§4.8. Линейная зависимость строк и столбцов матрицы. Ранг матрицы. Метод окаймляющих миноров. Линейная независимость строк (столбцов) матрицы

Система векторов одного и того же порядка называется линейно-зависимой, если из этих векторов путем соответствующей линейной комбинации можно получить нулевой вектор. (При этом не допускается, чтобы все коэффициенты линейной комбинации были равны нулю, так как это было бы тривиально.) В противном случае векторы называются линейно-независимыми. Например, следующие три вектора:

линейно зависимы, так как что легко проверить. В случае линейной зависимости любой вектор можно всегда выразить через линейную комбинацию остальных векторов. В нашем примере: или или Это легко проверить соответствующими расчетами. Отсюда вытекает следующее определение: вектор линейно независим от других векторов, если его нельзя представить в виде линейной комбинации из этих векторов.

Рассмотрим систему векторов, не уточняя, является ли она линейнозависимой или линейно-независимой. У каждой системы, состоящей из вектор-столбцов а, можно выявить максимально возможное число линейно-независимых векторов. Это число, обозначаемое буквой , и является рангом данной системы векторов. Так как каждую матрицу можно рассматривать как систему вектор-столбцов, ранг матрицы определяется как максимальное число содержащихся в ней линейнонезависимых вектор-столбцов. Для определения ранга матрицы пользуются и вектор-строками. Оба способа дают одинаковый результат для одной и той же матрицы, причем не может превосходить наименьшее из или Ранг квадратной матрицы порядка колеблется от 0 до . Если все векторы являются нулевыми, то ранг такой матрицы равен нулю. Если все векторы линейно независимы друг от друга, то ранг матрицы равен. Если образовать матрицу из приведенных выше векторов то ранг этой матрицы равен 2. Так как каждые два вектора могут быть сведены к третьему путем линейной комбинации, то ранг меньше 3.

Но можно убедиться, что любые два вектора из них являются-линейно-независимыми, следовательно, ранг

Квадратную матрицу называют вырожденной, если ее вектор-столбцы или вектор-строки линейно зависимы. Определитель такой матрицы равен нулю и обратной ей матрицы не существует, как уже было отмечено выше. Эти выводы эквивалентны друг другу. Вследствие этого квадратную матрицу называют невырожденной, или неособенной, если ее вектор-столбцы или вектор-строки независимы друг от друга. Определитель такой матрицы не равен нулю и обратная ей матрица существует (сравни со с. 43)

Ранг матрицы имеет вполне очевидную геометрическую интерпретацию. Если ранг матрицы равен , то говорят, что -мерное пространство натянуто на векторов. Если ранг то векторов лежат в -мерном подпространстве, которое всех их включает в себя. Итак, ранг матрицы соответствует минимально необходимой размерности пространства, «в котором содержатся все векторы», -мерное подпространство в -мерном пространстве называют -мерной гиперплоскостью. Ранг матрицы соответствует наименьшей размерности гиперплоскости, в которой еще лежат все векторы.

Ортогональность. Два вектора а и b называются взаимно-ортогональными, если их скалярное произведение равно нулю. Если для матрицы порядка имеет место равенство где D - диагональная матрица, то вектор-столбцы матрицы А попарно взаимно-ортогональны. Если эти вектор-столбцы пронормировать, т. е. привести к длине, равной 1, то имеет место равенство и говорят об ортонормированных векторах. Если В - квадратная матрица и имеет место равенство то матрицу В называют ортогональной. В этом случае из формулы (1.22) следует, что Ортогональная матрица всегда невырожденная. Отсюда из ортогональности матрицы следует линейная независимость ее вектор-строк или вектор-столбцов. Обратное утверждение неверно: из линейной независимости системы векторов не следует попарная ортогональность этих векторов.

Пусть

Столбцы матрицы размерности . Линейной комбинацией столбцов матрицы называется матрица-столбец , при этом - некоторые действительные или комплексные числа, называемые коэффициентами линейной комбинации . Если в линейной комбинации взять все коэффициенты равными нулю, то линейная комбинация равна нулевой матрице-столбцу.

Столбцы матрицы называются линейно независимыми , если их линейная комбинация равна нулю лишь когда все коэффициенты линейной комбинации равны нулю. Столбцы матрицы называются линейно зависимыми , если существует набор чисел , среди которых хотя бы одно отлично от нуля, а линейная комбинация столбцов с этими коэффициентами равна нулю

Аналогично могут быть даны определения линейной зависимости и линейной независимости строк матрицы. В дальнейшем все теоремы формулируются для столбцов матрицы.

