая технология производства с 14-нм нормами, никаких значительных нововведений в их микроархитектуре не планировалось – это должен был быть почти самый банальный «тик». Всё необходимое для успеха новинок вполне мог бы обеспечить один только тонкий техпроцесс с FinFET-транзисторами второго поколения, в теории позволяющий уменьшить энергопотребление и поднять частоты. Однако практическое внедрение новой технологии обернулось чередой неудач, в результате которых Broadwell досталась лишь экономичность, но не высокие частоты. В итоге те процессоры этого поколения, которые Intel представила для настольных систем, вышли больше похожими на мобильные CPU, чем на продолжателей дела Devil’s Canyon. Тем более, что кроме урезанных тепловых пакетов и откатившихся частот они отличаются от предшественников и уменьшившимся в объёме L3-кешем, что, правда, несколько компенсируется появлением расположенного на отдельном кристалле кэша четвёртого уровня.

На одинаковой с Haswell частоте процессоры Broadwell демонстрируют примерно 7-процентное преимущество, обеспечиваемое как добавлением дополнительного уровня кеширования данных, так и очередным улучшением алгоритма предсказания ветвлений вместе с увеличением основных внутренних буферов. Кроме того, в Broadwell реализованы новые и более быстрые схемы выполнения инструкций умножения и деления. Однако все эти небольшие улучшения перечёркиваются фиаско с тактовыми частотами, относящими нас в эпоху до Sandy Bridge. Так, например, старший оверклокерский Core i7-5775C поколения Broadwell уступает по частоте Core i7-4790K целых 700 МГц. Понятно, что ожидать какого-то роста производительности на этом фоне бессмысленно, лишь бы обошлось без её серьёзного падения.

Во многом именно из-за этого Broadwell и оказался непривлекательным для основной массы пользователей. Да, процессоры этого семейства отличаются высокой экономичностью и даже вписываются в тепловой пакет с 65-ваттными рамками, но кого это, по большому счёту, волнует? Разгонный же потенциал первого поколения 14-нм CPU оказался достаточно сдержанным. Ни о какой работе на частотах, приближающихся к 5-гигагерцовой планке речь не идёт. Максимум, которого можно добиться от Broadwell при использовании воздушного охлаждения пролегает в окрестности величины 4,2 ГГц. Иными словами, пятое поколение Core вышло у Intel, как минимум, странноватым. О чём, кстати, микропроцессорный гигант в итоге и пожалел: представители Intel отмечают, что поздний выход Broadwell для настольных компьютеров, его сокращённый жизненный цикл и нетипичные характеристики отрицательно сказались на уровне продаж, и больше компания на подобные эксперименты пускаться не планирует.

Новейший же Skylake на этом фоне представляется не столько как дальнейшее развитие интеловской микроархитектуры, сколько своего рода работа над ошибками. Несмотря на то, что при производстве этого поколения CPU используется тот же 14-нм техпроцесс, что и в случае Broadwell, никаких проблем с работой на высоких частотах у Skylake нет. Номинальные частоты процессоров Core шестого поколения вернулись к тем показателям, которые были свойственны их 22-нм предшественникам, а разгонный потенциал даже немного увеличился. На руку оверклокерам здесь сыграл тот факт, что в Skylake конвертер питания процессора вновь перекочевал на материнскую плату и снизил тем самым суммарное тепловыделение CPU при разгоне. Жаль только, что Intel так и не вернулась к использованию эффективного термоинтерфейса между кристаллом и процессорной крышкой.

Но вот что касается базовой микроархитектуры вычислительных ядер, то несмотря на то, что Skylake, как и Haswell, представляет собой воплощение фазы «так», нововведений в ней совсем немного. Причём большинство из них направлено на расширение входной части исполнительного конвейера, остальные же части конвейера остались без каких-либо существенных изменений. Перемены касаются улучшения результативности предсказания ветвлений и повышения эффективности блока предварительной выборки, да и только. При этом часть оптимизаций служит не столько для улучшения производительности, сколько направлена на очередное повышение энергоэффективности. Поэтому удивляться тому, что Skylake по своей удельной производительности почти не отличается от Broadwell, не следует.

