Беспроводные технологии и автоматизация зданий. Требования к электропитанию. Почему кабельные сети можно использовать не всегда

Технологии беспроводных сетей

По прочтении этой главы и после выполнения практических заданий вы сможете:

· рассказать о современных технологиях беспроводных сетей;

· изложить историю развития беспроводных сетей и их преимущества;

· описать технологии радиосетей;

· рассказать о радиосетях стандарта 802.11;

· описать альтернативные технологии радиосетей (такие как Bluetooth, HiperLAN и HomeRF Shared Wireless Access Protocol);

· обсудить беспроводные технологии, использующие инфракрасное излучение;

· рассказать о микроволновых сетях;

· описать беспроводные сети, использующие низкоорбитальные (LEO) спутники Земли.

Беспроводные сети представляют собой развивающуюся технологию, вызывающую большой интерес по многим причинам. Самой очевидной причиной является то, что такие сети обеспечивают мобильность портативных и ручных компьютерных устройств, позволяя пользователю забыть о кабелях. Другая причина состоит в том, что в настоящее время беспроводные технологии стали более надежными и в некоторых ситуациях их развертывание обходится дешевле, чем создание кабельных сетей. Имеется несколько альтернативных кабелю беспроводных сред для передачи сетевых пакетов: радиоволны, инфракрасное (ИК) излучение и микроволны (волны СВЧ-диапазона). При использовании всех перечисленных технологий сигналы передаются по воздуху или в атмосфере, что делает их хорошей альтернативой в тех случаях, когда трудно или невозможно применить кабель.

В этой главе вы познакомитесь со многими типами беспроводных сетевых коммуникаций. Сначала вы узнаете, какие беспроводные сети используются настоящее время, а затем ознакомитесь с краткой историей таких сетей т ix преимуществами. После общего описания сетей, использующих радио волны, будет подробнее рассказано о распространенном стандарте беспроводных сетей IEEE 802.11. Также вы узнаете об альтернативных технологиям радиосетей: Bluetooth, HiperLAN и HomeRF Shared Wireless Access Protocol затем будут описаны технологии на базе рассеянного ИК-излучения, обеспечивающие относительно защищенные беспроводные коммуникации, наконец, будет рассказано о том, как в сетях применяются микроволновые технологии на базе наземных и спутниковых каналов (включая сети широко орбитальных спутников Земли).

Современные технологии беспроводных сетей

В настоящее время для создания беспроводных сетей применяются следующие технологии:

· технологии, использующие радиоволны;

· технологии на базе ИК-излучения;

· микроволновые (СВЧ) технологии;

· сети на базе низкоорбитальных спутников Земли (специальный космический проект с использованием СВЧ-волн).

Технологии, использующие радиоволны, очень распространены и представляют собой быстро растущий сектор беспроводных сетевых коммуникации. Сюда же входит стандарт беспроводных сетей 802.11, а также альтернатив промышленные стандарты, такие как Bluetooth, HiperLAN и НотеShared Wireless Access Protocol (SWAP).

Технологии на базе ИК-излучения не так распространены, как радиосетям однако они имеют некоторые преимущества, поскольку позволяют создавав относительно более защищенные беспроводные сети (т. к. сигнал сложнее перехватить незаметно). Обе технологии (радиоволны и ИК-излучение) используются для организации коммуникаций на малых расстояниям в пределах офиса, здания или между зданиями.

Микроволновые (СВЧ) технологии применяются для связи на больших расстояниях и могут обеспечить сетевые коммуникации между континентами через спутники).

Сети на базе низкоорбитальных спутников являются еще одной разновидностью беспроводных сетей, на основе которых в определенный момента может быть создана "всемирная сеть", доступная во всех точках планеты.

Обо всех перечисленных технологиях будет рассказано в этой главе. Однако сначала мы обратимся к истории развития беспроводных сетей и узнаем об их преимуществах.

Краткая история беспроводных сетей и их достоинства

Историю беспроводных сетей можно рассматривать формально и неформально. Неформальным прародителем беспроводных сетей является любительская радиосвязь, операторы которой получают от Федеральной комиссии связи (FCC) лицензии на передачу речи, азбуки "Морзе, данных, спутниковых и видеосигналов с использованием волн радио - и СВЧ-диа-пазонов. Хотя радиолюбительство обычно считается хобби, Федеральная комиссия связи рассматривает его как важный источник идей и опыта для развития коммуникаций.

Примечание

Радиоволны и СВЧ-волны представляют собой один из диапазонов спектра электромагнитных волн, который включает в себя видимый свет, радиоволны, ИК-излучение, рентгеновские лучи, СВЧ-волны (микроволны) и гамма-лучи. Все это – разновидности электромагнитного излучения, которое распространяется в атмосфере Земли и в космосе. Оно имеет и свойства волны, и свойства частицы. Дополнительную информацию о спектре электромагнитных волн можно найти по адресам

http :// imagine . gsfc . nasa . gov / docs / science / knowJ 1/ emspectrum . html и http :// imagine . gsfc . nasa . gov / docs / science / knowJ 2/ emspectrum . html .

В 1980-х годах лицензированные радиолюбители получили от Федеральной комиссии связи разрешение на передачу данных на нескольких радиочастотах в диапазонах от 50,1–54,0 МГц (нижний диапазон) до 1240–1300 МГц (верхний диапазон). Большинству людей эти частоты знакомы, т. к. они используются для передачи музыки радиостанциями AM - и FM-диапазонов. Эти частоты представляют собой лишь малую часть возможных радиочастот, на которых можно передавать сигналы. Основной единицей измерения радиочастоты является герц (Гц) (Hertz (Hz)). В технике одному герцу соответствует один период переменного напряжения или излученного сигнала за секунду.

Примечание

Радиочастоты представляют диапазон волн с частотой свыше 20 кГц, с помощью которых электромагнитный сигнал может излучаться в пространство.

С тех пор, когда в начале 1980-х годов компания IBM создала персональный компьютер, прошло немало времени, пока радиолюбители не связали персональные компьютеры в сеть, используя радиоволны (обычно в более высоких диапазонах 902–928 МГц и 1240–1300 МГц). Для этого они создал устройство, названное контроллером терминального узла (terminal node controller, TNC). Это устройство помещалось между компьютером и приемопередатчиком и служило для преобразования компьютерного цифрового сала в аналоговый сигнал, усиливаемый приемопередатчиком и излучаемый через антенну. Полученная в результате технология была названа пакетной радиосвязью. Обнаруженный радиолюбителями факт, что пакетная радиосвязь хорошо работает на частотах 902 МГц и выше, был вскоре проанализирован компаниями, предоставляющими коммерческие услуги беспроводных сетей. В 1985 году Федеральная комиссия связи разрешила для коммерческого использования в беспроводных компьютерных сетях частотой для промышленных, научных и медицинских приложений (Industrial, ScietfJtitle and Medical, ISM), которые можно применять для маломощных нелицензируемых общедоступных коммуникаций на фиксированных частотах» диапазоне от 902 МГц до 5,825 ГГц. В Телекоммуникационном а 1996 года Конгресс подготовил следующий этап в развитии беспроводный! коммуникаций, закрепив понятие "узел (местоположение) беспроводной связи" и установив для нее стандарты, а также создав стимулы для дальнейшего развития телекоммуникационных технологий, в т. ч. и беспроводный коммуникаций (дополнительную информацию можно найти по адрес www. fcc. gov/telecom. html). Вскоре после этого институт IEEE создал групп по стандартам беспроводных сетей 802.11, которая отвечала за первый стандарт 802.11, установленный в 1997 году. В настоящее время беспроводный сети разрабатываются и внедряются для обеспечения многих потребностей в числе которых можно назвать следующие:

· реализация коммуникаций в тех областях, где сложно развернуть кабельную сеть;

· снижение затрат на развертывание;

· обеспечение "произвольного" доступа тем пользователям, которые не могут быть привязаны к определенному кабельному подключению;

· упрощение процедуры создания сетей в небольших и домашних офисах;

· обеспечение доступа к данным, необходимым в конкретной конфигурации

Почему кабельные сети можно использовать не всегда?

В некоторых ситуациях кабельную сеть развернуть сложно и даже невозможно. Рассмотрим такой сценарий. Два здания нужно связать одной сетью однако между ними проходит федеральное шоссе. В таком случае имеется несколько способов организации сети. Во-первых, можно прорыть траншею под шоссе, для чего потребуются большие расходы и перерывы в движении, вызванные рытьем траншеи, прокладкой кабеля, закапыванием траншеи и полным восстановлением дороги. Во-вторых, можно создать региональную сеть, связывающую два здания. Здания можно подключить к линиям Т-1 или к региональной сети Optical Ethernet, воспользовавшись услугами владельца сети общего пользования или местной телефонной компании. Затраты при этом будут меньше, чем при прокладке нового кабеля, однако аренда телекоммуникационных линий потребует постоянных отчислений. В-третьих, можно развернуть беспроводную сеть, для чего понадобятся единовременные расходы на оборудование, а также появятся текущие издержки на управление сетью. Однако все эти затраты будут, скорее всего, наиболее оправданы, если рассматривать большие отрезки времени.

Рассмотрим еще один сценарий. Арендатору большого офиса необходимо развернуть сеть для 77 сотрудников. Владелец помещения запрещает прокладывать постоянную кабельную систему. Данное помещение во всех смыслах устраивает арендатора, кроме того, плата за него ниже, чем в других альтернативных вариантах. Решением проблемы будет создание беспроводной сети.

И, наконец, третий сценарий. Общедоступная библиотека располагается в историческом месте. Несмотря на то, что эта библиотека принадлежит городу, строгие общественные и частные договоры не позволяют руководству библиотеки получить необходимое разрешение на прокладку сетевого кабеля. Библиотека на много лет отстала в создании электронного каталога книг, поскольку не может связать в сеть компьютеры своих сотрудников и справочную службу для своих клиентов. Поэтому руководство библиотеки может решить свои проблемы, развернув беспроводную сеть, позволяющую сохранить целостность здания и не нарушать никакие договоры.

Экономия средств и времени при использовании беспроводных сетей

Затраты и время на создание беспроводной сети могут оказаться меньшими, чем на развёртывание кабельной сети. Например, в старых зданиях часто имеются опасные материалы, скажем, в старых эксплуатационных шахтах, содержащих ничтожное количество хлора, выделяющегося из воздуховодов и асбеста. Поскольку шахты не используются, их можно просто замуровать. Или же можно начать дорогостоящую программу по удалению опасных материалов, чтобы эти шахты можно было использовать для прокладки сетевого кабеля. В такой ситуации намного дешевле замуровать шахты и вместо кабеля развернуть беспроводную сеть.

Можно рассмотреть случай, когда одному университету потребовалась рабочая сеть, поскольку в его развитие были вложены крупные средства. Университет пригласил дорогую консалтинговую компанию, которая выделила

на проект пять человек и организовала 18 новых рабочих мест. За несколько дней до начала работ руководство университета поняло, что для новых сотрудников и консультантов нет сетевых подключений. Прокладывать новые кабели дорого, да к тому же и невозможно в ближайшие несколько месяцев поскольку IT-отдел университета уже перегружен работой. Выход найден в виде беспроводной сети, которая может быть развернута в рекордно короткое время.

Неограниченный доступ к сети

Некоторым пользователям компьютеров доступ к сети нужен практически из любой точки. Рассмотрим, к примеру, большой склад автомобильных частей, в котором необходимо регулярно проводить ревизии, используя СЩ меры штрих-кодов, подключаемые к сети. Беспроводная сеть дает пользователям таких сканеров возможность неограниченного доступа, поскольку пользователи не привязаны к кабельным подключениям. Еще один пример Врач в больнице может носить с собой небольшой портативный компьютер с адаптером беспроводной связи, с помощью которого можно обновлять иа истории болезни, выписывать направления на анализы или организовывая уход за больными.

Упрощение сетевых технологий для новичков

В сфере компьютеризации небольших или домашних офисов беспроводной сетью, на голову выше кабельной разводки. Сети таких офисов могут быть весьма неудовлетворительном состоянии, поскольку они обычно создаются непрофессионалами. В результате может быть выбран кабель не того типа. Кабель может проходить мимо источников радиопомех и электромагнитных излучения или он может оказаться поврежденным (например, передавши под стулом, столом или в дверном проеме). Поэтому пользователя таком офисе может непродуктивно тратить свое время на поиски неработоспособности сети. В такой ситуации беспроводная сеть может оказаться проще в установке и эксплуатации. Как правило, во многих онлайновых компьютерных магазинах пользователей небольших и домашних офисах спрашивают о том, не хотят ли они приобрести беспроводные устройства для организации сети между купленными компьютерами.

Достоинством беспроводных сетей для такого класса пользователей являет то, что в настоящее время стоимость беспроводных устройств вполне умеренная. Беспроводная сеть в сочетании с возможностью автоматическая назначения IP-адресов в системах Windows 2000 и Windows ХР позволяв создать полноценную домашнюю сеть при наличии минимального опыта или даже при его отсутствии.

