Презентация процессоров Intel Sandy Bridge: модельный ряд и архитектурные особенности. Сердце – вечный ли двигатель

Сразу скажем, что кэши L1I и L2 почти не изменились - у первого ассоциативность снова (как и до Nehalem) стала 8, а у второго чуть увеличилась задержка. Самое главное изменение в ядрах, касаемое кэшей, кроется в доступе к L1D, который теперь стал 3-портовым: к раздельным портам чтения и записи добавили ещё один для чтения. Кроме того, как уже было указано, в планировщике Nehalem 2-й порт вычисляет адрес чтения и исполняет само чтение, 3-й вычисляет адрес записи (только), а 4-й - исполняет саму запись. В SB же порты 2 и 3 могут и вычислить любой адрес, и исполнить чтение.

Внимательный Читатель сразу найдёт подвох: портов L1D - 3, а адресных генераторов - 2. При не более чем 16-байтовых обменах их устоявшийся максимальный темп составит 32 байта/такт (либо два чтения, либо чтение и запись). 32-байтовые операции каждым портом обслуживаются за два такта, причём вычисление адреса для конкретной команды происходит в течение первого из них. Так что для двух чтений и одной записи требуется три адреса в течение двух тактов - тогда при потоковых обменах один из трёх нужных адресов можно вычислить заранее в течение второго такта предыдущей 32-байтовой операции. Только так мы получим искомый максимум в 48 байт/такт.

Возникает довольно странный компромисс: три 16-байтовые операции за такт в потоке сделать нельзя. С другой стороны, за такт можно вычислить адреса для двух 32-байтовых обменов, но даже одно 32-байтовое чтение за такт не запустишь, потому что порты чтения не объединяются. Т. е. либо нам не будет хватать числа AGU (тех, что в портах 2 и 3), либо ширины портов, либо возможности их объединения.

Как мы знаем из теории, многопортовость в кэшах чаще всего делается не явная, а мнимая, с помощью многобанковости. Однако Nehalem нарушил это правило, внедрив 8-транзисторные битовые ячейки для всех кэшей ядра. Помимо большей экономии (об этом в статье о микроархитектуре Intel Atom, который тоже применяет такую схему), это также даёт возможность получить истинную 2-портовость (чтение + запись), что и было использовано в L1D - никаких конфликтов по адресам в имеющихся 8 банках не было. В SB банков по-прежнему 8, а портов уже 3. Очевидно, конфликты неизбежны, но только среди адресов портов чтения.

Каждый банк L1D имеет ширину в 8 байт, вместе составляя строку, поэтому каждый из 16-байтовых портов использует 1–2 банка при выровненном доступе и 2–3 при невыровненном. Например, 8-байтовое чтение, пересекающее 8-байтовую границу, использует 2 банка, как и выровненное 16-байтовое. В SB конфликт происходит, если хоть один из банков, нужных одному чтению, также нужен и второму, причём для доступа к другой строке. Последнее означает, что если оба чтения требуют не только одинаковый(ые) банк(и), но и одинаковые номера строк в нём (них), то конфликта не будет, т. к. фактический доступ произойдёт один, и он обслужит оба обращения. В Nehalem, с его единственным чтением за такт, такого, очевидно, быть не могло.

Упомянув о невыровненном доступе, скажем и о более «грешных» делах - пересечении строки кэша, что обойдётся 5-тактным штрафом, и границы страницы (чаще всего - 4 КБ), что наказывается в среднем 24 тактами (ситуация требует сериализации конвейера). Причём последняя цифра малообъяснима, т. к. TLB, как мы увидим ниже, способны на одновременную обработку обеих смежных страниц - но даже при последовательном доступе двухзначной цифры получиться не может…

LSU

Изменений в LSU (контроллере L1D, который Intel упорно называет MOB) не меньше, чем в само́м кэше. Начнём с того, что очередь чтения удлинилась с 48 до 64 ячеек, а записи - с 32 до 36. Каждая ячейка привязана к одному мопу, а очередь записи хранит ещё и 32 байта данных (было 16). Очередь чтения хранит все команды считываний, но в каждый момент не более 32 могут обрабатываться на разных стадиях. Фактически, это отдельные диспетчер и планировщик, «ROB» которых хранит 64 мопа, а «резервация» - 32. Когда чтение завершено, моп удаляется из этой резервации, но остаётся в очереди чтения до отставки. Очередь записи хранит информацию до отставки предыдущих команд, когда ясно, что адрес, данные и сам факт исполнения команды верны, а значит её можно попытаться записать в кэш. Если попытка успешна - моп записи уходит в отставку, освобождая место и в очереди, и в ROB. При промахе или других проблемах запись задержится.

Как и все современные кэши, L1D является неблокирующим - после промаха он может принимать дальнейшие запросы одновременно с заполнением себя подгруженными данными. Кэш может выдержать даже 3 промаха/такт. Одновременно удерживается столько промахов, сколько имеется буферов заполнения. В SB, как и в его предшественнике, у L1D таковых 10, а у L2 - 16. Политика отложенной записи в L1D и L2 означает, что модифицированная строка остаётся в кэше до вытеснения, однако информация о факте её модификации (если до этого данные были «свежие») отправляется в теги соответствующей строки в L3.