Впрочем, существуют и исключения: в отдельных случаях Skylake могут превосходить предшественников в производительности и более заметно. Дело в том, что в этой микроархитектуре была усовершенствована подсистема памяти. Внутрипроцессорная кольцевая шина стала быстрее, и это в конечном итоге расширило полосу пропускания L3-кэша. Плюс к этому контроллер памяти получил поддержку работающей на высоких частотах памяти стандарта DDR4 SDRAM.

Но в итоге тем не менее получается, что бы там не говорила Intel о прогрессивности Skylake, с точки зрения обычных пользователей это – достаточно слабое обновление. Основные улучшения в Skylake сделаны в графическом ядре и в энергоэффективности, что открывает перед такими CPU путь в безвентиляторные системы планшетного форм-фактора. Десктопные же представители этого поколения отличаются от тех же Haswell не слишком заметно. Даже если закрыть глаза на существование промежуточного поколения Broadwell, и сопоставлять Skylake напрямую с Haswell, то наблюдаемый рост удельной производительности составит порядка 7-8 процентов, что вряд ли можно назвать впечатляющим проявлением технического прогресса.

Попутно стоит отметить, что не оправдывает ожиданий и совершенствование технологических производственных процессов. На пути от Sandy Bridge дo Skylake компания Intel сменила две полупроводниковых технологии и уменьшила толщину транзисторных затворов более чем вдвое. Однако современный 14-нм техпроцесс по сравнению с 32-нм технологией пятилетней давности так и не позволил нарастить рабочие частоты процессоров. Все процессоры Core последних пяти поколений имеют очень похожие тактовые частоты, которые если и превышают 4-гигагерцовую отметку, то совсем незначительно.

Для наглядной иллюстрации этого факта можно посмотреть на следующий график, на котором отображена тактовая частота старших оверклокерских процессоров Core i7 разных поколений.



Более того, пик тактовой частоты приходится даже не на Skylake. Максимальной частотой могут похвастать процессоры Haswell, относящиеся к подгруппе Devil’s Canyon. Их номинальная частота составляет 4,0 ГГц, но благодаря турбо-режиму в реальных условиях они способны разгоняться до 4,4 ГГц. Для современных же Skylake максимум частоты – всего лишь 4,2 ГГц.

Всё это, естественно, сказывается на итоговой производительности реальных представителей различных семейств CPU. И далее мы предлагаем посмотреть, как всё это отражается на быстродействии платформ, построенных на базе флагманских процессоров каждого из семейств Sandy Bridge, Ivy Bridge, Haswell, Broadwell и Skylake.

Как мы тестировали

В сравнении приняли участие пять процессоров Core i7 разных поколений: Core i7-2700K, Core i7-3770K, Core i7-4790K, Core i7-5775C и Core i7-6700K. Поэтому список комплектующих, задействованных в тестировании, получился достаточно обширным:

Процессоры:

Intel Core i7-2600K (Sandy Bridge, 4 ядра + HT, 3,4-3,8 ГГц, 8 Мбайт L3);
Intel Core i7-3770K (Ivy Bridge, 4 ядра + HT, 3,5-3,9 ГГц, 8 Мбайт L3);
Intel Core i7-4790K (Haswell Refresh, 4 ядра + HT, 4,0-4,4 ГГц, 8 Мбайт L3);
Intel Core i7-5775C (Broadwell, 4 ядра, 3,3-3,7 ГГц, 6 Мбайт L3, 128 Мбайт L4).
Intel Core i7-6700K (Skylake, 4 ядра, 4,0-4,2 ГГц, 8 Мбайт L3).

Процессорный кулер: Noctua NH-U14S.
Материнские платы:

ASUS Z170 Pro Gaming (LGA 1151, Intel Z170);
ASUS Z97-Pro (LGA 1150, Intel Z97);
ASUS P8Z77-V Deluxe (LGA1155, Intel Z77).

Память:

2x8 Гбайт DDR3-2133 SDRAM, 9-11-11-31 (G.Skill F3-2133C9D-16GTX);
2x8 Гбайт DDR4-2666 SDRAM, 15-15-15-35 (Corsair Vengeance LPX CMK16GX4M2A2666C16R).

Видеокарта: NVIDIA GeForce GTX 980 Ti (6 Гбайт/384-бит GDDR5, 1000-1076/7010 МГц).
Дисковая подсистема: Kingston HyperX Savage 480 GB (SHSS37A/480G).
Блок питания: Corsair RM850i (80 Plus Gold, 850 Вт).