Совершенствование доступа к данным

Беспроводные сети позволяют значительно усовершенствовать доступ к некоторым типам данных и прикладным программам. Рассмотрим для примера большой университет, в котором на постоянной основе работают десять аудиторов, посещающих каждый день по нескольку подразделений (и площадок) и нуждающихся в доступе к финансовым данным, отчетам и другой информации, имеющейся в этих подразделениях. При наличии портативного компьютера, снабженного адаптером беспроводной сети, аудитор может легко перемещаться между площадками и иметь постоянный доступ к любым финансовым документам. В качестве другого примера можно рассмотреть инженера-химика, работающего в разных точках химического завода. В одной точке он может наблюдать за данными в ходе некоторой реакции производственного цикла. В другой точке ему может потребоваться номенклатура химикатов, чтобы убедиться в наличии компонентов, нужных для запуска другого производственного процесса. В третьей точке этот инженер может обратиться к онлайновой научной библиотеке компании. Беспроводный доступ позволит ему легко справиться со всеми перечисленными задачами.

Организации, поддерживающие технологии беспроводных сетей

Существует несколько организаций, занимающихся продвижением беспроводных сетей. Одной из таких организаций, являющейся ценным источником информации по беспроводным сетям, является Wireless LAN Association (WLANA ). Эта ассоциация образована производителями устройств беспроводных сетей, а также заинтересованными компаниями и организациями, в числе которых Alvarion, Cisco Systems, ELAN, Intermec, Intersil, Raylink и Wireless Central. Выполните практическое задание 9-1 и познакомьтесь с ситуациями, в которых можно использовать беспроводные локальные сети, а также с информационными ресурсами, предлагаемыми ассоциацией WLANA.

WINLAB (Wireless Information Network Laboratory) – это расположенный в Университете Рутжерса (Rutgers University) центр исследований в области беспроводных сетей, поддерживаемый несколькими университетами. WINLAB спонсируется из фондов National Science Foundation и работает, начиная с 1989 года. Выполнив практическое задание 9-2, вы узнаете о самых последних исследованиях, выполненных лабораторией WINLAB.

Технологии радиосетей

Сетевые данные передаются с помощью радиоволн подобно тому, как вещает местная радиостанция, однако для сетевых приложений используются волны

гораздо более высоких частот. Например, местная радиостанция АМ-диапазона (средние и длинные волны) может вести вещание на частоте 1290 кГц, поскольку интервал частот для широковещания с амплитудной модуляцией составляет 535–1605 кГц. Интервал частот для FM-вещания (УКВ) имеет границы 88–108 МГц. В США сетевые сигналы передаются на более высоких частотах в интервалах 902-928 МГц, 2,4–2,4835 ГГц или 5-5,825 ГГц.

Примечание

Каждый из упомянутых интервалов частот также называется диапазоном: диапазон 902 МГц, диапазон 2,4 ГГц и диапазон 5 ГГц. Диапазон 902 МГц в первую очередь используется в старых нестандартизованных беспроводных устройствах и далее в книге не рассматривается.

В радиосетях сигнал передается в одном или нескольких направлениях в зависимости от типа используемой антенны. В примере, изображенном на рис. 9.1, сигнал является направленным, поскольку он передается от антенны, расположенной на одном здании, к антенне, расположенной на другом здании. Волна имеет очень малую длину и небольшую мощность (если оператор связи не имеет специальной лицензии от Федеральной комиссии связи на многоваттные коммуникации), т. е. она лучше всего подходит для передач в пределах прямой видимости (line-of-sight transmission) с малым радиусом действия.

При передаче в пределах прямой видимости сигнал передается от одной точки к другой, следуя искривлению Земли, а не отражается от атмосферы, пересекая страны и континенты. Недостатком такого типа передачи является наличие преград в виде больших возвышенностей на поверхности Земли (например, холмы и горы). Маломощный (1 – 10 Вт) радиосигнал может передавать данные со скоростью от 1 до 54 Мбит/с и даже выше.

Для передачи пакетов в оборудовании беспроводных радиосетей чаще всего используется технология работы с расширенным спектром (spread spectrum technology), когда для передачи сигнала с большей полосой пропускания задействуются одна или несколько смежных частот. Интервал частот с расширенным спектром очень высок: 902–928 МГц и намного выше. Коммуникации с расширенным спектром обычно обеспечивают передачу данных со скоростью 1–54 Мбит/с.

Коммуникации с использованием радиоволн позволяют сэкономить средства в тех случаях, когда сложно или очень дорого прокладывать кабель. Радиосети особенно полезны, когда используются портативные компьютеры, которые часто перемещаются. По сравнению с другими беспроводными технологиями, радиосети относительно недороги и просты в установке.

Использование радиоволн в коммуникациях имеет несколько недостатков. Многие сети передают данные со скоростью 100 Мбит/с и выше для организации высокоскоростных коммуникаций при пересылке большого трафика (в том числе и больших файлов). Радиосети пока не могут обеспечить коммуникации с такой скоростью. Другим недостатком является то, что некоторые частоты беспроводной связи используются совместно радиолюбителями, военными и операторами сотовых сетей, в результате чего на этих частотах возникают помехи от различных источников. Естественные препятствия (например, холмы) также могут уменьшить или исказить передаваемый сигнал.

Одна из основных технологий радиосетей описана стандартом IEEE 802.11. Также используются и другие технологии, в число которых входят Bluetooth, HiperLAN и HomeRF Shared Wireless Access Protocol (SWAP). Все эти технологии будут рассмотрены в следующих разделах этой главы.

Радиосети стандарта IEEE 802.11

Для реализации беспроводных коммуникаций используются различные типы радиосетей, однако в плане совместимости и надежности значительные преимущества имеет стандарт IEEE 802.11. Многие пользователи беспроводных сетей применяют устройства, отвечающие этому стандарту, поскольку такие устройства не связаны с нестандартизованными коммуникациями (особенно в нижнем и медленном диапазоне 902–928 МГц, типичном для старых беспроводных устройств) и устройства стандарта 802.11, выпущенные разными производителями, являются взаимозаменяемыми. Такие устройства отвечают открытому стандарту, поэтому различные модели могут взаимодействовать друг с другом, и в них легче реализовать новые функции беспроводной связи. Поэтому разработчику беспроводных сетей важно понимать стандарт IEEE 802.11 и принципы работы устройств, соответствующих этому стандарту.

Стандарт IEEE 802.11 также носит название IEEE Standard for Wireless LANledium Access (MAC) and Physical Layer (PHY) Specifications. Этот стандарта распространяется на стационарные и мобильные станции беспроводным коммуникаций. Стационарной называется станция, которая не перемещается мобильной называется станция, которая может перемещаться быстро, или медленно, как шагающий человек.

Стандарт 802.11 предусматривает два типа коммуникаций. Первый тип синхронные коммуникации, когда передача данных происходит отдельны блоками, начало которых отмечено стартовым разрядом, а конец – стоповым разрядом. Ко второму типу относятся коммуникации, осуществляет в определенных временных рамках, когда сигналу дается определенной для достижения точки назначения, а если сигнал не укладывается Я >то время, то он считается потерянным или искаженным. Временные ограничения делают стандарт 802.11 похожим на стандарт 803.11, согласно которому сигнал также должен достигнуть заданного целевого узла за указанной время. Стандарт 802.11 предусматривает поддержку служб управления сеть пример, протокола SNMP). Также обеспечивается аутентификация сети, стандарт 802.11 ориентирован на использование Канального и Физического уровней модели OSI. На MAC - и LLC-подуровнях Канального уровня определены стандарты на метод доступа (о котором будет рассказано далее этой главе), адресацию и способы проверки данных с использованием контрольных сумм (CRC). На Физическом уровне стандарт 802.11 определял скорости передачи данных на заданных частотах. Также предусмотрены методы (например, технологии с расширенным спектром) для передачи цифровых сигналов с помощью радиоволн и ИК-излучения.

С точки зрения рабочей среды стандарт 802.11 различает беспроводный коммуникации в помещении (комнатные) и на открытом воздухе (наруби). Комнатные коммуникации могут, к примеру, осуществляться в здания офиса, промышленной зоне, магазине или частном доме (т. е. везде, где не распространяются дальше отдельного здания). Наружные коммуникаций могут выполняться в пределах университетского кампуса, спортивной площадки или автостоянки (т. е. там, где передача информации ведется меж зданиями). Далее вы познакомитесь со следующими аспектами, касающимися функционирования беспроводных сетей стандарта 802.11:

· беспроводные компоненты, используемые в сетях IEEE 802.11;

· методы доступа в беспроводных сетях;

· способы обнаружения ошибок при передаче данных;

· коммуникационные скорости, используемые в сетях IEEE 802.11;

· методы обеспечения безопасности;

· использование аутентификации при разрыве соединения;

· топологии сетей IEEE 802.11;

· использование многоячеечных беспроводных локальных сетей.

Компоненты беспроводной сети

В реализации беспроводных коммуникаций обычно участвуют три основных компонента: плата, выполняющая функции приемника и передатчика (трансивера), точка доступа и антенны.

Плата трансивера называется адаптером беспроводной сети (wireless NIC, WNIC), который функционирует на Физическом и Канальном уровнях модели OSI. Большинство таких адаптеров совместимы со спецификациями Network Interface Specification, NDIS (компания Microsoft) и Open Datalink Interface, ODI (компания Novell). Как вы уже знаете из главы 5, обе эти спецификации позволяют передавать по сети несколько протоколов и служат для связи компьютера и его операционной системы с WNIC-адаптером.

Тонка доступа (access point) представляет собой некоторое устройство, подключенное к кабельной сети и обеспечивающее беспроводную передачу данных между WNIC-адаптерами и этой сетью. Как говорилось в главе 4, точка доступа обычно является мостом. Она может иметь один или несколько сетевых интерфейсов перечисленных ниже типов, позволяющих подключить ее к кабельной сети:

· 100BaseTX, 100BaseT, 100BaseT2 и 100BaseT4;

Совет

В настоящее время некоторые поставщики беспроводных сетей предлагают точки доступа с возможностями маршрутизаторов.

Антенна – это устройство, посылающее (излучающее) и принимающее радиоволны. И WNIC-адаптеры, и точки доступа оборудованы антеннами. Большинство антенн беспроводных сетей являются или направленными, или всенаправленными.

Совет

При покупке устройств стандарта 802.11 посмотрите, сертифицированы ли они союзом Wireless Ethernet Compatibility Alliance (WECA), в который входят свыше 150 компаний, выпускающих беспроводные устройства. Более подробную ин формацию об этом союзе можно получить на веб-сайте www . wi - fi . com .

Направленная антенна

Направленная антенна посылает радиолучи в одном главном направлении обычно может усиливать излучаемый сигнал в большей степени, чем всенаправленная антенна. Величина усиления излученного сигнала называется коэффициентом усиления (gain). В беспроводных сетях направленные антенна обычно применяются для передачи радиоволн между антеннами, располагающимися на двух зданиях и подключенными к точкам доступа (рис. 9.2) такой конфигурации направленная антенна обеспечивает передачу на больших расстояниях по сравнению с всенаправленной антенной, поскольку она, вероятнее всего, излучает более сильный сигнал (с большим коэффициентом усиления) в одном направлении. Рассматривая рис. 9.2, обратите внимание на то, что на самом деле антенна излучает сигнал не только в одном правлении, т. к. часть сигнала рассеивается по сторонам.

Примечание

Для знакомства с компонентами беспроводных сетей выполните практическое задание 9-3. Кроме того, в практических заданиях 9-4 и 9-5 рассказывается о том, как установить WNIC-адаптер в системах Windows 2000 и Windows ХP Professional. В практическом задании 9-6 вы узнаете о том, как установить там кой адаптер в системе Red Hat Linux 7. x .

Всенаправленная антенна

Всенаправленная антенна излучает радиоволны во всех направлениях. Поскольку сигнал рассеивается больше, чем при использовании направленной антенны, он, по всей видимости, будет иметь и меньший коэффициент усиления. В беспроводных сетях всенаправленные антенны часто применяются в комнатных сетях, в которых пользователи постоянно перемешаются и сигналы нужно передавать и принимать во всех направлениях. Кроме того, в таких сетях, как правило, не нужно, чтобы коэффициент усиления сигнала был таким же высоким, как в наружной сети, поскольку расстояния между беспроводными устройствами в помещении намного меньше. На рис. 9.3 показана беспроводная сеть, использующая всенаправленные антенны

Рис. 9.3. Всенаправленные антенны

WNIC-адаптер для портативных устройств (например, портативных, карманных и планшетных компьютеров) может снабжаться небольшой схемной всенаправленной антенной. Точка доступа для локальной комнатной сети может иметь съемную всенаправленную антенну или же антенну, подключаемую к точке доступа с помощью кабеля. Точка доступа для наружной сети, соединяющей два здания, обычно имеет антенну с высоким коэффициентом усиления, которая подключается к точке доступа по кабелю.