Кэш L3

Физически, кэш L3 по-прежнему разделён на банки по числу x86-ядер. В Nehalem была возможность сделать одну запись и одно чтение в/из L3 за такт, если они попадали в разные банки, т. к. использовался общий коммутатор и контроллер на весь кэш. Теперь организация банков другая: можно сделать запись или чтение, но в каждом банке по отдельности. А т. к. число включенных банков почти всегда равно числу ядер (исключения до сих пор встречались только у 6–10-ядерных серверных Xeon, где в некоторых моделях банков на 1 больше или меньше числа ядер), то это линейно увеличивает пиковую пропускную способность L3 с ростом числа ядер. Учитывая, что она разделяется между всеми ядрами и ГП, это очень полезно, т. к. пропуск, приходящийся на каждое ядро, до сих пор был главной проблемой любого разделяемого кэша.

Другое важное изменение в L3 - он стал работать на полной частоте ядра. Точнее, x86-ядер. Точнее, работающего(их) из них в данный момент, т. к. часть ядер могут спать. Помимо увеличения пропускной способности это ещё и уменьшает задержки, которые, разумеется, меряются тактами ядер на их частоте. И вот (см. ) в SB они уменьшились на 30%. Это при том, что сама частота кэша вовсе не подросла на 30%. Причина в том, что когда поток данных пересекает силовые (по величине логических «0» и «1» в вольтах) и, особенно, частотные домены, происходит задержка в несколько тактов для преобразования уровней и совпадения фронтов тактовых сигналов. В SB такой проблемы нет, т. к. L3 работает на том же напряжении, что и работающие x86-ядра (не отключенные ), а частота у всех активно загруженных ядер всегда одинакова (включая применение технологии Turbo Boost) - и именно на неё и настроится частота L3.

Правда, всё может оказаться интересней. Внимательный Читатель успел заметить, что кэш L2 работает на половинной частоте, а потому, имея 64-байтовый порт, теряет половину ПС. Такое решение, видимо, связано с разумной достаточностью и 32 байт/такт, а потому можно применить более экономные транзисторы, которые, к тому же, будут работать при меньшей частоте. Про L3 такое достоверно не известно, но резонно предположить, что там ситуация та же: на высокой частоте работают только контроллеры портов кольцевой шины, обрабатывая по 32 байта/такт в каждом порту (детальней об этом ниже), а вот сам кэш работает целыми 64-байтовыми строками раз в 2 такта.

Как и в Nehalem, каждый банк L3 разделён на блоки по 512 КБ и 4 пути. В большинстве ЦП серий Core i в каждом банке таких блоков 3 или 4. Серверные ЦП Xeon с архитектурой Beckton и Westmere-EX имеют 6, 8 или 10 ядер и банков L3, но последние увеличены как по размеру (до 3 МБ), так и по ассоциативности (до 24), что в самых дорогих ЦП даёт аж 30 МБ. Для SB же пока обещаны «лишь» 8-ядерные Xeon с 20-путным L3 на 20 МБ.

Для любителей кунсткамеры добавим, что единственный представитель архитектуры Nehalem с одним работающим ядром (и одним банком L3 на 2 МБ) - это, как ни странно, не какой-то тихой сапой выпущенный сверхбюджетный Celeron, а Xeon LC3518, физически представляющий собой обычный 4-ядерный Nehalem с тремя (!) отключенными ядрами и их банками. Авторы SB также приготовили такие диковинки - это модели Celeron B и Pentium B, где на 2 ядра и ГП приходится не 4, не 3, а 2 МБ кэша с уполовиненной до 8 путей ассоциативностью.

Как и предшественник, ядра SB активней используют КМОП-логику по сравнению с динамической, что отразилось на частоте возникновения ошибок при работе. Это потребовало внедрить более мощные алгоритмы и коды (ECC) в кэшах ядер, способные в каждом байте обнаружить и исправить 2-битные ошибки и обнаружить (но не исправить) 3-битные. До сих пор ЦП умели обнаруживать до двух неверных бит и исправлять один, требуя в среднем 1 бит ECC на каждый защищаемый байт. Новый код, видимо, требует не менее 1,5 бит/байт - чуть позже мы сможем это проверить.

Кольцевая шина

Не только наш Внимательный Читатель догадался, как надо связать L3 и ядра, чтобы ПС кэша росла пропорционально числу банков (а значит - и ядер). Однако эта кольцевая шина, вопреки утверждению Intel, в SB появилась не впервые. Если не считать различных специализированных процессоров (в частности, некоторых ГП), среди ЦП вообще она появилась в 9-ядерных Sony/IBM Cell BE (2007 г.). У ЦП Intel кольцевая шина была внедрена в 8-ядерных серверных Xeon серий Nehalem-EX (2010 г.), откуда с небольшими изменениями она попала SB. Её имеют и только что вышедшие серверные Westmere-EX (Xeon E7).