Тестирование выполнялось в операционной системе Microsoft Windows 10 Enterprise Build 10240 с использованием следующего комплекта драйверов:

Intel Chipset Driver 10.1.1.8;
Intel Management Engine Interface Driver 11.0.0.1157;
NVIDIA GeForce 358.50 Driver.

Производительность

Общая производительность

Для оценки производительности процессоров в общеупотребительных задачах мы традиционно используем тестовый пакет Bapco SYSmark, моделирующий работу пользователя в реальных распространённых современных офисных программах и приложениях для создания и обработки цифрового контента. Идея теста очень проста: он выдаёт единственную метрику, характеризующую средневзвешенную скорость компьютера при повседневном использовании. После выхода операционной системы Windows 10 этот бенчмарк в очередной раз обновился, и теперь мы задействуем самую последнюю версию – SYSmark 2014 1.5.



При сравнении Core i7 разных поколений, когда они работают в своих номинальных режимах, результаты получаются совсем не такие, как при сопоставлении на единой тактовой частоте. Всё-таки реальная частота и особенности работы турбо-режима оказывает достаточно существенное влияние на производительность. Например, согласно полученным данным, Core i7-6700K быстрее Core i7-5775C на целых 11 процентов, но при этом его преимущество над Core i7-4790K совсем незначительно – оно составляет всего лишь порядка 3 процентов. При этом нельзя обойти вниманием и то, что новейший Skylake оказывается существенно быстрее процессоров поколений Sandy Bridge и Ivy Bridge. Его преимущество над Core i7-2700K и Core i7-3770K достигает 33 и 28 процентов соответственно.

Более глубокое понимание результатов SYSmark 2014 1.5 способно дать знакомство с оценками производительности, получаемое в различных сценариях использования системы. Сценарий Office Productivity моделирует типичную офисную работу: подготовку текстов, обработку электронных таблиц, работу с электронной почтой и посещение Интернет-сайтов. Сценарий задействует следующий набор приложений: Adobe Acrobat XI Pro, Google Chrome 32, Microsoft Excel 2013, Microsoft OneNote 2013, Microsoft Outlook 2013, Microsoft PowerPoint 2013, Microsoft Word 2013, WinZip Pro 17.5 Pro.



В сценарии Media Creation моделируется создание рекламного ролика с использованием предварительно отснятых цифровых изображений и видео. Для этой цели применяются популярные пакеты Adobe Photoshop CS6 Extended, Adobe Premiere Pro CS6 и Trimble SketchUp Pro 2013.



Сценарий Data/Financial Analysis посвящён статистическому анализу и прогнозированию инвестиций на основе некой финансовой модели. В сценарии используются большие объёмы численных данных и два приложения Microsoft Excel 2013 и WinZip Pro 17.5 Pro.



Результаты, полученные нами при различных сценариях нагрузки, качественно повторяют общие показатели SYSmark 2014 1.5. Обращает на себя внимание лишь тот факт, что процессор Core i7-4790K совсем не выглядит устаревшим. Он заметно проигрывает новейшему Core i7-6700K только в расчётном сценарии Data/Financial Analysis, а в остальных случаях либо уступает своему последователю на совсем малозаметную величину, либо вообще оказывается быстрее. Например, представитель семейства Haswell опережает новый Skylake в офисных приложениях. Но процессоры более старых годов выпуска, Core i7-2700K и Core i7-3770K, выглядят уже несколько устаревшими предложениями. Они проигрывают новинке в разных типах задач от 25 до 40 процентов, и это, пожалуй, является вполне достаточным основанием, чтобы Core i7-6700K можно было рассматривать в качестве достойной им замены.

Игровая производительность

Как известно, производительность платформ, оснащенных высокопроизводительными процессорами, в подавляющем большинстве современных игр определяется мощностью графической подсистемы. Именно поэтому при тестировании процессоров мы выбираем наиболее процессорозависимые игры, а измерение количества кадров выполняем дважды. Первым проходом тесты проводятся без включения сглаживания и с установкой далеко не самых высоких разрешений. Такие настройки позволяют оценить, насколько хорошо проявляют себя процессоры с игровой нагрузкой в принципе, а значит, позволяют строить догадки о том, как будут вести себя тестируемые вычислительные платформы в будущем, когда на рынке появятся более быстрые варианты графических ускорителей. Второй проход выполняется с реалистичными установками – при выборе FullHD-разрешения и максимального уровня полноэкранного сглаживания. На наш взгляд такие результаты не менее интересны, так как они отвечают на часто задаваемый вопрос о том, какой уровень игровой производительности могут обеспечить процессоры прямо сейчас – в современных условиях.