Методы доступа в беспроводных сетях

Стандарт 802.11 предусматривает два метода доступа: доступ в порядке приоритетов и множественный доступ с контролем несущей и предотвращен ем конфликтов. Оба этих метода работают на Канальном уровне.

При использовании доступа в порядке приоритетов (priority-based access точка доступа также выполняет функции точечного координатора, который задает период без возникновения конфликтов, в течение которого станций) (помимо самого координатора) не могут работать на передачу, не обратившись сначала к координатору. В течение этого периода координатор поочередно опрашивает станции. Если некоторая станция посылает короткий пакет, указывающий на то, что ее нужно опросить, поскольку у нее имеет сообщение на передачу, точечный координатор помещает эту станцию свой опросный лист . Если некоторая станция не опрашивается, координатор посылает ей сигнальный фрейм, указывающий на то, сколько нужно ждать до начала следующего периода без возникновения конфликтов. этого станции, входящие в опросный лист, поочередно получают право осуществление коммуникаций. Когда все эти станции получили возможность передать данные, сразу же задается следующий период без возникновения конфликтов, в течение которого координатор снова опрашивает укажет станцию, определяя необходимость включения в опросный лист станции ждущих возможности передачи.

Доступ в порядке приоритетов предназначается для коммуникаций, требующих малых задержек пересылки информации. К таким типам коммуникаций обычно относится передача речи и видеоизображений, а также организация видеоконференций – т. е. такие приложения, которые лучше всего работают в непрерывном режиме. Согласно стандарту 802.11 доступ в рядке приоритетов также называется функцией точечной координации

Чаще в беспроводных сетях применяется множественный доступ с контро лем несущей и предотвращением конфликтов (Carrier Sense Multiple Аccess with Collision Avoidance, CSMA/CA), который также называется функции распределенной координации (distributed coordination function). В этом случае станция, ожидающая возможности передачи, прослушивает частоту коммуникаций и определяет ее занятость, проверяя уровень индикатора мощности сигнала в приемнике (Receiver Signal Strength Indicator, RSSI). В 14 момент, когда передающая частота свободна, наиболее вероятно конфликтов между двумя станциями, которые одновременно захотят начать передачу. Как только передающая частота освобождаете! каждая станция ждет несколько секунд (число которых определяется параметром DIPS), чтобы убедиться в том, что частота остается незанятой. DIFS – это аббревиатура от термина Distributed coordination function"s In-tra-Frame Space (интервал между фреймами функции распределенной координации), который определяет заранее установленное время обязательного ожидания (задержки).

Если станции ожидают в течение времени, определенного интервалом DIFS, вероятность возникновения конфликта между станциями уменьшается, поскольку для каждой станции, требующей передачи, вычисляется разное значение времени задержки (отсрочки), по истечении которого станция снова будет проверять занятость передающей частоты. Если частота остается незанятой, то передачу начинает станция, имеющая минимальное время отсрочки. Если частота оказывается занятой, то станция, требующая передачи, ждет пока частота не освободится, после чего простаивает еще в течение уже вычисленного времени отсрочки.

При определении времени отсрочки длительность заранее заданного интервала времени умножается на случайное число. Временной интервал – это некоторое значение, хранящееся в базе управляющей информации (MIB), имеющейся на каждой станции. Значение случайного числа лежит в диапазоне от нуля до величины максимального размера окна конфликтов, который также хранится в базе управляющей информации станции. Таким образом, для каждой станции, ожидающей передачи, определяется уникальное время отсрочки, что позволяет станциям избегать конфликтов.

Обработка ошибок передачи данных

Коммуникации в беспроводных сетях зависят от погодных условий, солнечных бликов, других беспроводных коммуникаций, естественных препятствий и других источников помех. Все эти помехи могут нарушить успешный прием данных. Стандартом 802.11 предусмотрен автоматический запрос на повторение (automatic repeat-request, ARQ), который позволяет учитывать возможность появления ошибок передачи.

Если при использовании ARQ-запросов станция, отправившая пакет, не получает подтверждения (АСК) от целевой станции, то она автоматически повторяет передачу пакета. Количество повторов, сделанных передающей станцией до того момента, как она определит невозможность доставки пакета, зависит от размера пакета. Каждая станция хранит две величины: максимальный размер короткого пакета и размер длинного пакета. Кроме этого, имеются два дополнительных параметра: количество повторов для отправки Короткого пакета и количество повторов для длинного пакета. Анализ всех этих значений позволяет станции принять решение о прекращении повторных передач некоторого пакета.

В качестве примера обработки ошибок с использованием ARQ-запросов рассмотрим станцию, для которой короткий пакет имеет максимальную длину 776 байт, а количество повторов для короткого пакета равно 10. Допустим, что станция передает пакет длиной 608 байт, но не получает подтверждения от принимающей станции. В этом случае передающая станция будет 10 раз передавать этот пакет повторно при отсутствии подтверждения. После 10 неудачных попыток (т. е. не получив подтверждения) станция прекратит передавать этот пакет.

Скорости передачи

Скорости передачи и соответствующие частоты сетей 802.11 определяются двумя стандартами: 802.11а и 802.1111b. Коммуникационные скорости, указанные в этих стандартах, относятся к Физическому уровню модели OSI.

Для беспроводных сетей, работающих в диапазоне 5 ГГц, стандарт 802.11 предусматривает следующие скорости передачи данных:

· 6 Мбит/с;

· 24 Мбит/с;

· 9 Мбит/с;

· 36 Мбит/с; "

· 12 Мбит/с;

· 48 Мбит/с;

· 18Мбит/с;

· 54 Мбит/с.

Примечание

Все устройства, отвечающие стандарту 802.11а, должны поддерживать скорости 6, 12 и 24 Мбит/с. Стандарт 802. Па реализуется на Физическом уровне модели OSI и для передачи информационных сигналов с использованием радиоволн предусматривает применение ортогонального мультиплексирования каналов, разделенных частоте (Orthogonal Frequency Division Multiplexing, OFDM). При работе данному методу мультиплексирования 5-гигагерцовый диапазон частот делится на 52 субнесущие (52 подканала). Данные разбиваются между этими субнесущими и передаются одновременно по всем 52 субнесущим. Такие передачи называются параллельными. Четыре субнесущих используются для управления коммуникациями, а 48 передают данные. Стандарт 802.11b используется в диапазоне частот 2,4 ГГц, им предусмотрены следующие коммуникационные скорости: "

· 1 Мбит/с;

· 10Мбит/с;

· 2 Мбит/с;

· 11Мбит/с.

Примечание

На момент написания книги ожидалось утверждение расширения стандарта 802.11Ь, получившее название 802.11 д. Стандарт 802.11д позволяет передавать данные в диапазоне 2,4 ГГц со скоростями до 54 Мбит/с.

В стандарте 802.11b используется модуляция с прямой последовательностью и расширенным спектром (Direct sequence spread spectrum modulation, DSSS), которая представляет собой способ передачи информационных сигналов с применением радиоволн и относится к Физическому уровню. При DSSS-модуляции данные распределяются между несколькими каналами (общим числом до 14), каждый из которых занимает полосу 22 МГц. Точное число каналов и их частоты зависят от страны, в которой осуществляются коммуникации. В Канаде и США используются 11 каналов в диапазоне 2,4 ГГц. В Европе число каналов равно 13, за исключением Франции, где задействуются только 4 канала. Информационный сигнал передается поочередно в каналы и усиливается до значений, достаточных для превышения уровня помех.

На момент написания книги стандарт 802.11а предлагал большие скорости, чем стандарт 802.11b. Однако увеличение скорости достигается за счет уменьшения рабочих расстояний. В настоящее время устройства стандарта 802.11а могут передавать данные на расстояние до 18 м, в то время как устройства стандарта 802.11b работоспособны на расстояниях до 90 м. Это означает, что если вы используете устройства 802.На, то для увеличения общей рабочей зоны взаимодействующих устройств вам нужно будет приобрести больше точек доступа.

Помимо скорости, преимуществом стандарта 802. Па является то, что полный интервал имеющихся для него частот диапазона 0,825 ГГц почти в два раза превышает интервал частот диапазона 0,4835 ГГц для стандарта 802.11b. Это означает, что в процессе вещания можно передать намного больше данных, поскольку чем шире интервал частот, тем больше информационных каналов, по которым передаются двоичные данные.

Для приложений, требующих большей полосы пропускания (например, для передачи речи и видеоизображений) планируйте использование устройств стандарта 802. Па. Кроме того, рассматривайте возможность применения таких устройств в тех ситуациях, когда в пределах небольшой зоны (например, в компьютерной лаборатории) имеется большое количество пользователей. Более высокая полоса пропускания позволит всем клиентам сети работать лучше и быстрее.

Область применения устройств стандарта 802.11b охватывает те конфигурации, когда наличие высокой полосы пропускания не столь важно (например, для коммуникаций, предназначенных преимущественно для передач данных). Кроме того, стандарт 802.11b хорошо подходит для малобюджетных проектов, поскольку для него нужно меньше точек доступа, чем при использовании стандарта 802.11а. Это объясняется тем, что стандарт 802.11а обеспечивает более широкую рабочую зону (до 90 м против 18 м, допускаемых стандартом 802.11а). В настоящее время стандарт 802.11b используется чаще, чем 802.11а, поскольку сети на его основе дешевле в реализации, а на рынке более широко представлена номенклатура предназначенных для нее устройств (выпуск которых, к тому же, был начат раньше). Характеристик стандартов 802.11а и 802.11b представлены в табл. 9.1.

Таблица 9.1. Характеристики стандартов 802.11а и 802.11 b

802.11 а

802.11Ь

Рабочая частота

Рабочие скорости (полоса пропус кания)

6, 9, 12, 18, 24, 36, 48, 54 Мбит/с

1, 2, 10, 11 Мбит/с

Метод коммуни каций

Ортогональное мультиплексирование деления частоты (Orthogonal Frequency Division spread spectrum Multiplexing, OFDM)

Модуляция с прямой последовательностью и расширенным спектром (Direct sequence modulation DSSS)

Максимальное рабочее расстояние в настоящее время

Стоимость реали зации

Относительно высокая из-за необходимости в дополнительных точках доступа

Относительно низкая из-за использования небольшого количества точек доступа

Методы обеспечения безопасности,

Безопасность так же важна в беспроводных сетях, как и в кабельных. Стандарт 802.11 предусматривает два механизма обеспечения безопасности: аутентификацию открытых систем и аутентификацию с общим ключом. При использовании аутентификации открытых систем (open system authentication) любые две станции могут аутентифицировать друг друга. Передающая станция попросту посылает целевой станции или точке доступа запрос: на аутентификацию. Если целевая станция подтверждает запрос, это означает завершение аутентификации. Такой метод аутентификации не обеспечивает достаточной безопасности, и вы должны знать, что в устройствах, выпускаемых многими производителями, он используется по умолчанию.

Гораздо лучшую защиту обеспечивает аутентификация с общим ключом (shared key authentication), поскольку в ней реализуется Wired Equivalent Pri vacy (WEP ). При использовании этого механизма защиты две станции (например, WNIC-адаптер и точка доступа) работают с одним и тем же ключом шифрования, генерируемым WEP-службами. Ключ шифрования WEP представляет собой некий 40- или 104-битный ключ с добавлением контрольной суммы и инициирующей информации, что в результате определяет общую длину ключа, равную 64 или 104 разрядам.

При использовании аутентификации с общим ключом и WEP одна станция обращается к другой с запросом на аутентификацию. Вторая станция отсылает обратно некоторый специальный текстовый запрос. Первая станция шифрует его с помощью ключа шифрования WEP и посылает зашифрованный текст второй станции, которая расшифровывает его, используя тот же самый WEP-ключ, и сравнивает полученный текст с посланным изначально текстовым запросом. Если оба текста совпадают, вторая станция аутентифицирует первую и коммуникации продолжаются.

Использование аутентификации при разрыве соединения

Еще одной функцией аутентификации является разрыв соединения после того, как заканчивается сеанс коммуникаций. Процесс аутентификации при разрыве соединения важен потому, что две взаимодействующие станции не могут быть случайно разъединены другой, не аутентифицированной, станцией. Соединение между двумя станциями разрывается, если одна из них посылает извещение об отказе в аутентификации. В этом случае коммуникации мгновенно прекращаются.

Топологии сетей IEEE 802.11

Стандартом 802.11 предусмотрены две основные топологии. Самой простой является топология с набором независимых базовых служб (Independent Basic Service Set (IBSS) topology), образуемая двумя или несколькими станциями беспроводной связи, которые могут взаимодействовать друг с другом. Сеть такого типа в некоторой степени непредсказуема, поскольку новые станции часто появляются неожиданно. IBSS-топология образуется произвольными одноранговыми (равноправными) коммуникациями между WNIC-адаптера ми отдельных компьютеров (рис. 9.4).

По сравнению с IBSS-топологией, топология с расширенным набором (Extended service set (ESS) topology) имеет большую область обслуживание т. к. в ней имеется одна или несколько точек доступа. На базе ESS-топологии можно создать небольшую, среднюю или большую сеть и значительна! расширить зону беспроводных коммуникаций. ESS-топология показана рис. 9.5.