В каждом направлении протянуто 4 шины: запросов, подтверждений, (для поддержки ) и собственно данных (шириной 32 байта) - разумеется, всё защищено битами ECC. Протокол обмена является чуть переделанной и дополненной версией шины QPI, которую мы привыкли видеть как межпроцессорную шину типа «точка-точка», аналогичную HyperTransport в ЦП AMD. Внутри процессора связываемые «точки» являются агентами, каждый из которых имеет две пары шинных портов (приёмный и передающий в каждую сторону) и пару клиентских. К шинным подключены звенья шины, связывающие соседние агенты. К клиентским обычно подключены локальное x86-ядро и локальный банк L3. Однако в 2/4-ядерных SB один из крайних агентов подключен только к ГП, а второй - только к «системному агенту»; шинные порты также используются наполовину, т. к. в этих местах шина разворачивается на 180°, соединяя противонаправленные звенья. В 8-ядерном серверном SB будет 8 обычных агентов и 4 концевых, каждый из которых разворачивает направление обеих шин на 90°, задействуя все шинные порты, и обслуживает по одному клиенту-контроллеру: по 2 для памяти и для внешних шин (QPI и PCIe).

При поступлении запроса локальный агент хэширует адрес для равномерного распределения данных по банкам, определяет направление передачи запроса (если только его не требуется обслужить тут же - во втором клиентском порту) и ожидает освобождения шины (текущий трафик имеет приоритет над новым). Каждый такт каждый агент мониторит приёмные порты обоих направлений и сравнивает в принятом сообщении целевой адрес с собственным: если он совпадёт, то сообщение передаётся в один из клиентских портов. Иначе оно передаётся на выходной порт, чтобы через такт попасть в соседний агент. Если в течение такта выходной порт оказался свободным, агент либо вставляет своё сообщение (если есть ожидающие для этого направления), либо посылает следующему агенту сигнал о свободной шине.

Таким образом, пиковая ПС шины равна полупроизведению числа используемых шинных портов всех агентов, 32 байт и частоты. «Полу-» - потому что требуется 2 порта для каждого звена. Учитывая, что кольцо, как и L3, работает на максимуме частот ядер, абсолютный максимум его ПС получается очень большим: для 4-ядерного ЦП на 3 ГГц - 960 млрд. байт/с (по «славной» традиции производителей винчестеров назовём это 960 ГБ/с:). Для сравнения - в Cell BE ко́льца также передают по 32 байта в каждую сторону, но на одну передачу требуется 2 такта, поэтому этот 9-ядерный ЦП наберёт на 3 ГГц примерно те же 960 ГБ/с.

Физически звенья шины проложены дорожками на самом высоком уровне, доступном для передачи сигналов - 7-м и 8-м . Вышележащие слои используются только для питания и контактных площадок. Причём дорожки проходят поверх банков L3 и отдельного места не занимают. Такое устройство позволяет масштабировать шину простым копированием агентов и звеньев, что гораздо проще добавления дополнительных портов к центральному коммутатору. Впрочем, у последнего есть и преимущество - задержка прямой коммутации куда меньше, чем транзитной. Однако из-за более высокой частоты кэш L3 в SB оказался всё же с меньшей задержкой, чем в Nehalem.

Поддержка аппаратной отладки

Говоря о кольцевой шине, стоит упомянуть новую отладочную функцию - Generic Debug eXternal Connection (GDXC). Она позволяет мониторить трафик и синхрокоманды шины, перенаправляя их во внешний логический анализатор, подключаемый к спецпорту процессора. Ранее такие тонкие инструменты были доступны разве что производителям системных плат (разумеется, при полной секретности), да самим разработчикам. Но GDXC доступна и системным программистам, что, по идее, должно способствовать вылавливанию ошибок и оптимизации видеодрайверов. Что касается «обычных программистов», им наверняка пригодится увеличение (с 6 до 8) числа счётчиков производительности и событий в каждом ядре.

Когерентность и «поддержка» OpenCL

Nehalem был первым ЦП Intel со времён Pentium 4, в котором кэш последнего (т. е. 3-го) уровня стал включающим относительно остальных. Это означает, что в многопроцессорной системе процессорам будет проще отслеживать копии данных, раскиданных по разным кэшам, что требуется для поддержки их когерентности. Для этого теги каждой строки в L3 среди прочего хранят набор битов, обозначающих я́дра этого ЦП, в кэши которых эта строка была скопирована, а также номера других ЦП, в кэшах которых также есть её копия. Для Westmere-EX число таких битов наверняка не меньше 17 (10 ядер + 7 «остальных» ЦП). Кроме того, тогда же стандартный протокол когерентности MESI обновился до MESIF, включив в себя 5-е состояние Forward, разрешающее ответ на снуп-запрос от другого ЦП (в MESI ответить мог каждый ЦП, что увеличивало снуп-трафик). Соображением минимизации снуп-трафика руководствовалась и AMD, добавив для своих Opteron 5-е состояние Owned и получив протокол MOESI.