Теорема 5

Если среди столбцов матрицы есть нулевой, то столбцы матрицы линейно зависимы.

Доказательство. Рассмотрим линейную комбинацию, в которой все коэффициенты равны нулю при всех ненулевых столбцах и единице при нулевом столбце. Она равна нулю, а среди коэффициентов линейной комбинации есть отличный от нуля. Следовательно, столбцы матрицы линейно зависимы.

Теорема 6

Если столбцов матрицы линейно зависимы, то и все столбцов матрицы линейно зависимы.

Доказательство. Будем для определенности считать, что первые столбцов матрицы линейно зависимы. Тогда по определению линейной зависимости существует набор чисел , среди которых хотя бы одно отлично от нуля, а линейная комбинация столбцов с этими коэффициентами равна нулю

Составим линейную комбинацию всех столбцов матрицы, включив в нее остальные столбцы с нулевыми коэффициентами

Но . Следовательно, все столбцы матрицы линейно зависимы.

Следствие . Среди линейно независимых столбцов матрицы любые линейно независимы. (Это утверждение легко доказывается методом от противного.)

Теорема 7

Для того чтобы столбцы матрицы были линейно зависимы, необходимо и достаточно, чтобы хотя бы один столбец матрицы был линейной комбинацией остальных.

Доказательство.

Необходимость. Пусть столбцы матрицы линейно зависимы, то есть существует набор чисел , среди которых хотя бы одно отлично от нуля, а линейная комбинация столбцов с этими коэффициентами равна нулю

Предположим для определенности, что . Тогда то есть первый столбец есть линейная комбинация остальных.

Достаточность . Пусть хотя бы один столбец матрицы является линейной комбинацией остальных, например, , где - некоторые числа.

Тогда , то есть линейная комбинация столбцов равна нулю, а среди чисел линейной комбинации хотя бы один (при ) отличен от нуля.

Пусть ранг матрицы равен . Любой отличный от нуля минор - го порядка называется базисным . Строки и столбцы, на пересечении которых стоит базисный минор, называются базисными .

Понятие ранга матрицы тесно связано с понятием линейной зависимости (независимости) ее строк или столбцов. В дальнейшем будем излагать материал для строк, для столбцов изложение аналогично.

В матрице A обозначим ее строки следующим образом:

, , …. ,

Две строки матрицы называются равными , если равны их со­ответствующие элементы: , если , .

Арифметические операции над строками матрицы (умножение строки на число, сложение строк) вводятся как операции, прово­димые поэлементно:

Строка е называется линейной комбинацией строк ..., матрицы, если она равна сумме произведений этих строк на произвольные действительные числа:

Строки матрицы называются линейно зависимы­ми , если существуют такие числа , не равные одно­временно нулю, что линейная комбинация строк матрицы равна нулевой строке:

, =(0,0,...,0). (3.3)

Теорема 3.3 Строки матрицы линейно зависимы, если хотя бы одна строка матрицы является линейной комбинацией остальных.

□ Действительно, пусть для определенности в формуле (3.3) , тогда

Таким образом, строка является линейной комбинат остальных строк. ■

Если линейная комбинация строк (3.3) равна нулю тогда и только тогда, когда все коэффициенты равны нулю, то строки называются линейно независимыми.

Теорема 3.4. (о ранге матрицы) Ранг матрицы равен максимальному числу ее линейно независимых строк или столбцов, через которые линейно выражаются все остальные ее строки (столбцы).

□ Пусть матрица A размера m n имеет ранг r (r min ). Это означает, что существует отличный от нуля минор r -го порядка. Всякий ненулевой минор r -го порядка будем называть базисным минором.

Пусть для определенности базисный минор есть ведущий или угловой минор. Тогда строки матрицы линейно независимы. Предположим противное, то есть одна из этих строк, например , является линейной комбинацией остальных . Вычтем из элементов r - ой строки элементы 1-й строки, умноженные на , затем элементы 2-й строки, умноженные на , … и элементы (r - 1) - ой строки, умноженные на . На ос­новании свойства 8 при таких преобразованиях мат­рицы ее определитель D не изменится, но так как r - я строка будет теперь состоять из одних нулей, то D = 0 - противоречие. Следовательно, наше предположение о том, что строки матрицы линейно зависимые, неверно.

Строки назовем базисными . Покажем, что любые (r+1) строк матрицы линейно зависимы, т.е. любая строка выражается через базисные.