Если вы используете устройства, совместимые со стандартом 802.11, сеть и IBSS-топологией несложно преобразовать в сеть на основе ESS-топологии. Однако не следует сети с разными топологиями располагать поблизости, т. к. одноранговые IBSS-коммуникации ведут себя нестабильно в присутстствии точек доступа, используемых в ESS-сети. Также могут нарушиться коммуникации и в ESS-сети. "

Совет

Дополнительную информацию о стандарте IEEE 802.11 можно получить на веб-сайте IEEE по адресу www. ieee. org. На этом сайте можно заказать полную копию этого стандарта.

Многоячеечные беспроводные локальные сети

Когда в сети на основе ESS-топологии используются две или несколько точек доступа, такая сеть превращается в многоячеечную беспроводную локаль ную сеть (multiple-cell wireless LAN). Широковещательная область вокруг некоторой точки в такой топологии называется ячейкой (cell). Если, к примеру, комнатная сеть внутри здания имеет пять точек доступа, то в этой сети пять ячеек. Кроме того, если все пять ячеек сконфигурированы одинаково (имеют одну рабочую частоту, одинаковую скорость передачи и общие параметры безопасности), то персональный компьютер или ручное устройство, оборудованное WNIC-адаптером, можно перемещать от одной ячейки к другой. Этот процесс называется роумингом (roaming).

В качестве примера роуминга в беспроводной ESS-топологии рассмотрим университетский факультет, в котором развернута беспроводная сеть, имеющая пять точек доступа, связанных с ячейками с номерами от I до V.1 Ячейка I может принадлежать библиотеке. Ячейки II и III могут охватывать зону преподавательских офисов. Ячейка IV может находиться в офисе администрации, а ячейка V может располагаться в учебной лаборатории. Если все ячейки сконфигурированы одинаково, любой студент, преподаватели или служащий офиса может перемещать портативный компьютер, оборудованный WNIC-адаптером, от одной ячейки к другой, сохраняя при этом доступ к сети факультета. Хотя стандартом 802.11 и не предусмотрена спецификация для протокола роуминга, производители беспроводных устройств разработали один подобный протокол, названный Inter - Access Point Protocol (IAPP ), который в основных моментах отвечает этому стандарту. Протокол IAPP позволяет мобильной станции перемещаться между ячейками, не теряя соединения сетью. Для обеспечения коммуникаций с роумингом IAPP инкапсулируем протоколы UDP и IP.

Примечание

Как вы уже знаете из главы 6, User Datagram Protocol (UDP) представляет coбой протокол без установления соединений, который может использоваться сочетании с протоколом IP вместо TCP, являющегося протоколом с установлением соединений.

Протокол IAPP позволяет оповестить имеющиеся точки доступа о подключении к сети нового устройства, а также позволяет смежным точкам доступе обмениваться между собой конфигурационной информацией. Кроме того протокол предоставляет некоторой точке доступа, обменивающейся данными с мобильной станцией, возможность автоматической передачи сведении об исходном подключении (включая любые данные, ожидающие отправки другой точке доступа в тех случаях, когда мобильная станция перемещается от ячейки, обслуживаемой первой точкой доступа, к ячейке, связанной си второй точкой доступа.

Альтернативные технологии радиосетей

К числу самых распространенных коммуникационных технологий с использованием радиоволн относятся следующие технологии, альтернативные стандарту IEEE 802.11:

· HomeRF Shared Wireless Access Protocol (SWAP).

Каждая перечисленная технология представляет собой спецификацию беспроводных сетей и поддерживается определенными производителями. Все эти технологии рассматриваются в следующих разделах.

Bluetooth

Bluetooth это технология беспроводной связи, описанная особой группой Bluetooth Special Interest Group. Данная технология привлекла внимание таких производителей, как 3Com, Agere, IBM, Intel, Lucent, Microsoft, Motorola, Nokia и Toshiba. В ней используется перестройка частоты в диапазоне 2,4 ГГц (2,4–2,4835 ГГц), выделенном Федеральной комиссией связи для нелицензируемых ISM-коммуникаций2. Метод перестройки частоты предполагает изменение несущей частоты (выбирается одна из 79 частот) для каждого передаваемого пакета. Достоинством этого метода является уменьшение вероятности возникновения взаимных помех в случаях одновременной работы нескольких устройств.

При использовании многоваттных коммуникаций технология Bluetooth обеспечивает передачу данных на расстояния до 100 м, однако на практике большинство устройств Bluetooth работают на расстоянии до 9 м. Обычно используются асинхронные коммуникации со скоростью 57,6 или 721 Кбит/с. Устройства Bluetooth, обеспечивающие синхронные коммуникации, работают со скоростью 432,6 Кбит/с, однако такие устройства менее распространены.

В технологии Bluetooth применяется дуплексная передача с временным разде лением каналов (time division duplexing, TDD), при которой пакеты передаются в противоположных направлениях с использованием временных интервалов. Один цикл передачи может задействовать до пяти различных временных интервалов, благодаря чему пакеты могут передаваться и приниматься одновременно. Этот процесс напоминает дуплексные коммуникации. Одновременно могут взаимодействовать до семи устройств Bluetooth (некоторые производители утверждают, что их технологии обеспечивают подключение восьми устройств, однако это не соответствует спецификациям). Когда устройства обмениваются информацией, одно из них автоматически выбирается ведущим (master). Это устройство определяет функции управления (например, синхронизацию временных интервалов и управление пересылками). Во всех других аспектах коммуникации Bluetooth напоминают одноранговую сеть.

Совет

Узнать больше о технологии Bluetooth можно на официальном веб-сайте по адресу www . bluetooth . com . Выполните практическое задание 9-7, в котором вы познакомитесь с веб-сайтом Bluetooth, где описаны области применения Blue-tooth для беспроводных коммуникаций с универсальным доступом.

HiperLAN

Технология HiperLAN была разработана в Европе, и в настоящее время существует ее вторая версия, названная HiperLAN2. Эта технология использует диапазон 5 ГГц и обеспечивает скорости передачи данных до 54 Мбит/с. Помимо скорости, достоинством HiperLAN2 является совместимость с коммуникациями Ethernet и ATM.

Технология HiperLAN2 поддерживает Data Encryption Standard (DES ) – стандарт шифрования данных, разработанный институтами National Institute on Standards and Technology (NIST) (Национальный институт стандартов и технологий) и ANSI. В нем используется открытый (public) ключ шифрования, доступный для просмотра всеми сетевыми станциями, а также частный. (private) ключ, выделяемый только передающим и принимающим станциям. Для дешифрации данных необходимы оба ключа.

Технология HiperLAN2 обеспечивает качество обслуживания (QoS), предоставляя гарантированный уровень коммуникаций для различных классов обслуживания (например, для передачи речи или видеоизображений). Это возможно благодаря тому, что точки доступа централизованно управляют беспроводными! коммуникациями, и планируют все сеансы передачи информации.

Сеть HiperLAN2 работает в двух режимах. Непосредственный режим (directlmode) представляет собой топологию одноранговой сети (подобную 1В58 топологии в сетях 802.11), которая образуется только взаимодействующим станциями. Другой режим называется централизованным (centralized mode) поскольку он реализуется в больших сетях, где имеются точки доступа, концентрирующие сетевой трафик и управляющие им. Методом коммуникаций для обоих режимов служит дуплексная передача с временным разделением каналов (TDD) – та же технология, которая применяется в Bluetooth.

Совет

Для более близкого знакомства с HiperLAN2 посетите веб-сайт www . hiperian 2. com .

HomeRF Shared Wireless Access Protocol (SWAP) (Протокол совместного беспроводного доступа HomeRF) – это технология, поддерживаемая такими компаниями, как Motorola, National Semiconductor, Proxim и Siemens. Эта

технология работает в диапазоне 2,4 ГГц и обеспечивает скорость в сети до 10 Мбит/с. В качестве метода доступа она использует CSMA/CA (как и стандарт 802.11) и предназначена для домашних сетей, где передаются данные, речь, видеоизображения, мультимедийные потоки и другая информация.

Примером типичного использования технологии HomeRF SWAP является беспроводная сеть, объединяющая несколько персональных компьютеров и обеспечивающая им доступ в Интернет. Другой областью применения является реализация беспроводных соединений для центров развлечений (например, для связи друг с другом нескольких телевизоров и стереосистем). Сеть HomeRF SWAP может связать между собой несколько телефонов. Также с ее помощью можно обеспечить связь между устройствами управления домом (освещением, кондиционерами, кухонными агрегатами и т. д.). Для обеспечения безопасности в сетях HomeRF SWAP используется 128-битное шифрование данных и 24-разрядные сетевые идентификаторы.

На момент написания книги в процессе разработки находилась технология HomeRF SWAPS, обеспечивающая коммуникации со скоростью 25 Мбит/с. Создатели этой технологии стремятся к тому, чтобы встроить ее в телевизоры и мультимедийные серверы с целью расширения возможностей сложных видеосистем.

(Совет)

Более детально познакомиться с HomeRF SWAP можно на сайте www . homerf . org .

Сетевые технологии с использованием инфракрасного излучения

Инфракрасное (И К) излучение (infrared) можно использовать в качестве передающей среды для сетевых коммуникаций. Вы хорошо знакомы с этой технологией, благодаря пультам дистанционного управления для телевизоров и стереосистем. ИК-излучение представляет собой электромагнитный сигнал, подобно радиоволнам, однако его частота ближе к диапазону видимых электромагнитных волн, называемых видимым светом.

ИК-излучение может распространяться либо в одну сторону, либо во всех направлениях, при этом светодиод (LED) используется для передачи, а фотодиод – для приема. ИК-излучение относится к Физическому уровню, его частота составляет 100 ГГц – 1000 ТГц (терагерц), а длина электромагнитной волны лежит в диапазоне от 700 до 1000 нанометров (нм, 10~9).

Подобно радиоволнам, ИК-излучение может оказаться недорогим решением в случае невозможности прокладки кабеля или при наличии мобильных пользователей. Его преимущество заключается в том, что ПК-сигнал сложно перехватить незаметно. Другим достоинством является устойчивость ИКЦ сигнала к радио - и электромагнитным помехам. Однако эта коммуникационная среда имеет и ряд существенных недостатков. Во-первых, при направленных коммуникациях скорость передачи данных не превышает 16 Мбит/с, а при всенаправленных коммуникациях эта значение меньше, чем 1 Мбит/с. Во-вторых, ИК-излучение не проходив сквозь стены, в чем несложно убедиться, попробовав управлять телевизором с пульта дистанционного управления из другой комнаты. С другой стороны этот недостаток оборачивается достоинством, т. к. из-за ограниченности области распространения коммуникации с использованием ИК-сигналов делаются более безопасными. В-третьих, инфракрасная связь может подвергаться помехам со стороны сильных .

Совет

В инфракрасных технологиях могут использоваться точки доступа, позволяющие расширять рабочую область и создавать крупные сети.

При передаче информации с помощью рассеянного инфракрасного излучения (diffused infrared) посланный ИК-сигнал отражается от потолка, как показано на рис. 9.6. Для таких коммуникаций существует стандарт IEEE 802. предусматривающий работу на расстоянии от 9 до 18 м в зависимости высоты потолка (чем выше потолок, тем меньше область охвата сети). Для рассеянного ИК-излучения этим стандартом определены скорости передачи данных, равные 1 и 2 Мбит/с. Длины волн рассеянного ИК-сигнала, ИСЩ пользуемого в стандарте 802.11R, лежат в диапазоне 850–950 нм (из всех диапазона ИК-лучей, составляющего 700–1000 нм). Для сравнения, видимый свет имеет диапазон длин волн, приблизительно равный 400–700 Мегагерц. Максимальная оптическая излучаемая мощность сигнала согласно стандарт 802.11R составляет 2 Вт.

Совет

Хотя рассеянные ИК-сигналы не подвержены радио - и электромагнитным помехам, окна в зданиях могут создавать помехи, поскольку эти сигналы чувствительны к сильным источникам света. Учтите наличие окон при проектирования беспроводной сети с использованием рассеянного ИК-излучения.

Метод передачи сигналов, использованный стандартом IEEE 802.11R, называется фазоимпульсной модуляцией (Pulse position modulation, PPM). Согласно этому методу, двоичное значение сигнала связывается с расположением импульса в наборе возможных положений в спектре электромагнитного излучения. Для коммуникаций со скоростью 1 Мбит/с стандарт 802.11R предусматривает шестнадцать возможных положений импульса (16-РРМ), этом каждое положение представляет четыре двоичных разряда. При коммуникациях со скоростью 2 Мбит/с каждый импульс представляет два разряда, и возможных положений импульса всего четыре (4-РРМ). Импульс в определенной позиции указывает на то, что некоторое значение присутствует, а отсутствие импульса означает, что значения нет. РРМ – это метод символьного кодирования, напоминающий двоичное кодирование в том смысле, что в нем используются только нули и единицы.