Когда при доступе в L3 из какого-либо ядра оказывается, что искомая строка закэширована другим ядром (для простоты предположим, что одним) и может быть им модифицирована, происходит обращение к его кэшам L1D и L2 для проверки её актуального состояния. Проверка называется «чистой», если данные оказались нетронутыми, и «грязной», если они модифицированы и требуют копирования в запрашивающее ядро и L3. В SB первый случай вызывает задержку в 43 такта, а второй - в 60. Эти указанные в документации цифры почему-то являются константами, хотя должны зависеть от топологического расстояния между ядрами на кольцевой шине. Да и разница в 17 тактов куда больше, чем положенные 2 для передачи 64 байт…

Новинкой в SB по части включающей политики L3 является то, что биты присутствия копий данных в кэшах ядер учитывают и ГП. Т. е. с точки зрения программы ГП можно использовать как векторный , работающий с общими данными в общем адресном пространстве. По идее, поддержка OpenCL 1.1 в ГП этому должна способствовать, что успел заявить Thomas Piazza, глава отдела графических архитектур Intel. Однако некоторые аналитики упорно писали, что OpenCL в SB не поддерживается. Ещё один детектив? Да, и он распутан.

Согласно заявлению другого представителя компании, поддержка физически есть, но из-за неготовности драйвера при его активации по-прежнему будут использоваться лишь ресурсы x86-ядер. Когда появится обновление, где всё заработает, - сказано не было. По менее официальным каналам получен намёк, что и до этого ГП как-то можно будет использовать в качестве сопроцессора. Но только после доделки нужного SDK (инструментального пакета для программистов) ГП будет доступен не «как-то», а по-человечески. :)

Для облегчения доступа к данным всё адресное пространство ЦП делится на 3 раздела: для x86-ядер, ГП и некогерентных данных. Раздел ГП использует «слабую» когерентность для ускорения проверок, осуществляемых программным путём через драйвер (в частности, данные пересылаются в раздел x86 синхронизационными процедурами, а не автоматически). Некогерентные данные также используются ГП для завершающих операций переноса готового кадра в память.

Каждый путь в L3 имеет 3 бита атрибутов, указывающих, что содержимое этих строк принадлежит вышеуказанным трём разделам в любой их комбинации. Но для минимизации затрат на поддержку когерентности между разделами протоколы и семантика связности (отличные в каждом из них) применяются, только когда это явно требуется - т. е. когда в одном пути кэшируется область, помеченная как общая для нескольких разделов.

и

Системный агент - это та часть «внеядра», которая получается после вычета кэша L3 и ГП. Остаётся вот что:

  • арбитр со своим портом кольцевой шины - коммутирует потоки данных между остальными частями агента;
  • порт отладочной шины GDXC;
  • контроллер шин QPI (1–2 соединения на 25,6, 28,8 или 32 ГБ/с) - очевидно, присутствует только в серверных моделях;
  • контроллер шин PCIe 2.0 (на 1 ) или 3.0 (2 ГП/с, только для Xeon) - в зависимости от модели может быть 16-, 20-, 24- и 40-полосным и допускает различные схемы соединений по числу полос: для наиболее распространённых 20-полосных моделей это x16+x4 (для большинства мобильных SB доступен только этот вариант), x8+x8+x4 и x8+x4+x4+x4 (только для младших Xeon);
  • контроллер шины 2.0 - для соединения с PCH (чипсетом): фактически немного преобразованный 4-полосный канал PCIe, по сравнению с v1.0 (в Nehalem и Atom) удвоил ПС до 4 ГБ/с (сумма в оба направления);
  • «гибкое межсоединение экранов» (Flexible Display Interconnect, FDI) - порт для соединения с контроллером физических интерфейсов экранов в составе чипсета, также переработанный из PCIe;
  • ускоритель (де)кодирования видео;
  • контроллер памяти;
  • программируемый силовой контроллер (Power control unit, PCU) с собственной прошивкой.

Наиболее интересными тут оказываются 3 последних пункта. Однако видеоускоритель оставим для обзора графической части, тут же расскажем об ИКП. Он поддерживает 2–4 канала памяти вплоть до DDR3-1600 (с ПСП 12,8 ГБ/с на канал), но для настольных и мобильных ЦП - только 2 канала DDR3-1333. Каждый канал имеет отдельные ресурсы и независимо обслуживает запросы. ИКП имеет внеочерёдный планировщик операций (!), максимизирующий ПСП с минимизацией задержек. Кроме того, ещё в версиях Nehalem для Xeon появилась технология SMI (Scalable Memory Interconnect, масштабируемое межсоединение памяти) с использованием подключаемых SMB (масштабируемый буфер памяти, аналог буфера AMB из FB-DIMM, но находящийся не на модуле, а на системной плате). Буфер подключается скоростной последовательной шиной к каналу ИКП процессора и позволяет подключить к себе большее суммарное число модулей, чем напрямую к ЦП. Правда, от этого ухудшаются и задержки, и частота работы памяти.