Впрочем, в этом тестировании мы собрали мощную графическую подсистему, основанную на флагманской видеокарте NVIDIA GeForce GTX 980 Ti. И в результате в части игр частота кадров продемонстрировала зависимость от процессорной производительности даже в FullHD-разрешении.

Результаты в FullHD-разрешении с максимальными настройками качества


















Обычно влияние процессоров на игровую производительность, особенно если речь идёт о мощных представителях серии Core i7, оказывается незначительным. Однако при сопоставлении пяти Core i7 разных поколений результаты получаются совсем не однородными. Даже при установке максимальных настроек качества графики Core i7-6700K и Core i7-5775C демонстрируют наивысшую игровую производительность, в то время как более старые Core i7 от них отстают. Так, частота кадров, которая получена в системе с Core i7-6700K превышает производительность системы на базе Core i7-4770K на малозаметный один процент, но процессоры Core i7-2700K и Core i7-3770K представляются уже ощутимо худшей основой геймерской системы. Переход с Core i7-2700K или Core i7-3770K на новейший Core i7-6700K даёт прибавку в числе fps величиной в 5-7 процентов, что способно оказать вполне заметное влияние на качество игрового процесса.

Увидеть всё это гораздо нагляднее можно в том случае, если на игровую производительность процессоров посмотреть при сниженном качестве изображения, когда частота кадров не упирается в мощность графической подсистемы.

Результаты при сниженном разрешении


















Новейшему процессору Core i7-6700K вновь удаётся показать наивысшую производительность среди всех Core i7 последних поколений. Его превосходство над Core i7-5775C составляет порядка 5 процентов, а над Core i7-4690K – около 10 процентов. В этом нет ничего странного: игры достаточно чутко реагируют на скорость подсистемы памяти, а именно по этому направлению в Skylake были сделаны серьёзные улучшения. Но гораздо заметнее превосходство Core i7-6700K над Core i7-2700K и Core i7-3770K. Старший Sandy Bridge отстаёт от новинки на 30-35 процентов, а Ivy Bridge проигрывает ей в районе 20-30 процентов. Иными словами, как бы ни ругали Intel за слишком медленное совершенствование собственных процессоров, компания смогла за прошедшие пять лет на треть повысить скорость работы своих CPU, а это – очень даже ощутимый результат.

Тестирование в реальных играх завершают результаты популярного синтетического бенчмарка Futuremark 3DMark.









Вторят игровым показателям и те результаты, которые выдаёт Futuremark 3DMark. При переводе микроархитектуры процессоров Core i7 c Sandy Bridge на Ivy Bridge показатели 3DMark выросли на величину от 2 до 7 процентов. Внедрение дизайна Haswell и выпуск процессоров Devil’s Canyon добавил к производительности старших Core i7 дополнительные 7-14 процентов. Однако потом появление Core i7-5775C, обладающего сравнительно невысокой тактовой частотой, несколько откатило быстродействие назад. И новейшему Core i7-6700K, фактически, пришлось отдуваться сразу за два поколения микроархитектуры. Прирост в итоговом рейтинге 3DMark у нового процессора семейства Skylake по сравнению с Core i7-4790K составил до 7 процентов. И на самом деле это не так много: всё-таки самое заметное улучшение производительности за последние пять лет смогли привнести процессоры Haswell. Последние же поколения десктопных процессоров, действительно, несколько разочаровывают.

Тесты в приложениях

В Autodesk 3ds max 2016 мы тестируем скорость финального рендеринга. Измеряется время, затрачиваемое на рендеринг в разрешении 1920x1080 с применением рендерера mental ray одного кадра стандартной сцены Hummer.



Ещё один тест финального рендеринга проводится нами с использованием популярного свободного пакета построения трёхмерной графики Blender 2.75a. В нём мы измеряем продолжительность построения финальной модели из Blender Cycles Benchmark rev4.



Для измерения скорости фотореалистичного трёхмерного рендеринга мы воспользовались тестом Cinebench R15. Maxon недавно обновила свой бенчмарк, и теперь он вновь позволяет оценить скорость работы различных платформ при рендеринге в актуальных версиях анимационного пакета Cinema 4D.