Микроволновые сетевые технологии

Микроволновые системы работают в двух режимах. Наземные сверхвысокочастотные (СВЧ) каналы (terrestrial microwave) передают сигналы между двумя направленными параболическими антеннами, которые имеют форму тарелки (рис. 9.7). Такие коммуникации осуществляются в диапазонах частот 4–6 ГГц и 21–23 ГГц и требуют, чтобы оператор связи получал лицензию от Федеральной комиссии связи (FCC).

Спутниковые микроволновые системы передают сигнал между тремя антеннами, одна из которых располагается на спутнике Земли (рис. 9.8). Спутники в таких системах находятся на геосинхронных орбитах на высоте 35000 км над Землей. Чтобы некоторая организация могла использовать такую технологию связи, она должна либо запустить спутник, либо арендовать канал у компании, предоставляющей подобные услуги. Из-за больших расстояний задержки: при передаче составляют от 0,5 до 5 секунд. Коммуникации ведутся в диапазоне частот 11–14 ГГц, которые требуют лицензирования.



Как и другие среды беспроводной связи, микроволновые технологий используются тогда, когда кабельные системы стоят слишком дорого или если прокладка кабеля невозможна. Наземные СВЧ-каналы могут оказаться хорошим решением при прокладке коммуникаций между двумя большими зданиями в городе. Спутниковые системы связи являются единственно возможным способом объединения сетей, находящихся в разных странах или на разных континентах, однако это решение очень дорогое.

Микроволновые коммуникации имеют теоретическую полосу пропускания до 720 Мбит/с и выше, однако на практике в настоящее время скорости обычно лежат в диапазоне 1–10 Мбит/с. Микроволновые системы связи имеют некоторые ограничения. Они дороги и сложны в развертывании и эксплуатации. Качество микроволновых коммуникаций может ухудшаться из-за условий атмосферы, дождя, снега, тумана и радиопомех. Более того, микроволновый сигнал может быть перехвачен, поэтому при использовании данной передающей среды особо важное значение имеют средства аутентификации и шифрования.

Беспроводные сети на базе низкоорбитальных спутников Земли

Орбиты спутников связи находятся на расстоянии примерно 30000 км над Землей. Из-за большого удаления этих спутников и возмущений в верхних слоях атмосферы могут возникать задержки в передаче сигнала, которые недопустимы для коммуникаций с высокими требованиями к этому параметру связи (в т. ч. для передачи двоичных данных и мультимедиа).

В настоящее время несколько компаний разрабатывают низкоорбитальные спутники (Low Earth Orbiting (LEO) satellite), орбиты которых должны находиться на расстоянии от 700 до 1600 км от поверхности Земли, что должно ускорить двустороннюю передачу сигналов. Из-за своей более низкой орбиты LEO-спутники охватывают меньшие территории, и, следовательно, для того чтобы полностью покрыть поверхность планеты, необходимо около тридцати LEO-спутников. В настоящее время компании Teledesic, Motorola и Boeing разрабатывают сеть таких спутников, с помощью которых Интернет и другие услуги глобальных сетей станут доступными в любой точке Земли. Пользователи взаимодействуют с LEO-спутниками при помощи специальных антенн и аппаратуры декодирования сигналов. Начиная с 2005 года, LEO-спутники можно будет использовать в следующих областях:

· широковещательные интернет-коммуникации; проведение всепланетных видеоконференций;

· дистанционное обучение;

· другие коммуникации (передача речи, видео и данных).

Ожидается, что скорости коммуникаций на базе LEO-спутников составят от 128 Кбит/с до 100 Мбит/с для восходящих потоков (к спутнику) и до

720 Мбит/с для нисходящих потоков (от спутника). LEO-спутники используют ультравысокие частоты, утвержденные Федеральной комиссией связи в США и аналогичными организациями в разных частях света. Электромагнитный спектр коммуникаций с использованием LEO-спутников также одобрен союзом ITU. Рабочие частоты лежат в диапазоне 28,6–29,1 ГГц дли восходящих каналов и 18,8–19,3 ГГц для. нисходящих каналов. Когда эта сеть войдет в эксплуатацию (архитектура сети представлена на рис. 9.9), руководитель проекта, например, из Бостона сможет проводить видеоконференции или обмениваться важными двоичными файлами с исследователем живущим в горной хижине в Вайоминге, а хозяин животноводческой фермы из Аргентины сможет обращаться за сельскохозяйственными данными сети Университета Северной Каролины (Колорадо). (Выполните практическое задание 9-8 для того, чтобы получить дополнительную информацию он использовании LEO-спутников для построения сетей.)

Резюме

1 В современных технологиях беспроводных сетей применяются радиоволны, инфракрасное излучение, СВЧ-волны и низкоорбитальные спутники.

2 Основой для беспроводных сетей послужили эксперименты с пакетной радиосвязью, которые давно проводили операторы-радиолюбители.

3 В настоящее время беспроводные сети используются во многих областях (например, когда сложно развернуть кабельные сети). Кроме того, такие сети позволяют уменьшить затраты на установку сети и обеспечивают связь с мобильными компьютерами.

4 В технологиях радиосвязи обычно используются коммуникации в пределах прямой видимости, которые осуществляются от одной точки к другой вдоль поверхности Земли (вместо того, чтобы радиосигнал отражался от атмосферы Земли). В таких технологиях также применяются коммуникации с расширенным спектром, когда радиоволны передаются по нескольким смежным частотам.

5 Стандарт IEEE 802.11 в настоящее время используется в радиосетях различного типа. Этот стандарт предусматривает три основных компонента: адаптер беспроводной сети (WNIC), точка доступа и антенна. Приняты два стандарта (802.11а и 802.11b), которые определяют скорости коммуникаций, отвечающих стандарту 802.11. Внедряется новый стандарт – 802.11g, который представляет собой расширение стандарта 802.11b.

6 К распространенным альтернативам стандарту 802.11 относятся технологии Bluetooth, HiperLAN и HomeFR Shared Wireless Access Protocol.

7 Стандарт 802.11R предусматривает использование рассеянного инфракрасного (ИК) излучения для построения небольших, относительно защищенных сетей, размещающихся в довольно замкнутых офисах или рабочих зонах.

8 Микроволновые сети существуют в двух видах: сети на базе наземных СВЧ-каналов и спутниковые сети. Спутниковые сети, конечно, могут стоить очень дорого из-за высоких расходов на запуск спутника в космос.

9 Сети на базе низкоорбитальных (LEO) спутников предусматривают использование группы спутников, располагающихся на очень низких орбитах над уровнем Земли, благодаря чему задержки при передаче сигналов получаются значительно меньше, чем в обычных спутниковых коммуникациях. Когда сети на базе LEO-спутников будут развернуты, возможность работы в сетях станет доступной в любой точке планеты.

10 В табл. 9.2 перечислены достоинства и недостатки сетевых коммуникаций с использованием радиоволн, ИК-излучения и СВЧ-волн.

Таблица 9.2. Достоинства и недостатки беспроводных технологий связи

Радиоволны

ИК-излучение

СВЧ-волны

Низкоорби-тальные спутники

Досто-инства

Недорогая алтернатива для тех случаев, когда сложно реализовать коммуникации по кабелю.

Одно из средств реализации мобильных телекоммун-икаций

Обычно не требует лицензирования.

Сигнал трудно перехватить незаметно.

Недорогая альтернатива для тех случаев, когда сложно реализовать коммуникации по кабелю, особенно на большие расстояния.

Наземный СВЧ канал на больших расстояниях может оказаться более дешевым, чем арендуемые телекоммуника-ционные линии

Может разполагаться над Землей при создании глобальной сети.

Не создают таких задержек при передачи сигналов, как геосинхронные спутники.

Недо-статки

Могут не соответствовать требованиям высокоскоростных сетей.

Подвержены помехам со стороны сотовых сетей, военных, обычных и других источников радиосигналов.

Подвержены помехам естественного происхождения.

Могут не подойти для высокоскоро-стных коммуникаций.

Подвержены помехам со стороны посторонних источников света.

Не передаются через стены.

Номенклатура предлагаемых устройств меньше, чем для других типов беспроводных сетей

Могут не подойти для высокоскоро-стных коммуникаций

Дороги в установке и эксплуатации.

Подвержены помехам природного характера (дождь, снег, туман) и радиопомехам, а также зависят от состояния атмосферы.

Будут доступны лишь в 2005 году

Технические информационные средства постоянно совершенствуются, а производители стремятся вложить в них как можно больше комфорта для потребителя. В настоящее время практически все электронные устройства имеют как минимум один интерфейс для передачи данных. Благодаря этому их можно связать в общую локальную сеть внутри квартиры.

Рассмотрим краткий обзор ее возможностей и советы, которые облегчат работу домашнему мастеру по созданию проводных и беспроводных каналов связи, обеспечат надежную работу всех устройств домашней сети интернет.


Назначение домашней сети

Благами объединения различных электронных устройств в единую информационную систему мы с вами постоянно пользуемся, даже не замечая этого, когда:

  • ищем информацию в сети интернет с электронных устройств;
  • смотрим фильм или телепередачу на телевизоре через интернет;
  • печатаем фотографии напрямую со смартфона на принтере;
  • в отсутствии хозяина квартиры;
  • анализируем происходящие в квартире события в реальном масштабе времени по IP-камерам;
  • или выполняем другие операции.

Этот неполный перечень возможностей, которые предоставляет нам объединение различных устройств в единую сеть, можно значительно расширить.

Виды домашних сетей

На практике используются два вида обмена информацией по:

  1. радиоканалу (беспроводное соединение);
  2. специальному кабелю (проводной сети Ethernet).

Возможно использование обоих видов в единой сети, где одно оборудование работает без проводов, а другое - за счет подсоединения предназначенным для этих целей кабелем.

Каждый вид связи имеет свои достоинства и недостатки.

Беспроводное соединение

Для передачи информации по радиоканалам внутри дома используются технологии:

  • Wi-Fi.

Они обладают различными возможностями.

Спецификация Bluetooth позволяет осуществлять беспроводную радиосвязь между портативными устройствами, поддерживающими этот вид связи.


В технологию передачи заложено использование радиоволн с непостоянной, быстроменяющейся частотой, которую знают только передатчик и приемник.

Этим обеспечивается как защита от помех, возникающих от работы нескольких близко расположенных устройств, так и безопасность передачи данных.

В домашних условиях Bluetooth применяется чаще всего для подключения к портативным устройствам гарнитуры, мышки или клавиатуры, реже принтеров, фотоаппаратов и другой совместимой техники.

Wi-Fi как альтернатива Ethernet

Беспроводное соединение Wi-Fi получает в последнее время все большее распространение благодаря отсутствию привязки к проводам.


Практически все современные девайсы имеют встроенное оборудование для использования беспроводных технологий.

Основные отличия по передаче данных посредством проводного Ethernet соединения с беспроводными радиоканалами Wi-Fi сведены в таблицу.

Как видно из таблицы, расстояния для передачи сигнала и скорости обмена данными по беспроводной технологии хуже. Но, величины обеих характеристик вполне достаточны для работы внутри помещения.

С точки зрения обеспечения безопасности передачи информации у беспроводного Wi-Fi также имеются проблемы. Однако защита домашней сети не всегда имеет первостепенное значение. Поэтому отдельные пользователи даже не вникают в этот вопрос либо по незнанию, либо просто считая, что им нечего защищать.

В целом же беспроводный Wi-Fi уступает по характеристикам проводному Ethernet, но его удобства и мобильность обеспечивают широкое применение среди бытовых электронных девайсов.

Проводное соединение

Этот метод требует больше затрат на приобретение дополнительного оборудования и прокладку кабеля в кабель-каналах, что влияет .


Следует учитывать, что провода, расположенные рядом с оборудованием, могут путаться друг с другом, создавать беспорядок, снижать безопасность эксплуатации.

Был, правда, придуман один оригинальный способ передачи информации. Он использует каналы бытовой электрической сети 220В за счет подключения к ней PLC-модема. Эта методика позволяет сэкономить средства на прокладке кабеля. Но по ряду причин она не стала развиваться.

Доступ к сети интернет в квартире, частном доме и офисе

В домашних и офисных сетях чаще всего применяется сетевое подключение по проводным каналам за счет технологии Ethernet. Провайдеры, (организации, занимающиеся доступом клиентов к сети интернет) обычно предоставляют свое оборудование (маршрутизатор или модем) абонентам для установки в помещениях.

Оно отличается по конструкции и может иметь:

  • единственный порт (разъем для подключения кабеля) или несколько;
  • техническую возможность передачи Wi-Fi либо быть без нее;
  • дополнительные функции (подключение интернет-ТВ, и другие).

Благодаря этому оборудованию у нас в квартире работает интернет. Чтобы обеспечить к нему подключение по Wi-Fi, достаточно на принимающем электронном устройстве указать:

  • сетевое имя;
  • ключ (пароль) для доступа в свою сеть.

Оба этих параметра прописываются в модеме.