В каждом канале есть 32-строковый буфер записи, причём запись считается завершённой, как только данные попадут в буфер. Как ни странно, этот буфер не занимается, в результате чего частичные записи (когда обновляется не вся строка) обрабатываются неэффективно, т. к. требуют чтения старой копии строки. Это странно, учитывая, что современные микросхемы памяти учитывают битовую маску записи не только для отдельных 8-байтовых слов (которых 8 на строку), но и байт в словах, потому комбинация неизменной и обновлённой частей строки производится внутри чипа памяти, а не в ИКП. Впрочем, в SB ИКП (как и кэши) может включать продвинутые методы ECC, и для этого даже частично обновляемую строку для пересчёта ECC надо начала считать целиком. Причём это правило работает даже при применении обычной памяти, а также в большинстве мобильных моделей, где ECC-память вовсе не поддерживается. 2.0

Силовой контроллер системного агента отвечает сразу за 3 функции - защита от перегрева, сохранение энергии и авторазгон (именно в таком порядке они добавлялись с эволюцией ЦП x86). Последний пункт в процессорах Intel известен как технология Turbo Boost (TB). Её обновлённая версия является одним из главных «гвоздей программы», т. к. для слабопараллелизуемых программ она может дать ускорение не меньшее, чем все архитектурные улучшения в ядрах.

Напомним, что TB следит за текущими частотами, напряжениями питания, силами тока и температурами разных частей кристалла, чтобы определить, можно ли повысить работающим ядрам частоту на очередной шаг множителя (отдельно для x86-ядер и ГП). При этом учитываются пределы по всем вышеуказанным параметрам. Главной новинкой 2-й версии TB является дополнительное повышение частот, происходящее сразу после периода простоя всех или большей части ядер и обусловленное температурной инерцией системы «ЦП + радиатор». Очевидно, что при включении нагрузки и всплеске выделения тепла температура кристалла достигнет некоего значения не мгновенно, а плавно и с замедлением. Так вот если текущая температура пока ещё не критическая, и по остальным параметрам также есть запас, то контроллер ещё чуть поднимет множитель, ещё чуть увеличив потребление и выделение энергии и ещё чуть увеличив скорость роста температуры. Кстати, Intel продемонстрировала стабильную работу 4-ядерного SB на частоте 4,9 ГГц с воздушным охлаждением…


Зелёным пунктиром обозначена частота, а красным - температура. Во врезке - типичная нагрузка на ЦП домашнего ПК.

В зависимости от качества кулера и политики BIOS по регулировке оборотов вентилятора при разной температуре, первые 10–25 секунд после относительно длительного простоя процессор будет потреблять больше величины TDP, а занятые ядра теоретически должны работать на бо́льших частотах, чем у ЦП Westmere в тех же обстоятельствах. Как только температура поднимается до критической отметки, частота снизится к обычному «турбированному» значению - это снизит и выделение тепла до TDP, а температура расти перестанет. Выигрыш в том, что в течение нескольких секунд система будет работать чуть быстрее, чем с Turbo Boost 1.0. Т. е. вторая версия технологии является «турбонаддувом турбобуста». Отсюда ясно, на какие сценарии это рассчитано - периодический запуск малооптимизированных под многопоточность программ, быстро решающих свою задачу и снова погружающих систему в простой на несколько минут. При домашней и офисной работе - типичная ситуация.

Не стоит забывать, что теперь каждый шаг множителя для x86-ядер равен 100 МГц, а не 133, поэтому напрямую сравнивать «турбо-формулы» SB и Nehalem не получится. Для ГП шаг равен 50 МГц, а для ИКП - 266 (максимум - 2166, автоматически не разгоняется). Частота шины DMI принимается как базовая, от которой отталкиваются остальные часто́ты всей системы. Впрочем, ровно по этой причине её как раз надо оставить на стандартных 100 МГц, и если уж заниматься разгоном, то только через множители. Кстати, отдельный тактовый генератор теперь не обязателен и будет присутствовать лишь на дорогих «оверклокерских» платах, а остальные станут чуть дешевле и проще.


Обычно тактовый генератор южного моста подключен к нескольким делителям в самом мосту, а через шину DMI - и к ЦП с его разнообразными умножителями…


…Но в дорогих платах внешний генератор тактирует всё.

Шинирование при заболеваниях пародонта

Шинирование - один из методов лечения заболеваний пародонта, позволяющий снизить вероятность выпадения (удаления) зубов.

Основное показание к шинированию в ортопедической практике - наличие патологической подвижности зубов. Шинирование желательно и для предупреждения повторного воспаления в тканях пародонта после лечения при наличии хронического пародонтита.

Шины могут быть съемными и несъемными.
Съемные шины могут устанавливаться и при отсутствии некоторых зубов, создают хорошие условия для гигиены полости рта, проведения при необходимости терапии и хирургического лечения.

К достоинствам несъемных шин относят профилактику перегрузок пародонта в любом направлении воздействия, чего не дают съемные протезы. Выбор типа шины зависит от множества параметров и без знания патогенеза заболевания, а также биомеханических принципов шинирования эффективность лечения будет минимальной.

К показаниям для применения шинирующих конструкций любого типа относят:

Для анализа этих параметров применяют данные рентгенографии и других дополнительных методов исследования. При начальной стадии заболевания пародонта и отсутствии выраженных поражений (дистрофии) тканей можно обойтись без шинирования.