Рассмотрим минор (r +1) - го порядка, который получается при дополнении рассматриваемого минора элементами еще одной строки i и столбца j . Этот минор равен нулю, так как ранг матрицы равен r , поэто­му любой минор более высокого порядка равен нулю.

Раскладывая его по элементам последнего (добавленного) столбца, получаем

Где модуль послед­него алгебраического дополнения совпадает с базисным мино­ром D и поэтому отлично от нуля, т.е. 0.

где – какие-то числа (некоторые из этих чисел или даже все могут быть равны нулю). Это означает наличие следующих равенств между элементами столбцов:

или , .

Из (3.3.1) вытекает, что

(3.3.2)

где – нулевая строка.

Определение. Строки матрицы А линейно зависимы, если существуют такие числа , не все равные нулю одновременно, что

(3.3.3)

Если равенство (3.3.3) справедливо тогда и только тогда, когда , то строки называются линейно независимыми. Соотношение (3.3.2) показывает, что если одна из строк линейно выражается через остальные, то строки линейно зависимы.

Легко видеть и обратное: если строки линейно зависимы, то найдется строка, которая будет линейной комбинацией остальных строк.

Пусть, например, в (3.3.3) , тогда .

Определение. Пусть в матрице А выделен некоторый минор r -го порядка и пусть минор ( r +1)-го порядка этой же матрицы целиком содержит внутри себя минор . Будем говорить, что в этом случае минор окаймляет минор (или является окаймляющим для ).

Теперь докажем важную лемму.

Лемма об окаймляющих минорах. Если минор порядка r матрицы А= отличен от нуля, а все окаймляющие его миноры равны нулю, то любая строка (столбец) матрицы А является линейной комбинацией ее строк (столбцов), составляющих .

Доказательство. Не нарушая общности рассуждений, будем считать, что отличный от нуля минор r -го порядка стоит в левом верхнем углу матрицы А=:

.

Для первых k строк матрицы А утверждение леммы очевидно: достаточно в линейную комбинацию включить эту же строку с коэффициентом, равным единице, а остальные – с коэффициентами, равными нулю.

Докажем теперь, что и остальные строки матрицы А линейно выражаются через первые k строк. Для этого построим минор ( r +1)-го порядка путем добавления к минору k -ой строки () и l -го столбца ():

.

Полученный минор равен нулю при всех k и l . Если , то он равен нулю как содержащий два одинаковых столбца. Если , то полученный минор является окаймляющим минором для и, следовательно, равен нулю по условию леммы.

Разложим минор по элементам последнего l -го столбца:

(3.3.4)

где - алгебраические дополнения к элементам . Алгебраические дополнение есть минор матрицы А, поэтому . Разделим (3.3.4) на и выразим через :

(3.3.5)

где , .

Полагая , получим:

(3.3.6)

Выражение (3.3.6) означает, что k -я строка матрицы А линейно выражается через первые r строк.

Так как при транспонировании матрицы значения ее миноров не изменяются (ввиду свойства определителей), то все доказанное справедливо и для столбцов. Теорема доказана.

Следствие I . Любая строка (столбец) матрицы является линейной комбинацией ее базисных строк (столбцов). Действительно, базисный минор матрицы отличен от нуля, а все окаймляющие его миноры равны нулю.

Следствие II . Определитель n -го порядка тогда и только тогда равен нулю, когда он содержит линейно зависимые строки (столбцы). Достаточность линейной зависимости строк (столбцов) для равенства определителя нулю доказана ранее как свойство определителей.

Докажем необходимость. Пусть задана квадратная матрица n -го порядка, единственный минор которой равен нулю. Отсюда следует, что ранг этой матрицы меньше n , т.е. найдется хотя бы одна строка, которая является линейной комбинацией базисных строк этой матрицы.

Докажем еще одну теорему о ранге матрицы.

Теорема. Максимальное число линейно независимых строк матрицы равно максимальному числу ее линейно независимых столбцов и равно рангу этой матрицы.

Доказательство. Пусть ранг матрицы А= равен r . Тогда любые ее k базисных строк являются линейно независимыми, иначе базисный минор был бы равен нулю. С другой стороны, любые r +1 и более строк линейно зависимы. Предположив противное, мы могли бы найти минор порядка более чем r , отличный от нуля по следствию 2 предыдущей леммы. Последнее противоречит тому, что максимальный порядок миноров, отличных от нуля, равен r . Все доказанное для строк справедливо и для столбцов.