Для проводной сети чаще всего происходит автоматическое определение параметров оборудования и его подключение (для этого должен быть включен DHCP протокол). Однако в некоторых случаях может потребоваться их настройка.

Вообще, компьютерная локальная сеть не обязательно должна иметь доступ к интернет. Но, учитывая сравнительно дешевые тарифы на подключение и большие возможности расширения пользовательских функций за счет доступа к всемирной паутине в домашних условиях такие сети становятся редкостью.

Технология подключения к интернет от провайдера до абонента

Организация коммутируемого доступа (Dial-UP)

Это довольно «древний» метод подключения, работающий на телефонных сетях с устаревшими координатными АТС. Связь через интернет создается модемом, который дозванивается на станционное оборудование и коммутируется с ним.


Скорость соединения при подобном подключении сильно зависит от качества связи и возникающих помех. Она редко превышает 32-56 Кбит/сек. Сама телефонная линия при этом занята и не может быть использована для разговора.

ISDN (Integrated Services Digital Network)

Такая сеть позволяет одновременно передавать голос и цифровые данные.


В отличии от Dial-Up телефон не будет занят во время подключения к интернет, а его скорость будет на порядок выше.

PON (Passive optical network)

Производиться постепенная замена обычного кабеля на оптоволокно, которое, несмотря на повышенную стоимость, открывает совсем другие возможности.

Технология PON позволяет передавать данные с высокой скоростью от оборудования телекоммуникационной компании до абонента. Качество передаваемого сигнала по оптоволокну на порядок выше чем по обычному кабелю.

WiMAX

Вид беспроводной связи, способной передавать информацию на расстояния в несколько километров на высокой скорости. Предоставляется телекоммуникационными компаниями для доступа к сети интернет своим клиентам, посредством установки базовых станций и оконечного оборудования WiMAX. Эта технология набирает популярность.

Спутниковый интернет

Организация канала доступа через спутник требует:

  1. установки специфического спутникового оборудования, настроенного на спутник - антенны «тарелки»;
  2. регистрации у провайдера, предоставляющего доступ в интернет, через указанный спутник.

Стоит отметить, что имеется два варианта пользования сетью интернет через спутник:

  1. ассиметричная организация канала связи;
  2. симметричный канал.

Первый способ дешевле для пользователя. Исходящие запросы пакетов идут отдельным каналом. Это очень незначительный трафик и для него достаточно использовать мобильный интернет, оплачиваемый отдельно.

Прием же запрошенных данных осуществляется через спутниковый канал. Скорость приема и получаемый трафик со спутника получаются значительно выше, чем для исходящих пакетов.

Второй вариант намного дороже. Он предусматривает обмен входящего и исходящего трафика непосредственно через спутник. Неоспоримым преимуществом этого вида подключения является возможность организации доступа к интернет с любой точки земного шара, если используется необходимое оборудование.

Как правило, он используется при необходимости иметь доступ в интернет и отсутствию других вариантов его подключения.

Технология DOCSIS или соединение по ТВ кабелю

Подобный вид подключения используют некоторые операторы кабельного телевидения. Принцип работы такой схемы довольно прост. Кабель коаксиального типа, заведенный в квартиры к абонентам за счет делителя разветвляется на два выхода:

  1. один канал работает непосредственно на телевизор;
  2. второй выход соединяется через модем, использующий технологию DOCSIS (Data Over Cable Service Interface Specifications).

Этот модем и раздает затем интернет на принимающие электронные устройства. А в простейшем случае можно вообще использовать специальную компьютерную плату (ТВ-тюнер), поддерживающую эту технологию.

Такой способ не стал широко применяться из-за существенных недостатков:

  • ширина канала сильно зависит от количества подключенных абонентов, пользующихся интернет соединением;
  • невысокая скорость передачи информации.

Однако операторы кабельного телевидения могут использовать эту возможность для оказания дополнительных услуг своим клиентам.

Мобильный интернет

Главное достоинство этого способа - интернет всегда под рукой, но он ограничен пределами действующей сети оператора мобильной связи. Подключение реализуется через встроенный модем мобильного устройства (телефона, смартфона, коммуникатора, планшета) либо за счет работы отдельного USB-модема.

Мобильный интернет использует один из видов технологий:

  • GPRS,
  • EDGE,

Даже несмотря на низкую скорость передачи информации (GPRS - до 40 Кбит/с, EDGE - до 236 Кбит/сек, 3G - до 3,6 Мбит/сек, и лишь 4G - около 100 Мбит/сек) этот вид доступа в интернет пользуется популярностью.

Рассмотренный перечень способов передачи данных лучше всего отвечает интересам домашнего мастера по обеспечению связи через сеть интернет. Остальные методы больше подходят для офисных организаций.

Электроника лежит в основе практически всей коммуникации. Все началось с изобретения телеграфа в 1845 году, за ним в 1876 году последовал телефон. Связь постоянно совершенствовалась, а прогресс в электронике, который произошел совсем недавно, заложил новый этап в развитие коммуникаций. Сегодня беспроводная связь вышла на новый уровень и уверенно заняла доминирующую часть рынка связи. И ожидается новый рост сектора беспроводной коммуникации благодаря развивающейся сотовой инфраструктуре, а также современным технологиям, таким как . В данной статье мы рассмотрим наиболее перспективные технологии на ближайшее время.

Состояние 4G

4G в переводе с английского означает долговременную эволюцию (Long Term Evolution (LTE). LTE – это технология OFDM, которая на сегодняшний день является доминирующей структурой сотовой системы связи. Системы 2G и 3G все еще существуют, хотя внедрение 4G началась в 2011 – 2012 годах. Сегодня LTE в основном реализуется крупнейшими операторами в США, Азии и Европе. Его развертывание еще не завершено. LTE получила огромную популярность у владельцев смартфонов, так как высокая скорость передачи данных открыла такие возможности, как потоковая передача видео для эффективного просмотра фильмов. Тем не менее, все не так идеально.

Хотя LTE обещал скорость загрузки до 100 Мбит / с, это не было достигнуто на практике. Скорости до 40 или 50 Мбит / с могут быть достигнуты, но только при особых условиях. При минимальном количестве подключений и минимальном траффике такие скорости очень редко могут достигаться. Наиболее вероятные скорости передачи данных находятся в диапазонах 10 – 15 Мбит / с. В пиковые часы скорость проседает до нескольких Мбит / с. Конечно, это не делает реализацию 4G провальной затеей, это означает, что пока его потенциал реализован не полностью.

Одной из причин, почему 4G не обеспечивает заявленную скорость – слишком большое количество потребителей. При слишком интенсивном его использовании скорость передачи данных существенно снижается.

Однако, существует надежда, что это удастся исправить. Большинство операторов, предоставляющих услуги 4G, еще не реализовали технологию LTE-Advanced, усовершенствование, которое обещает повысить скорость передачи информации. LTE-Advanced использует «объединение несущих» (carrier aggregation (CA)) для увеличения скорости. «Объединение несущих» подразумевает объединение стандартной полосы пропускания LTE до 20 МГц в 40 МГц, 80 МГц или 100 МГц части, для повышения пропускной способности. LTE-Advanced также имеет конфигурацию MIMO 8 x 8. Поддержка этой функции открывает потенциал для увеличения скорости обмена данными до 1 Гбит/с.

LTE-CA известно еще как LTE-Advanced Pro или 4.5G LTE. Эти сочетания технологий определенны группой разработки стандартов 3GPP в версии 13. Она включает в себя агрегацию операторов, а также лицензионный доступ с поддержкой (LAA), метод, который использует LTE в нелицензированном Wi-Fi-спектре 5 ГГц. Он также развертывает агрегацию каналов LTE-Wi-Fi (LWA) и двойное подключение, позволяя смартфону «разговаривать» одновременно с узлом небольшой точки доступа, и точкой доступа Wi-Fi. В данной реализации слишком много деталей, которые мы не будем рассматривать, но общая цель — продлить срок службы LTE за счет снижения задержки и увеличения скорости передачи данных до 1 Гбит / с.

Но это не все. LTE сможет обеспечить более высокую производительность, так как операторы начинают упрощать свою стратегию небольшими ячейками, обеспечивая более высокую скорость передачи данных для большего числа абонентов. Маленькие ячейки — это просто миниатюрные сотовые базовые станции, которые могут быть установлены где угодно для заполнения пробелов охвата макроячейки, добавляя, где это необходимо, производительность.

Еще одним способом повышения производительности является использование Wi-Fi. Этот метод обеспечивает быструю загрузку в ближайшую точку доступа Wi-Fi, когда она доступна. Лишь несколько операторов сделали это доступным, но большинство из них рассматривают усовершенствование LTE под названием LTE-U (U для нелицензионного (unlicensed)). Это метод, аналогичный LAA, который использует нелицензированный диапазон 5 ГГц для быстрой загрузки, когда сеть не может справиться с нагрузкой. Это создает конфликт спектра с последней , которая использует диапазон 5 ГГц. Для реализации этого были разработаны определенные компромиссы.

Как мы видим, потенциал 4G все еще не раскрыт до конца. В ближайшие годы будут внедрены все или большинство из перечисленных усовершенствований. Стоит отметить и то, что производители смартфонов также внесут изменение в аппаратное или программное обеспечения для усовершенствования работы LTE. Данные улучшение, скорее всего, произойдут тогда, когда начнется массовое внедрение стандарта 5G.

Открытие 5G

Как такового 5G пока нет. Так, что громкие заявление об «абсолютно новом стандарте способном изменить подход к беспроводной передаче информации» пока рано. Хотя, некоторые поставщики интернет услуг уже начинают споры, кто же первым внедрит стандарт 5G. Но стоит вспомнить спор недавних лет о 4G. Ведь реального 4G (LTE-A) еще нет. Тем не менее, работа над 5G идет полным ходом.

«Проект партнерства третьего поколения» (3GPP) работает над стандартом 5G, который, как ожидается, будет внедрен в ближайшие годы. Международный союз электросвязи (ITU), который будет «благословлять» и администрировать стандарт, заявляет, что окончательно 5G должен стать доступен к 2020 году. Тем не менее, некоторые ранние версии стандарта 5G все же будут появляться в конкурентной борьбе провайдеров. Некоторые требования 5G появятся уже в 2017 – 2018 годах в той или иной формах. Полное внедрение 5G будет задачей далеко не из легких. Такая система будет одной из самых сложных, если не самой сложной, из беспроводных сетей. Полное ее развертывание ожидается к 2022 году.

Основанием внедрения 5G является преодоление ограничений 4G и добавление возможностей для новых приложений. Ограничения 4G — это в основном пропускная способность абонента и ограниченные скорости передачи данных. Сети сотовой связи уже перешли от голосовых технологий к центрам данных, но необходимы дальнейшие улучшения производительности в будущем.

Более того, ожидается бум новых приложений. К ним относят видео HD 4K, виртуальную реальность, интернет вещей (IoT), а также использование структуры «машина-машина» (М2М). Многие по-прежнему прогнозируют от 20 до 50 миллиардов устройств онлайн, многие из которых будут подключаться к сети интернет через сотовую связь. В то время, как большинство устройств IoT и M2M работают на низких скоростях передачи данных, то для работы с потоковыми данными (видео) необходима высокая скорость интернет. Другими потенциальными приложениями, которые будут использовать стандарт 5G, могут стать умные города и средства связи для обеспечения безопасности автомобильного транспорта.

5G, вероятно, будет более революционным, чем эволюционным. Это будет связано с созданием новой сетевой архитектуры, которая будет накладываться на сеть 4G. Новая сеть будет использовать распределенные мелкие ячейки с волоконным или миллиметровым обратным каналом, а также будет экономной, энергонезависимой и легко масштабируемой. Кроме того, в сетях 5G будет больше программного, чем аппаратного обеспечения. Также будет использоваться программная сеть (SDN), виртуализацию сетевых функций (NFV), методы самоорганизующейся сети (SON).

Также имеется еще несколько ключевых особенностей:

  • Использование миллиметровых волн. В первых версиях 5G могут использоваться полосы в 3,5 ГГц и 5 ГГц. Также рассматриваются варианты частот от 14 ГГц до 79 ГГц. Окончательный вариант пока выбран не был, однако FCC заявляет, что выбор буден сделан в ближайшее время. Тестирование ведется на частотах 24, 28, 37 и 73 ГГц.
  • Рассматриваются новые схемы модуляции. Большинство из них – это некоторые вариант OFDM. Две или более схем могут быть определены в стандарте для различных приложений.
  • Несколько входов с несколькими выходами (MIMO) будут включены в некоторую форму для расширения диапазона, скорости передачи данных и надежности связи.
  • Антенны будут иметь фазированные решетки с адаптивным формированием луча и управлением.
  • Более низкая латентность — главная цель. Менее 5 мс задано, но менее 1 мс является целью.
  • Скорости передачи данных от 1 Гбит / с до 10 Гбит / с ожидаются в полосах пропускания 500 МГц или 1 ГГц.
  • Микросхемы будут изготавливаться из арсенида галлия, кремния-германия и некоторых КМОП.