К положительным эффектам шинирования относят следующие моменты:

1. Шина уменьшает подвижность зубов. Жесткость конструкции шины не дает зубам расшатываться, а значит, уменьшает вероятность дальнейшего увеличения амплитуды колебаний зубов и их выпадения. Т.е. зубы могут двигаться лишь настолько, насколько это позволяет шина.
2. Эффективность шины зависит от количества зубов. Чем больше зубов, тем больше эффект от шинирования.
3. Шинирование перераспределяет нагрузку на зубы. Основная нагрузка при жевании будет приходиться на здоровые зубы. Зубы расшатанные будут менее подвержены воздействию на них, что дает дополнительный эффект для заживления. Чем больше здоровых зубов будет включено в шинирование, тем более выраженной будет разгрузка подвижных зубов. Следовательно, если большинство зубов во рту подвижно, то эффективность работы шины снижается.
4. Наилучшие результаты дает шинирование передних зубов (резцы и клыки), а наилучшими шинами будут те, которые объединяют наибольшее количество зубов. Следовательно, в идеальном варианте шина должна затрагивать весь зубной ряд. Объяснение довольно простое - с точки зрения устойчивости именно арочная конструкция будет лучше линейной.
5. В силу меньшей устойчивости линейной конструкции шинирование подвижных коренных зубов производят симметрично с двух сторон, объединяя их мостиком, соединяющим эти два почти линейных ряда. Такая конструкция значительно увеличивает шинирующий эффект. Другие возможные варианты шинирования рассматриваются в зависимости от особенностей заболевания.

Постоянные шины устанавливаются не всем пациентам. Учитываются клиническая картина заболевания, состояние гигиены полости рта, наличие зубных отложений, кровоточивость десен, выраженность зубодесневых карманов, выраженность подвижности зубов, характер их смещения и т.д.

К абсолютному показанию для применения постоянных шинирующих конструкций относят выраженную подвижность зубов при атрофии альвеолярного отростка не более ¼ длины корня зуба. При более выраженных изменениях первоначально проводится предварительное лечение воспалительных изменений в полости рта.

Установка того или иного вида шины зависит от выраженности атрофии альвеолярных отростков челюсти, степени подвижности зубов, их местоположения и т.д. Так, при выраженной подвижности и атрофии костных отростков до 1/3 высоты рекомендуют несъемные протезы, в более тяжелых случаях возможно применение съемных и несъемных протезов.

При определении необходимости шинирования большое значение имеет санация полости рта: лечение зубов, лечение воспалительных изменений, удаление зубного камня и даже удаление некоторых зубов при наличии строгих показаний. Все это дает максимальные шансы для успешного лечения шинированием.

Несъемные шины в ортопедической стоматологии

Шины в ортопедической стоматологии используют для лечения заболеваний пародонта, при которых выявляется патологическая подвижность зубов. Эффективность шинирования, как и любого другого лечения в медицине, зависит от стадии заболевания, а значит, от сроков начала лечения. Шины уменьшают нагрузку на зубы, что уменьшает воспаление пародонта, улучшает заживление и общее самочувствие пациента.

Шины должны обладать следующими свойствами:

К несъемным шинам относят следующие виды:

Кольцевая шина.
Представляет собой набор спаянных металлических колец, которые, надеваясь на зубы, обеспечивают их прочную фиксацию. Конструкция может иметь индивидуальные особенности технике и материалах для изготовления. От точности подгонки зависит качество лечения. Поэтому изготовление шины проходит несколько этапов: снятие оттиска, изготовление гипсовой модели, изготовление шины и определение объема обработки зубного ряда для надежной фиксации шины.

Полукольцевая шина.
Полукольцевая шина отличается от кольцевой отсутствием полного кольца с внешней стороны зубного ряда. Это позволяет добиться большей эстетичности конструкции при соблюдении технологии, схожей с созданием кольцевой шины.

Колпачковая шина.
Представляет собой ряд спаянных между собой колпачков, надевающихся на зубы, покрывающих его режущую кромку и внутреннюю часть (со стороны языка). Колпачки могут быть цельнолитыми или изготавливаться из отдельных штампованных коронок, которые затем спаиваются между собой. Метод особенно хорош при наличии полных коронок, к которым и крепится вся конструкция.

Вкладочная шина.
Метод напоминает предыдущий с той разницей, что вкладыш-колпачок имеет выступ, который устанавливается в углубление на верхушке зуба, что усиливает его фиксацию и всей конструкции шины в целом. Так же, как и в предыдущем случае шина крепится к полным коронкам для придания максимальной устойчивости конструкции.

Коронковая и полукоронковая шина.
Полнокоронковая шина используется при хорошем состоянии десны, т.к. риск ее травматизации коронкой велик. Обычно используют металлокерамические коронки, обладающие максимальным эстетическим эффектом. При наличии атрофии альвеолярных отростков челюсти ставят экваторные коронки, которые немного не доходят до десны и позволяют проводить лечение зубодесневого кармана. Полукоронковая шина представляет собой цельнолитую конструкцию или спаянные между собой полукоронки (коронки только с внутренней стороны зуба). Такие коронки обладают максимальным эстетическим эффектом. Но шина требует виртуозного мастерства, т.к. подготовить и прикрепить такую шину достаточно сложно. Для уменьшения вероятности отслойки полукоронки от зуба рекомендуется использование штифтов, которые как бы «прибивают» коронку к зубу.

Интердентальная (межзубная) шина.
Современный вариант шины по методике представляет собой соединение двух соседних зубов специальными вживляемыми вставками, которые взаимно укреплят соседние зубы. Могут использоваться различные материалы, однако в последнее время предпочтение отдается фотополимерам, стеклоиономерному цементу, композитным материалам.