Производительность при работе веб-сайтов и интернет-приложений, построенных с использованием современных технологий, измеряется нами в новом браузере Microsoft Edge 20.10240.16384.0. Для этого применяется специализированный тест WebXPRT 2015, реализующий на HTML5 и JavaScript реально использующиеся в интернет-приложениях алгоритмы.



Тестирование производительности при обработке графических изображений происходит в Adobe Photoshop CC 2015. Измеряется среднее время выполнения тестового скрипта, представляющего собой творчески переработанный Retouch Artists Photoshop Speed Test, который включает типичную обработку четырёх 24-мегапиксельных изображений, сделанных цифровой камерой.



По многочисленным просьбам фотолюбителей мы провели тестирование производительности в графической программе Adobe Photoshop Lightroom 6.1. Тестовый сценарий включает пост-обработку и экспорт в JPEG с разрешением 1920x1080 и максимальным качеством двухсот 12-мегапиксельных изображений в RAW-формате, сделанных цифровой камерой Nikon D300.



В Adobe Premiere Pro CC 2015 тестируется производительность при нелинейном видеомонтаже. Измеряется время рендеринга в формат H.264 Blu-Ray проекта, содержащего HDV 1080p25 видеоряд с наложением различных эффектов.



Для измерения быстродействия процессоров при компрессии информации мы пользуемся архиватором WinRAR 5.3, при помощи которого с максимальной степенью сжатия архивируем папку с различными файлами общим объёмом 1,7 Гбайт.



Для оценки скорости перекодирования видео в формат H.264 используется тест x264 FHD Benchmark 1.0.1 (64bit), основанный на измерении времени кодирования кодером x264 исходного видео в формат MPEG-4/AVC с разрешением 1920x1080@50fps и настройками по умолчанию. Следует отметить, что результаты этого бенчмарка имеют огромное практическое значение, так как кодер x264 лежит в основе многочисленных популярных утилит для перекодирования, например, HandBrake, MeGUI, VirtualDub и проч. Мы периодически обновляем кодер, используемый для измерений производительности, и в данном тестировании приняла участие версия r2538, в которой реализована поддержка всех современных наборов инструкций, включая и AVX2.



Кроме того, мы добавили в список тестовых приложений и новый кодер x265, предназначенный для транскодирования видео в перспективный формат H.265/HEVC, который является логическим продолжением H.264 и характеризуется более эффективными алгоритмами сжатия. Для оценки производительности используется исходный 1080p@50FPS Y4M-видеофайл, который перекодируется в формат H.265 с профилем medium. В этом тестировании принял участие релиз кодера версии 1.7.



Преимущество Core i7-6700K над ранними предшественниками в различных приложениях не подлежит сомнению. Однако больше всего выиграли от произошедшей эволюции два типа задач. Во-первых, связанные с обработкой мультимедийного контента, будь то видео или изображения. Во-вторых, финальный рендеринг в пакетах трёхмерного моделирования и проектирования. В целом, в таких случаях Core i7-6700K превосходит Core i7-2700K не менее, чем на 40-50 процентов. А иногда можно наблюдать и гораздо более впечатляющее улучшение скорости. Так, при перекодировании видео кодеком x265 новейший Core i7-6700K выдаёт ровно вдвое более высокую производительность, чем старичок Core i7-2700K.

Если же говорить о том приросте в скорости выполнения ресурсоёмких задач, которую может обеспечить Core i7-6700K по сравнению с Core i7-4790K, то тут уже столь впечатляющих иллюстраций к результатам работы интеловских инженеров привести нельзя. Максимальное преимущество новинки наблюдается в Lightroom, здесь Skylake оказался лучше в полтора раза. Но это скорее – исключение из правила. В большинстве же мультимедийных задач Core i7-6700K по сравнению с Core i7-4790K предлагает лишь 10-процентное улучшение производительности. А при нагрузке иного характера разница в быстродействии и того меньше или же вообще отсутствует.

Отдельно нужно сказать пару слов и о результате, показанном Core i7-5775C. Из-за небольшой тактовой частоты этот процессор медленнее, чем Core i7-4790K и Core i7-6700K. Но не стоит забывать о том, что его ключевой характеристикой является экономичность. И он вполне способен стать одним из лучших вариантов с точки зрения удельной производительности на каждый ватт затраченной электроэнергии. В этом мы легко убедимся в следующем разделе.