В заключение изложим еще один метод нахождения ранга матрицы. Ранг матрицы можно определить, если найти минор максимального порядка, отличный от нуля.

На первый взгляд, это требует вычисления хотя и конечного, но быть может, очень большого числа миноров этой матрицы.

Следующая теорема позволяет, однако, внести в этот значительные упрощения.

Теорема. Если минор матрицы А отличен от нуля, а все окаймляющие его миноры равны нулю, то ранг матрицы равен r .

Доказательство. Достаточно показать, что любая подсистема строк матрицы при S > r будет в условиях теоремы линейно зависимой (отсюда будет следовать, что r – максимальное число линейно независимых строк матрицы или любые ее миноры порядка больше чем k равны нулю).

Предположим противное. Пусть строки линейно независимы. По лемме об окаймляющих минорах каждая из них будет линейно выражаться через строки , в которых стоит минор и которые, ввиду того, что отличен от нуля, линейно независимы:

(3.3.7)

Рассмотрим матрицу К из коэффициентов линейных выражений (3.3.7):

.

Строки этой матрицы обозначим через . Они будут линейно зависимы, так как ранг матрицы К, т.е. максимальное число ее линейно независимых строк, не превышает r < S . Поэтому существуют такие числа , не все равны нулю, что

Перейдем к равенству компонент

(3.3.8)

Теперь рассмотрим следующую линейную комбинацию:

или

Каждую строку матрицы А обозначим е i = (a i 1 a i 2 …, a in) (например,
е 1 = (a 11 a 12 …, a 1 n), е 2 = (a 21 a 22 …, a 2 n) и т.д.). Каждая из них представляет собой матрицу-строку, которую можно умножить на число или сложить с другой строкой по общим правилам действий с матрицами.

Линейной комбинацией строк e l , e 2 ,...e k называют сумму произведений этих строк на произвольные действительные числа:
e = l l e l + l 2 e 2 +...+ l k e k , где l l , l 2 ,..., l k - произвольные числа (коэффициенты линейной комбинации).

Строки матрицы e l , e 2 ,...e m называются линейно зависимыми , если существуют такие числа l l , l 2 ,..., l m , не равные одновременно нулю, что линейная комбинация строк матрицы равна нулевой строке:
l l e l + l 2 e 2 +...+ l m e m = 0, где 0 = (0 0...0).

Линейная зависимость строк матрицы означает, что хотя бы одна строка матрицы является линейной комбинацией остальных. Действительно, пусть для определенности последний коэффициент l m ¹ 0. Тогда, разделив обе части равенства на l m , получим выражение для последней строки, как линейной комбинации остальных строк:
e m = (l l /l m)e l + (l 2 /l m)e 2 +...+ (l m-1 /l m)e m-1 .

Если линейная комбинация строк равна нулю тогда и только тогда, когда все коэффициенты равны нулю, т.е. l l e l + l 2 e 2 +...+ l m e m = 0 Û l k = 0 "k, то строки называют линейно независимыми .

Теорема о ранге матрицы . Ранг матрицы равен максимальному числу ее линейно независимых строк или столбцов, через которые можно линейно выразить все остальные ее строки или столбцы.

Докажем эту теорему. Пусть матрица А размера m х n имеет ранг r (r(А) £ min {m; n}). Следовательно, существует отличный от нуля минор r-го порядка. Всякий такой минор будем называть базисным . Пусть для определенности это минор

Строки этого минора также будем называть базисными .

Докажем, что тогда строки матрицы e l , e 2 ,...e r линейно независимы. Предположим противное, т.е. одна из этих строк, например r-я, является линейной комбинацией остальных: e r = l l e l + l 2 e 2 +...+ l r-1 e r-1 = 0. Тогда, если вычесть из элементов r-й строки элементы 1-й строки, умноженные на l l , элементы 2-й строки, умноженные на l 2 , и т.д., наконец, элементы (r-1)-й строки, умноженные на l r-1 , то r-я строка станет нулевой. При этом по свойствам определителя вышеприведенный определитель не должен измениться, и при этом должен быть равен нулю. Получено противоречие, линейная независимость строк доказана.

Теперь докажем, что любые (r+1) строк матрицы линейно зависимы, т.е. любую строку можно выразить через базисные.

Дополним рассмотренный ранее минор еще одной строкой (i-й) и еще одним столбцом (j-м). В результате получим минор (r+1)-го порядка, который по определению ранга равен нулю.




Top