Шина Треймана, Вайгеля, Струнца, Мамлока, Когана, Бруна и др. Некоторые из этих «именных» шин уже потеряли свою актуальность, некоторые были подвергнуты модернизации.

Несъемные шины-протезы являются особой разновидностью шин. Они объединяют в себе решение двух задач: лечение заболеваний пародонта и протезирование отсутствующих зубов. Шина при этом имеет мостовидную конструкцию, где основная жевательная нагрузка приходится не на сам протез на месте отсутствующего зуба, а на опорные площадки соседних зубов. Таким образом, вариантов шинирования несъемными конструкциями довольно много, что позволяет врачу выбрать методику в зависимости от особенностей заболевания, состояния конкретного пациента многих других параметров.

Съемные шины в ортопедической стоматологии

Шинирование съемными конструкциями может применяться как при наличии цельного зубного ряда, так и при отсутсвии некоторых зубов. Съемные шины обычно уменьшают подвижность зубов не во всех направлениях, но к положительным моментам относят отсутствие необходимости шлифовки или иной обработки зубов, создание хороших условий для гигиены полости рта, а также проведения лечения.

При сохранности зубных рядов используют следующие виды шин:

Шина Эльбрехта.
Сплав каркаса эластичный, но достаточно прочный. Это обеспечивает защиту от подвижности зубных рядов во всех направлениях, кроме вертикального, т.е. не дает защиты при жевательной нагрузке. Именно поэтому такая шина применяется при начальных стадиях заболевания пародонта, когда умеренная жевательная нагрузка не приводит к прогрессированию заболевания. Кроме того, шина Эльбрехта используется при наличии подвижности зубов I степени (минимальная подвижность). Шина может иметь верхнее (около верхушки зуба), среднее или нижнее (прикорневое) расположение, а также шина может быть широкой. Вид крепления и ширина шины зависят от конкретной ситуации, а потому и подбирается врачом индивидуально для каждого пациента. Существует возможность учета появления искусственных зубов для изменения конструкции.

Шина Эльбрехта с т-образными кламмерами
в области передних зубов.

Такая конструкция позволяет добиться дополнительной фиксации зубной дуги. Однако эта конструкция годиться лишь при минимальной подвижности зубов и отсутствии выраженного воспаления пародонта, т.к. такая конструкция может вызвать дополнительное травмирование пародонта при наличии выраженных воспалительных изменений.
Съемная шина с литой каппой.
Это модификация шины Эльбрехта, позволяющая снизить подвижность резцов и клыков в вертикальном (жевательном) направлении. Защита обеспечивается наличием специальных колпачков в области передних зубов, которые и снижают жевательную нагрузку на них.

Круговая шина.
Она может быть обычной или с когтевидными отростками. Используется при невыраженной подвижности зубов, т.к. значительное отклонение зубов от своей оси приводит к сложностям при попытке надевания или снятия протеза. При значительном отклонении зубов от своей оси рекомендуется применение разборных конструкций.
При отсутствии некоторых зубов также могут быть использованы съемные протезы.

Учитывая тот факт, что потеря зуба может провоцировать заболевания пародонта, становится необходимым решение двух задач: возмещение потерянного зуба и использование шинирования как средства профилактики заболеваний пародонта. У каждого пациента будут свои особенности заболевания, поэтому и особенности конструкции шины будут строго индивидуальными. Довольно часто допускается протезирование с временным шинированием для профилактики развития пародонтоза или иной патологии. В любом случае требуется планирование мероприятий, способствующих максимальному лечебному эффекту у данного пациента. Так, выбор конструкции шины зависит от числа отсутствующих зубов, степени деформации зубных рядов, наличия и выраженности заболеваний пародонта, возрастом, патологией и видом прикуса, гигиеной полости рта и многими другими параметрами.

В целом при отсутствии нескольких зубов и выраженной патологии пародонта предпочтение отдают съемным протезам. Конструкция протеза подбирается строго индивидуально и требует нескольких посещений врача. Съемная конструкция требуеттщательного планирования и определенной последовательности действий:

Диагностика и обследование пародонта.
Подготовка поверхности зубов и получение слепков для будущей модели
Изучение модели и планирование конструкции шины
Моделирование восковой репродукции шины
Получение литейной формы и проверка точности каркаса на гипсовой модели
Проверка шины (шины-протеза) в полости рта
Окончательная отделка (полировка) шины

Здесь перечислены не все рабочие этапы, но даже этот перечень говорит о сложности процедуры изготовления съемной шины (шины-протеза). Сложность изготовления объясняет необходимость нескольких сеансов работы с пациентом и длительность по времени от первого до последнего посещения врача. Но результат всех усилий всегда один - восстановление анатомии и физиологии, приводящее к восстановлению здоровья и социальной реабилитации.

источник: www.DentalMechanic.ru

Интересные статьи:

От лысины избавят проблемы менструации

id="0">Как утверждают немецкие ученые, растение, которое использовалось американскими индейцами для нормализации менструального цикла, способно избавлять от … лысины.