Энергопотребление

Процессоры Skylake производятся по современному 14-нм технологическому процессу с трёхмерными транзисторами второго поколения, однако, несмотря на это, их тепловой пакет вырос до 91 Вт. Иными словами, новые CPU не только «горячее» 65-ваттных Broadwell, но и превосходят по расчётному тепловыделению Haswell, выпускаемые по 22-нм технологии и уживающиеся в рамках 88-ваттного теплового пакета. Причина, очевидно, состоит в том, что изначально архитектура Skylake оптимизировалась с прицелом не на высокие частоты, а на энергоэффективность и возможность использования в мобильных устройствах. Поэтому для того, чтобы десктопные Skylake получили приемлемые тактовые частоты, лежащие в окрестности 4-гигагерцевой отметки, пришлось задирать напряжение питания, что неминуемо отразилось на энергопотреблении и тепловыделении.

Впрочем, процессоры Broadwell низкими рабочими напряжениями тоже не отличались, поэтому существует надежда на то, что 91-ваттный тепловой пакет Skylake получили по каким-то формальным обстоятельствам и, на самом деле, они окажутся не прожорливее предшественников. Проверим!

Используемый нами в тестовой системе новый цифровой блок питания Corsair RM850i позволяет осуществлять мониторинг потребляемой и выдаваемой электрической мощности, чем мы и пользуемся для измерений. На следующем ниже графике приводится полное потребление систем (без монитора), измеренное «после» блока питания и представляющее собой сумму энергопотребления всех задействованных в системе компонентов. КПД самого блока питания в данном случае не учитывается. Для правильной оценки энергопотребления мы активировали турборежим и все имеющиеся энергосберегающие технологии.



В состоянии простоя качественный скачок в экономичности настольных платформ произошёл с выходом Broadwell. Core i7-5775C и Core i7-6700K отличаются заметно более низким потреблением в простое.



Зато под нагрузкой в виде перекодирования видео самыми экономичными вариантами CPU оказываются Core i7-5775C и Core i7-3770K. Новейший же Core i7-6700K потребляет больше. Его энергетические аппетиты находятся на уровне старшего Sandy Bridge. Правда, в новинке, в отличие от Sandy Bridge, есть поддержка инструкций AVX2, которые требуют достаточно серьёзных энергетических затрат.

На следующей диаграмме приводится максимальное потребление при нагрузке, создаваемой 64-битной версией утилиты LinX 0.6.5 с поддержкой набора инструкций AVX2, которая базируется на пакете Linpack, отличающемся непомерными энергетическими аппетитами.



И вновь процессор поколения Broadwell показывает чудеса энергетической эффективности. Однако если смотреть на то, сколько электроэнергии потребляет Core i7-6700K, то становится понятно, что прогресс в микроархитектурах обошёл стороной энергетическую эффективность настольных CPU. Да, в мобильном сегменте с выходом Skylake появились новые предложения с чрезвычайно соблазнительным соотношением производительности и энергопотребления, однако новейшие процессоры для десктопов продолжают потреблять примерно столько же, сколько потребляли их предшественники за пять лет до сегодняшнего дня.

Выводы

Проведя тестирование новейшего Core i7-6700K и сравнив его с несколькими поколениями предшествующих CPU, мы вновь приходим к неутешительному выводу о том, что компания Intel продолжает следовать своим негласным принципам и не слишком стремится наращивать быстродействие десктопных процессоров, ориентированных на высокопроизводительные системы. И если по сравнению со старшим Broadwell новинка предлагает примерно 15-процентное улучшение производительности, обусловленное существенно лучшими тактовыми частотами, то в сравнении с более старым, но более быстрым Haswell она уже не кажется столь же прогрессивной. Разница в производительности Core i7-6700K и Core i7-4790K, несмотря на то, что эти процессоры разделяет два поколения микроархитектуры, не превышает 5-10 процентов. И это очень мало для того, чтобы старший десктопный Skylake можно было бы однозначно рекомендовать для обновления имеющихся LGA 1150-систем.