Одной из самых больших проблем во внедрении 5G ожидается интеграция данного стандарта в мобильные телефоны. В современных смартфонах и так полным-полно различных передатчиков и приемников, а с 5G они станут еще сложнее. Нужна ли такая интеграция?

Путь развития Wi-Fi

Наряду с сотовой связью находится одна из наиболее популярных беспроводных сетей – Wi-Fi. Как и , Wi-Fi является одной из наших любимых «утилит». Мы рассчитываем на подключение к сети Wi-Fi практически в любом месте, и в большинстве случаев мы получаем доступ. Как и большинство популярных беспроводных технологий, он постоянно находится в стадии разработки. Последняя выпущенная версия называется 802.11ac и обеспечивает скорость до 1,3 Гбит / с в нелицензированной полосе частот 5 ГГц. Также идет поиск приложений для стандарта 802.11ad со сверхвысокой частотой 60 ГГц (57-64 ГГц). Это проверенная и экономически эффективная технология, но кому нужны скорости от 3 до 7 Гбит / с на расстоянии до 10 метров?

На данный момент существует несколько проектов развития стандарта 802.11. Вот несколько из основных:

  • 11af — это версия Wi-Fi в белых полосах телевизионного диапазона (54 до 695 МГц). Данные передаются в локальных полосах пропускания 6- (или 8) МГц, которые не заняты. Возможна скорость передачи данных до 26 Мбит/с. Иногда его называют White-Fi, а главная привлекательность 11af заключается в том, что возможный радиус действия на низких частотах составляет много километров и отсутствие прямой видимости (NLOS) (работа только на открытых площадях). Эта версия Wi-Fi еще не используется, но имеет потенциал для приложений IoT.
  • 11ah — обозначенный как HaLow, является еще одним вариантом Wi-Fi, который использует нелицензированный диапазон ISM 902-928 МГц. Это маломощная низкоскоростная (сотни кбит / с) служба с дальностью до километра. Целью является применение в IoT.
  • 11ax — 11ax — это обновление до 11ac. Его можно использовать в диапазонах 2,4 и 5 ГГц, но, скорее всего, он будет работать в полосе частот 5 ГГц исключительно для использования полосы пропускания 80 или 160 МГц. Ожидается, что наряду с 4 x 4 MIMO и OFDA / OFDMA, ожидается пиковая скорость передачи данных до 10 Гбит / с. Окончательной ратификации не будет до 2019 года, хотя предварительные версии, вероятно, будут полными.
  • 11ay — это расширение стандарта 11ad. Он будет использовать полосу частот 60 ГГц, а целью является, по меньшей мере, скорость передачи данных 20 Гбит / с. Еще одна цель — расширить дальность до 100 метров, чтобы иметь больше приложений, таких как обратный трафик для других услуг. Выход этого стандарта не ожидается в 2017 году.

Беспроводные сети для IoT и М2М

Беспроводная связь, безусловно, является будущим интернет вещей (IoT) и межмашинных связей (Machine-to-Machine, M2M). Хотя проводные решения тоже не исключаются, но стремление к беспроводной связи все же является предпочтительней.

Типичным для устройств интернет вещей является небольшое расстояние действия, малая потребляемая мощность, небольшая скорость обмена данными, питания от аккумулятора или батареи с датчиком, как показано на рисунке ниже:

Альтернативой может стать какой-то удаленный исполнительный механизм, как показано на рисунке ниже:

Или же возможна комбинация этих двух устройств. Оба, как правило, подключаются к интернету через беспроводной шлюз, но также могут подключаться и через смартфон. Соединение со шлюзом также беспроводное. Вопрос в другом, какой беспроводной стандарт будет использоваться?

Очевидным выбором становится Wi-Fi, так как трудно представить себе место, где его нет. Но для некоторых приложений он будет излишен, а для некоторых слишком энергоемок. Bluetooth – еще один неплохой вариант, особенно его версия с низким энергопотреблением (BLE). Новые дополнения к сети и шлюзу Bluetooth делают его еще более привлекательным. ZigBee — еще одна готовая и ожидающая альтернатива, и не забываем о Z-Wave. Так же есть несколько вариантов 802.15.4, например 6LoWPAN.

Добавьте к ним новейшие варианты, являющиеся частью энергоэффективных сетей дальнего радиуса действия (Low Power Wide Area Networks (LPWAN)). Эти новые беспроводные варианты предлагают сетевые соединения большей дальности, что обычно невозможно при использовании традиционных технологий, упомянутых выше. Большинство из них работают в нелицензируемом спектре ниже 1 ГГц. Некоторые из новейших конкурентов для приложений IoT:

  • LoRa — изобретение Semtech и поддерживается Link Labs. Эта технология использует линейную частотную модуляцию (ЛЧМ) при низкой скорости передачи данных, чтобы получить диапазон до 2-15 км.
  • Sigfox — французская разработка, использующая ультра узкополосную схему модуляции при низкой скорости передачи данных для отправки коротких сообщений.
  • Weightless – использует телевизионные белые пространства с методами когнитивного радио для более длинных диапазонов и скорости передачи данных до 16 Мбит / с.
  • Nwave — это похоже на Sigfox, но на данный момент нам не удалось собрать достаточно информации.
  • Ingenu — в отличие от других, этот использует диапазон 2,4 ГГц и уникальную схему множественного доступа с произвольной фазой.
  • Halow — это 802.11ah Wi-Fi, описан выше.
  • White-Fi — это 802.11af, описан выше.

Cellular определенно является альтернативой IoT, поскольку является основой межмашинных связей (М2М) уже более 10 лет. Межмашинные связи используют в основном 2G и 3G беспроводные модули для мониторинга удаленных машин. В то время, как 2G (GSM) в конечном счете будет постепенно сокращаться, 3G все еще будет «жить».

Теперь доступен новый стандарт: LTE. В частности, он называется LTE-M и использует сокращенную версию LTE в полосе пропускания 1,4 МГц. Другая версия NB-LTE-M использует полосу пропускания 200 кГц для работы с более низкой скоростью. Все эти варианты смогут использовать существующие сети LTE с обновленным программным обеспечением. Модули и чипы для LTE-M уже доступны, как и на устройствах Sequans Communications.

Одна из самых больших проблем интернет вещей – отсутствие единого стандарта. И в ближайшее время, скорее всего, он не появится. Возможно, в будущем, появится несколько стандартов, только как скоро?

Современные беспроводные сети можно разбить на три категории:

1. Взаимодействующие системы.

Под взаимодействующими системами понимается, прежде всего, связывание между собой компонентов компьютера с использованием радиоволн малого радиуса действия. Любой компьютер состоит из нескольких частей: монитора, клавиатуры, мыши, принтера... Каждое из этих внешних устройств, как известно, подсоединяется к системному блоку с помощью кабелей. Несколько компаний одна за другой пришли к идее создания беспроводной системы Bluetooth, предназначенной для того, чтобы избавить компоненты компьютера от кабелей и разъемов. С помощью Bluetooth можно подключать к компьютеру практически любые цифровые устройства, располагающиеся недалеко от системного блока. Как правило, взаимодействие внутри системы подчиняется принципу «главный - подчиненный». Системный блок выступает в роли главного устройства, а все прочие - в роли подчиненных. Именно системный блок назначает адреса устройств, определяет моменты, в которые они могут «вещать», ограничивает время передачи, задает диапазоны рабочих частот и т.д.

Характерными чертами Bluetooth являются многоточечность (т.е. в сети могут присутствовать не два устройства, а несколько), отсутствие необходимости в прямой видимости (т.к. используются частоты порядка 2,44 ГГц), дальность от 10 м.

2. Беспроводные ЛВС (LAN).

В беспроводных локальных вычислительных сетях каждый компьютер оборудован радиомодемом и антенной, с их помощью он может обмениваться данными с другими компьютерами. Иногда есть общая антенна, расположенная на потолке, и передача данных происходит через нее, но если рабочие станции сети расположены достаточно близко, то обычно используют одноранговую конфигурацию. Беспроводные сети все шире используются в бизнесе и для домашних целей, где прокладывать Ethernet нет никакого смысла, а также в старых зданиях, арендуемых под офисы, в кафетериях, в офисных центрах, конференц-залах и других местах. Самый популярный стандарт беспроводных сетей - IEEE 802.11 или WiFi.

3. Беспроводные глобальные сети (WAN).

Примером может служить система сотовой связи, являющаяся на самом деле низкопроизводительной цифровой беспроводной сетью. Выделяют уже целых три поколения сотовой связи. Первые сотовые сети были аналоговыми и предназначались только для передачи речи. Второе поколение было уже цифровым, но ничего, кроме речи, передавать по-прежнему было нельзя. Наконец, современное, третье поколение - цифровое, причем появилась возможность передачи как голоса, так и других данных. В некотором смысле, сотовые сети - это те же беспроводные ЛВС, разница лишь в зоне охвата и более низкой скорости передачи. Если обычные беспроводные сети могут работать со скоростью до 50 Мбит/с на расстоянии десятков метров, то сотовые системы передают данные на скорости 1 Мбит/с, но расстояние от базовой станции до компьютера или телефона исчисляется километрами, а не метрами.


В мобильной телефонной системе географический регион охвата делится на соты, размер которых составляет порядка 10 км. В центре каждой соты располагается базовая станция, с которой связываются все телефоны, находящиеся в ее зоне действия. Сами базовые станции связаны друг с другом стандартными сетевыми средствами. В каждый момент времени мобильный телефон логически находится в зоне действия одной ячейки и управляется базовой станцией этой ячейки. Когда телефон физически покидает ячейку, его базовая станция замечает ослабление сигнала и опрашивает все окружающие станции, насколько хорошо они слышат сигнал этого телефона. Затем базовая станция передает управление данным телефоном ячейке, получающей от нее наиболее сильный сигнал, таким образом определяя ячейку, в которую переместился мобильный телефон. После этого телефон информируется о переходе в ведение новой БС, и если в этот момент ведется разговор, телефону будет предложено переключиться на новый канал (поскольку в соседних сотах одинаковые частотные каналы не используются). Подобный процесс называется передачей и занимает около 300 мс. Назначение канала осуществляет коммутатор мобильных телефонов MTSO, являющийся центральным нервом системы. Базовые станции представляют собой всего лишь радиоретрансляторы. Передача может осуществляться двумя способами. При мягкой передаче телефон переходит в ведение новой базовой станции еще до ухода со старой. При этом не происходит даже кратковременного пропадания связи. Недостатком такого метода является то, что в момент перехода с одной БС на другую телефон должен работать одновременно на двух частотах. Телефоны первого и второго поколения этого делать не умеют. При жесткой передаче старая базовая станция обрывает связь с телефоном до того, как новая взяла его под свою опеку. Если последняя не может в течение какого-то времени наладить связь с телефоном (например, по причине отсутствия свободных частот, то разговор может оборваться.

Среди технологий передачи данных, используемых в сотовых сетях, следует выделить GPRS. Она работает как надстройка над существующей голосовой системой. Некоторые временные интервалы на некоторых частотах резервируются под пакетный трафик и параллельно с голосом можно передавать IP-пакеты. Другая технология называется EDGE и представляет собой обычный GSM (глобальная система мобильной связи) с увеличенным числом бит на бод.

Использование беспроводных технологий - перспективное направление в развитии автоматизированных систем управления зданиями (АСУЗ). Сейчас это уже не только модная тенденция, но хорошо известная на международном рынке и проверенная временем технология для повышения эффективности как монтажных работ, так и функционирования АСУЗ. При этом очень важно понимать технические особенности ее реализации, возможности и ограничения.

Беспроводная автоматизированная система управления зданиями обладает многими преимуществами по сравнению с проводными системами. Монтаж беспроводной системы обычно обходится дешевле, и ее архитектура во многих случаях обладает большей совместимостью. Расширение и модернизация АСУЗ требует минимального беспокойства пользователей. Ввод беспроводных систем в эксплуатацию требует меньше времени, так как беспроводные сканирующие инструменты упрощают задачу обнаружения проблем и подтверждения установки. Кроме того, беспроводные технологии требуют меньшего объема сырьевых материалов, включая медь, и менее трудоемки при монтаже.

Поэтому, если вы купились на преимущества, предлагаемые беспроводными системами, вам необходимо понять, что беспроводные системы могут быть хороши (и не очень хороши). Нужно уяснить различия между тремя наиболее популярными беспроводными технологиями. Кроме того, следует знать ключевые требования для успешного проектирования и монтажа, а также вопросы безопасности беспроводных систем. Данная статья дает обзор по всем этим вопросам.

Беспроводные принципы АСУЗ

АСУЗ работает на трех уровнях. Верхний уровень - Ethernet (как пример - Ред .), связывающий контроллерные устройства и средства диспетчеризации. Этот уровень также позволяет получать доступ к АСУЗ через Интернет. Второй уровень - это магистральные сети обмена данными и контроллеры. На этом уровне осуществляется связь автоматических контроллеров, выполняющих всю работу, включая контроллеры воздухораспределителей с переменным расходом воздуха и прочее оборудование среднего размера. На третьем уровне расположены исполнительные устройства и датчики.