Впрочем, к столь незначительным шагам Intel в деле повышения скорости работы процессоров для настольных систем стоило бы давно привыкнуть. Прирост быстродействия новых решений, лежащий примерно в таких пределах, – давно сложившаяся традиция. Никаких революционных изменений в вычислительной производительности интеловских CPU, ориентированных на настольные ПК, не происходит уже очень давно. И причины этого вполне понятны: инженеры компании заняты оптимизацией разрабатываемых микроархитектур для мобильных применений и в первую очередь думают об энергоэффективности. Успехи Intel в адаптации собственных архитектур для использования в тонких и лёгких устройствах несомненны, но адептам классических десктопов при этом только и остаётся, что довольствоваться небольшими прибавками быстродействия, которые, к счастью, пока ещё не совсем сошли на нет.

Однако это совсем не значит, что Core i7-6700K можно рекомендовать лишь для новых систем. Задуматься о модернизации своих компьютеров вполне могут обладатели конфигураций, в основе которых лежит платформа LGA 1155 с процессорами поколений Sandy Bridge и Ivy Bridge. В сравнении с Core i7-2700K и Core i7-3770K новый Core i7-6700K выглядит очень неплохо – его средневзвешенное превосходство над такими предшественниками оценивается в 30-40 процентов. Кроме того, процессоры с микроархитектурой Skylake могут похвастать поддержкой набора инструкций AVX2, который к настоящему моменту нашел достаточно широкое применение в мультимедийных приложениях, и благодаря этому в некоторых случаях Core i7-6700K оказывается быстрее гораздо сильнее. Так, при перекодировании видео мы даже видели случаи, когда Core i7-6700K превосходил Core i7-2700K в скорости работы более чем в два раза!

Есть у процессоров Skylake и целый ряд других преимуществ, связанных с внедрением сопутствующей им новой платформы LGA 1151. И дело даже не столько в появившейся в ней поддержке DDR4-памяти, сколько в том, что новые наборы логики сотой серии наконец-то получили действительно скоростное соединение с процессором и поддержку большого количества линий PCI Express 3.0. В результате, передовые LGA 1151-системы могут похвастать наличием многочисленных быстрых интерфейсов для подключения накопителей и внешних устройств, которые лишены каких-либо искусственных ограничений по пропускной способности.

Плюс к тому, оценивая перспективы платформы LGA 1151 и процессоров Skylake, в виду нужно иметь и ещё один момент. Intel не будет спешить с выводом на рынок процессоров следующего поколения, известных как Kaby Lake. Если верить имеющейся информации, представители этой серии процессоров в вариантах для настольных компьютеров появятся на рынке только в 2017 году. Так что Skylake будет с нами ещё долго, и система, построенная на нём, сможет оставаться актуальной в течение очень продолжительного промежутка времени.

Характеристики:

Процессор i7-3770
Дата выпуска 02.2012
Количество ядер 4
Количество потоков 8
Тактовая частота 3.4 GHz
Максимальная тактовая частота с технологией Turbo Boost 3.9 GHz
Объем кэша L1 64 Кб
Объем кэша L2 1024 Кб
Объем кэша L3 8192 Кб
DMI 5 GT/s
Набор команд 64-bit
Расширения набора команд SSE4.1/4.2, AVX
Техпроцесс 22 nm
Тепловыделение 77 W
Коэффициент умножения 34
Макс. объем памяти (зависит от типа памяти) 32 GB
Типы памяти DDR3-1333/1600
Кол-во каналов памяти 2
Макс. пропускная способность памяти 25,6 GB/s
Встроенная в процессор графика Intel HD Graphics 4000
Базовая частота графической системы 650 MHz
Макс. динамическая частота графической системы 1.15 GHz
Температура рабочая 67.4°C
Температура максимальная функциональная 105°C
Транзисторов 1,4 миллиарда
Площадь кристала 160 мм2

Тесты.

Для сравнения производительности были протестированы два процессора: Core i7 3770 и Core i7 2600К . все тесты были выполнены на одной системе.

Третьим процессором, для сравнения уже трех поколений, стал Core i7 4770К . В наличии его у меня нет, но к случаю пришелся обзор одноклубника - .

По моей просьбе он протестировал камень в интересующих меня приложениях, с идентичными настройками памяти. Конечно, присутствует разница в номинальных частотах – 3400 против 3500 МГц. На 2600К есть возможность выставить и такую частоту, так, что этот процессор был протестирован еще дополнительно и на частоте 3500 МГц., и на частоте 4000 МГц. для того, что бы увидеть, может ли старичок тягаться с новинками хотя бы в разгоне.