Исторически наиболее распространены беспроводные технологии на уровне датчиков, такие как средства контроля комнатной температуры. Сейчас получает широкое распространение уровень сетей обмена данными, поскольку он позволяет уменьшить стоимость монтажа и обеспечивает непривязанный доступ к сети. На самом деле, беспроводные технологии используются всеми тремя уровнями сетевых коммуникаций, поскольку верхний уровень также может использовать протокол Wi-Fi.

Беспроводные системы идеально подходят для применения в зданиях, где прокладка проводки затруднена или физически невозможна. Например, беспроводные средства контроля менее разрушительны для декоративных поверхностей, таких как мрамор, гранит или стекло. Другие помещения, где беспроводные технологии могут предоставить преимущества для владельцев и операторов зданий, включают большие открытые пространства, постройки с большими кирпичными или бетонными поверхностями, а также здания с большими потоками посетителей или частыми изменениями режимов эксплуатации.

Три беспроводных технологии

Три популярных беспроводных технологии: Wi-Fi, ZigBee и EnOcean. Коммерческие здания могут выиграть от комбинации нескольких беспроводных технологий на разных сетевых уровнях АСУЗ. Это обеспечивает высокую пропускную способность передачи данных, низкую стоимость и гибкость, предлагаемую каждой из этих технологий.

Полоса пропускания Wi-Fi позволяет обрабатывать большие объемы данных. Хотя эта технология пользуется популярностью, Wi-Fi потребляет больше электрической энергии и является более дорогостоящей, чем EnOcean и ZigBee. Эта беспроводная технология лучше всего подходит для дорогих устройств АСУЗ, представляющих собой верхний уровень сети, и обеспечивает возможность обмена данными между разными зданиями. Wi-Fi работает на частоте 2,4 ГГц и имеет 11 каналов, которые могут определять специалисты отдела информационных технологий для разделения сетей внутри здания.

ZigBee представляет собой беспроводную технологию со средней полосой пропускания, которая потребляет меньшую мощность, чем Wi-Fi. По этой причине она хорошо подходит для уровня связи по коммуникационным сетям обмена данными. ZigBee работает на той же частоте, что и Wi-Fi (2,4 ГГц), однако она рассчитана на работу внутри каналов Wi-Fi. Эти две беспроводные технологии предназначены для взаимодействия без интерференции.

Кроме того, ZigBee предлагает ячеистую сетевую архитектуру (Mesh network), которая является более надежной для коммерческих АСУЗ. Ячеистая сеть является самовосстанавливающейся - преимущество, которого нет у проводных сетей.

Технология EnOcean наиболее популярна в Европе и обладает низким энергопотреблением, позволяющим использовать беспроводные устройства без аккумуляторов. Очень низкая пропускная полоса EnOcean позволяет передавать очень малые объемы данных и работает на других частотах, чем Wi-Fi и ZigBee. Эта технология обычно используется для беспроводных датчиков и выключателей в составе АСУЗ.

Беспроводные сигналы и строительные материалы

Коммерческие здания включают в себя множество разных материалов и архитектурных элементов. Эти физические элементы влияют на беспроводные АСУЗ. Воздух, дерево и гипсокартон являются отличной средой для передачи беспроводных сигналов. Наиболее рентабельны беспроводные системы в больших открытых помещениях с неперекрытыми линиями прямой видимости, таких как спортивные залы и арены. В подобных помещениях беспроводные сигналы обладают намного большим соотношением мощности сигнала к расстоянию передачи.

Беспроводные сигналы также проходят сквозь кирпичные, бетонные и мраморные стены, но расстояние передачи значительно меньше. У большинства беспроводных устройств есть спецификации для передачи сигналов, которые предполагают наличие одной стены между узлами сети. Например, большинство устройств, использующих технологию ZigBee, работает с мощностью 10 мВт (переносной компьютер использует не менее 100 мВт), и сигнал легко проходит сквозь литую бетонную стену. Однако если сигнал от беспроводного устройства должен пройти сквозь несколько стен, можно ожидать 30-50 %-ного уменьшения мощности сигнала на каждую бетонную стену.

Беспроводные сигналы плохо проходят сквозь металл, что необходимо учесть. Двутавровые балки, шахты лифтов и металлические крыши представляют собой примеры металлических препятствий, с которыми часто встречаются беспроводные системы. Одно из неожиданных мест, где встречаются металлические преграды, - это исторические здания, внутри стен которых зашита в штукатурку металлическая сетка. В этом случае сигнал будет плохо проходить сквозь стены. Поэтому для беспроводных систем лучше выбирать помещения со свободной линией обзора, такие как помещения на открытом воздухе и коридоры.

Хорошая новость заключается в том, что большинство коммерческих зданий построены из материалов, вполне подходящих для беспроводной связи. При монтаже беспроводных систем важно учесть материалы, используемые для строительства внутренних стен. Хотя металлические преграды встречаются довольно часто, есть общепринятые правила, которые позволяют системам беспроводной связи надежно работать в коммерческих зданиях.

Таблица
Затухание (уменьшение мощности сигнала) для элементов ограждающих конструкций из разных материалов. Как правило, каждое затухание в 6 дБ уменьшает эффективный диапазон связи приблизительно на 50 %

Расстояние передачи и количество переходов (hop counts)

Максимальное расстояние передачи беспроводного сигнала ограниченно. По этой причине во многие беспроводные устройства встроены индикаторы мощности сигнала, которые помогают на этапе монтажа беспроводной системы без необходимости использовать дорогостоящие инструменты. Среднее расстояние, на котором беспроводные устройства сохраняют работоспособность, в большинстве сред составляет 15 м, но на открытых пространствах может достигать 76 м.

Беспроводные устройства, использующие технологии ZigBee и Wi-Fi, имеют ограниченное количество переходов между беспроводными узлами. Например, данные о температуре в нескольких помещениях могут пройти через пять устройств переменного расхода воздуха на пути передачи. Это считается пятью переходами. Если поставщик беспроводной системы рекомендует использовать только четыре перехода, один придется удалить. Технология EnOcean является двухточечным беспроводным решением и не поддерживает многоточечные переходы внутри сети.

Беспроводные АСУЗ и иные сети

Большинство беспроводных сетей способны сосуществовать с другими беспроводными сетями внутри коммерческого здания. Один из методов реализации этого - передача сигнала АСУЗ с очень малой мощностью (10 мВт) - снижает вероятность интерференции с устройствами, работающими на тех же частотных каналах.

Для разделения разных типов применения беспроводные системы работают на лицензионных частотных полосах. В каждой частотной полосе могут работать только устройства, специально предназначенные для данных частот. Например, полицейские радиостанции не могут создавать помехи для медицинских телеметрических устройств, так как работают на двух разных лицензированных частотах.

Большинство устройств, использующих технологии ZigBee и Wi-Fi, работают на частоте 2,4 ГГц, которая также известна как частотная полоса для измерительных приборов и медицинского оборудования (ISM). На этой частоте работают многие типы устройств, так как же они могут функционировать вместе без создания помех? Помните, что частотная полоса задает диапазон каналов. Для ZigBee в частотной полосе ISM 2,4 ГГц задано 16 каналов, от 2,405 до 2,480 ГГц. В Wi-Fi в этой полосе есть 11 пересекающихся каналов, от 2,412 до 2,462 ГГц. Каналы ZigBee более узкие, чем в Wi-Fi, сеть можно настроить с передачей данных между устройствами ZigBee (в промежутках) через каналы Wi-Fi. Большинство устройств ZigBee автоматически выбирают эти «тихие каналы» во время запуска сети; однако их можно перенастраивать вручную, чтобы отдел информационных технологий мог контролировать каналы беспроводных сетей внутри здания.

Безопасность и надежность беспроводных сетей

Беспроводные технологии достигли такого уровня, когда беспроводная АСУЗ может быть так же надежна и безопасна, как и проводная система. Беспроводные предложения на рынке становятся все более устойчивыми и конкурентоспособными. Ниже приведены некоторые элементы, которые следует учесть при развертывании беспроводных АСУЗ.

Большинство беспроводных сетей рассчитаны на сосуществование с другими беспроводными сетями, работающими в коммерческом здании. Для снижения интерференции с сетями Wi-Fi беспроводные решения АСУЗ передают данные на малой мощности. Это способствует повышению надежности обеих систем.

Беспроводные технологии не должны ставить под угрозу безопасность систем здания. Поэтому сети должны быть спроектированы так, чтобы обеспечить их безопасность при подключении к другим системам, и включать в себя современные средства безопасности. Беспроводная АСУЗ может включать в себя средства безопасности, содержащиеся в таких технологиях, как ZigBee, BACnet и TCP/IP, и включающие в себя шифрование данных, двухстороннюю аутентификацию и надежное управление ключами доступа. Правильная реализация этих технологий обеспечивает надежность передачи данных для операторов систем.

Беспроводная сеть АСУЗ обычно изолирована от магистральной информационной сети. Системы управления АСУЗ позволяют пользователям активировать или отключать маршрутизацию между разными уровнями сети, эффективно блокировать сообщения беспроводной сети АСУЗ от маршрутизации в информационные сети. Даже если хакер попробует воспользоваться беспроводной АСУЗ для атаки на информационную систему, эта блокировка может защитить данные в обеих сетях.

Кроме того, атакующие смогут получить только незначительное количество данных из беспроводной сети АСУЗ с регулярными промежутками. Расшифровка этих данных для получения полезной информации требует знания, как собирать случайные пакеты данных, а также близкого знакомства с каждым устройством в беспроводной сети.

Ограничения применения беспроводных сетей

Ограничения часто применяются в беспроводных сетях в определенных местах, таких как больницы. Около операционных ограничено использование мобильных телефонов. Любое место, где применяется ограничение использования мобильной связи, не является хорошим местом для развертывания беспроводных сетей.

Требования к электропитанию

Термин «беспроводной» не всегда означает «не требует электропитания». Беспроводные контроллеры систем автоматизации зданий и беспроводные повторители требуют наличия источника переменного тока. Установка беспроводных повторителей в беспроводных АСУЗ также влечет за собой некоторые расходы на электроэнергию.

Большинство доступных сегодня на рынке беспроводных датчиков, работающих от батареек, имеют срок службы четыре-пять лет и используют недорогие стандартные батареи. Большинство датчиков автоматически сообщают, когда батарея разряжается. Учтите, что простые устройства, такие как выключатели и датчики, могут собирать энергию для работы без батарей.

Подготовка к установке беспроводной системы

Все монтажные работы начинаются в инженерном отделе с использованием чертежей и информации об арендаторах. Если известно, как арендаторы используют помещение, инженерная группа может рекомендовать решение, обладающее максимальной гибкостью. Существующие здания, требующие реконструкции, могут выиграть от специальных осмотров на месте с использованием чек-листов.

Инженеры должны рассмотреть ожидаемые изменения в здании на протяжении всего срока его службы. Не следует устраивать беспроводную связь между этажами, поскольку во многих случаях проектировщики системы не могут контролировать, что находится этажом выше или ниже. Например, пользователи могут передвинуть металлический шкаф так, что он будет блокировать сигнал, передаваемый на беспроводное устройство на соседнем этаже.

Большинство беспроводных систем сопровождаются информацией о расстоянии передачи между беспроводными устройствами и встроенными индикаторами уровня мощности радиосигнала. Эта информация полезна для проведения осмотров на месте, а также во время и после монтажа системы.

Независимо от того, является ли система беспроводной, проводной или гибридной, лучше всего привлечь всех заинтересованных лиц на ранней стадии процесса, чтобы понять их ожидания и цели. Инженеры и подрядчики должны знать, какие системы уже имеются в существующем здании или планируются для нового здания. На начальной стадии процесса привлеките интегратора систем АСУЗ, чтобы убедиться, что проект системы соответствует бизнес-целям.

Беспроводные сети способны заменить проводные системы в большинстве зданий. Основной стимул продвижения беспроводных систем - потребность в контроле оборудования для повышения эффективности.

Современные беспроводные системы автоматизации зданий осуществляют подключение нескольких уровней сети, устройств диспетчеризации, контроллерного оборудования, датчиков комнатной температуры, а также других коммуникационных устройств. Беспроводные технологии можно интегрировать на одном или всех уровнях инфраструктуры АСУЗ. Это позволит обеспечить гибкость управления, простоту модернизации и сокращение времени монтажа.

Литература

  1. Patrick Harder. A Guide to Wireless Technologies // ASHRAE Journal - 2011. - February.
  2. СТО НП «АВОК» 8.2-2008 «Комплекс систем интеллектуализации малоэтажных и коттеджных зданий». М. : ООО ИИП «АВОК-ПРЕСС», 2008.
  3. IEEE Std. 802.15.4-2006 (Revision of IEEE Std. 802.15.4-2003). - New York: IEEE, 2006.
  4. IEEE Std 802.11-2007 (Revision of IEEE Std 802.11-1999). - New York: IEEE, 2006.

Статья заимствована с сайта abok.ru.




Top