Тестовый пакет:

WinRAR 4.20, 64bit
Super PI
WPrime2.10
Fritz Chess Benchmark
Cinebench 11.5

Тестовая конфигурация:

WPrime , чем меньше, тем лучше, из общей тенденции улучшения результатов от поколения к поколению, выбивается только 2600К в разгоне до 3500 МГц, но при дальнейшем увеличении частоты до 4000 МГц, он обогнал конкурентов, с чем связанно ухудшение его результатов на этой частоте мне не понятно, это просматривается и в ряде следующих тестов.

Cinebench
Тест на рендеринг, показывает преимущество, хоть и не значительное, новых моделей над моделями прошлого поколения, и даже разгон не помогает 2600му обойти 4770й.

WinRAR
Здесь хоть и незначительно, вперед вырывается 3770 на номинальных частотах. А 2600й в разгоне вне конкуренции.

Fritz Chess Benchmark
В этом тесте так же, преимущество 3770. Хотя такой результат в двух последних тестах можно и списать на разницу в конфигурации тестового стенда.

Super PI
Здесь результаты вполне ожидаемы и расставляют все модели по порядку.

В следующих тестах Core i7-4770 вы, к сожалению, не увидите, видеокарты у нас разные.

Ungine Valley Benchmark 1.0 Качество высокое. DirectX 11.

В средних и минимальных фпс, видеокарты из разных бюджетов с процессором новее, выдают хоть и не на много, но лучший результат. В показателях по максимальным кадрам сравниваются, а в паре с 7850й санди вырывается даже вперед.

В этом тесте 2600K, в среднем немного впереди.

Что касается реальных игровых приложений, то для них разницы между процессорами в принципе нет:

Battlefield 4 на ультранастройках с 7970 показывает идентичные результаты в 40-60 фпс.

FarCry 3 при максимальных настройках с этой же видеокартой не поднимался выше 30фпс.
А с 7850 на автоматических оптимальных настройках не выше 40.

Бенчмарк Metro Last Light показал на 7850 й в связке с Core i7 2600К результаты чуть выше:

Средние– 61,93 Min – 22.9 max – 102.8
Чем с 3770:
Средние – 57,96 Min – 14.25 max – 96.83

Выводы.

Свой первый компьютер я приобрел еще в далеком 2003 году, он был так же с процессором intel: Celeron с архитектурой NetBurst, позже я сменил его на Pentium 4 Northwood. При этом производительность увеличилась в два раза. Пять лет назад сменил платформу на AMD – опять в двойне. Три года назад замена на Core i7 2600К – та же тенденция, закон Мура работал. И вот спустя еще три года, вышли новые модели, но стоит ли менять платформу? Думаю, что нет, революции не произошло, скорее просто эволюция. Несомненно, как видно из графиков, в тестах изменения производительности есть, но это визуально, если взглянуть на цифры, то там разница не столь и существенна. А разницы в повседневной работе за компьютером вообще незаметно, как нет ее и в играх. И старичок в разгоне вполне еще потягается с новинками.
Смысла в полном апгрейде платформы с сокета 1155 на 1150 нет. А вот заменить бюджетный процессор Sandy на Ivy Bridge Core i7 3770 или на i5 вполне можно, скорее всего даже не придется менять материнскую плату.

PS: Спустя несколько дней после публикации статьи, прочитав коммент о разгоне, попытался разогнать 3770й, наибольший множитель возможный - 39, но завелся компьютер только на 37, что позволило разогнать до 3700 МГц.

тестов на этой частоте я не сделал, температура поднималась до 105 градусов, и частота скидывалась. Стабильно работало только с множителем 35, что по частотам уравнивает процессор с 4770м.

PSS: В процессе тестирования и перестановки процессоров видимо выскочила одна планка памяти, запустил BF4 на 7970й, в игре лаги, тормоза, фпс проседает, четырех гигабайт памяти игре явно не хватает при условии установки топовых процессора и видеокарты.

Выражаю свою благодарность:
Клубу экспертов ДНС – за возможность писать и публиковаться, реализовывать свои возможности.
Компании intel – за ценные призы.
Читателям – за то, что дочитали до конца, и за коменты по существу.
Участнику клуба – MaGiSTeR – за помощь в написании статьи.




Top