Исследователи университета города Рура заявляют, что черный кохош (cohosh) – это первый известный травяной компонент, который может останавливать потерею волос, связанную с гормональными нарушениями и даже способствовать их росту и густоте.

Субстанция типа эстрогена, женского гормона, на протяжении многих поколений использовалась индейцами, до сих пор в США ее продают как гомеопатическое средство для лечения ревматизма, болей в спине и при сбоях в менструальном цикле.

Черный кохош произрастает на востоке Северной Америки и достигает трех метров в высоту.

По словам исследователей, для проверки действия препарата использовалась новая щадящая система тестирования. В качестве подопытных животных выступили морские свинки. Теперь они, вероятно, отличаются повышенной лохматостью.

Нейрохирургическое лечение неврологических осложнений грыж поясничных дисков

id="1">

К.Б. Ырысов, М.М. Мамытов, К.Э. Эстемесов.
Кыргызская Государственная Медицинская Академия, г.Бишкек, Кыргызская Республика.

Введение.

Дискогенный пояснично-крестцовый радикулит и другие компрессионные осложнения грыж поясничных дисков занимают ведущее место среди заболеваний периферической нервной системы. Они составляют 71-80% от общего числа этих заболеваний и 11-20% среди всех заболеваний центральной нервной системы. Это свидетельствует о том,что патология поясничных дисков значительно распространена среди населения,поражая людей преимущественно молодого и трудоспособного (20-55 лет) возраста,приводя их к временной и/или стойкой утрате трудоспособности. .

Отдельные формы дискогенных пояснично-крестцовых радикулитов часто протекают атипично и распознавание их вызывает значительные трудности. Это относится,например, к радикулярным поражениям при грыжах поясничных дисков. Более серьезные осложнения могут возникнуть, если корешку сопутствует и подвергается сдавлению дополнительная радикуло-медуллярная артерия. Такая артерия принимает участие в кровоснабжении спинного мозга, и окклюзия ее может вызвать инфаркт с протяженностью в несколько сегментов. В таком случае развиваются истинные конусные, эпиконусные или сочетанные конус-эпиконусные синдромы. .
Нельзя сказать, что вопросам лечения грыж поясничных дисков и их осложнений уделяется мало внимания. За последние годы проведены многочисленные исследования с участием ортопедов, невропатологов, нейрохирургов, радиологов и других специалистов. Были получены факты первостепенной важности, заставившие по иному оценить и переосмыслить ряд положений данной проблемы.

Однако до сих пор еше имеются противоположные взгляды по многим теоретическим и практическим вопросам, в частности, вопросы патогенеза, диагностики и выбора наиболее адекватных методов лечения требуют дальнейшего изучения.

Целью настоящей работы явилось улучшение результатов нейрохирургического лечения и достижение стойкого выздоровления больных с неврологическими осложнениями грыж поясничных межпозвонковых дисков путем совершенствования топической диагностики и оперативных методов лечения.

Материал и методы.

За период с 1995 по 2000 гг. нами было обследовано и оперировано задним нейрохирургическим доступом 114 больных с неврологическими осложнениями грыж поясничных межпозвонковых дисков. Среди них было 64 мужчин, 50 женщин. Все больные оперированы с применением микронейрохирургической техники и инструментария. Возраст больных варьировал от 20 до 60 лет, преобладали больные в возрасте 25-50 лет,преимущественно мужского пола. Основную группу составили 61 больной, у которых помимо выраженного болевого синдрома,имелись остро или постепенно развившиеся двигательные и чувствительные расстройства, а также грубые нарушения функции тазовых органов,оперированные с использованием расширенных доступов типа геми- и ляминэктомии. Контрольную группу составили 53 больных, оперированные интерламинарным доступом.

Результаты.

Были изучены клинические особенности неврологических осложнений грыж поясничных межпозвонковых дисков и выявлены характерные клинические симптомы поражения спинномозговых корешков. 39 больных характеризовались особой формой дискогенного радикулита со своеобразной клинической картиной, где на первый план выступали параличи мышц нижних конечностей (в 27 случаях - двухсторонние, в 12 - односторонние). Процесс не ограничивался пределами конского хвоста, выявлялись также спинальные симптомы.
У 37 больных отмечалось поражение конуса спинного мозга, где характерными клиническими симптомами были выпадения чувствительности в области промежности, аногенитальные парэстезии и нарушение фукции тазовых органов по периферическому типу.

Клиническая картина у 38 больных характеризовалась явлениями миелогенной перемежающейся хромоты, на фоне которой присоединился парез стоп; отмечались фасцикулярные подергивания мышц нижних конечностей, были выраженные нарушения функции тазовых органов - недержание мочи и кала.
Диагностика уровня и характера поражения корешков спинного мозга грыжей диска осуществлялась на основе диагностического комплекса, включающего в себя тщательное неврологическое обследование, рентгенологическое (102 больных), рентгеноконтрастное (30 больных), компьютерно-томографическое (45 больных) и магнитно-резонансное (27 больных) исследования.

При выборе показаний к операции мы руководствовались клиникой неврологических осложнений грыж поясничных дисков, выявленных при тщательном неврологическом обследовании. Абсолютным показанием служило наличие у пациентов синдрома компрессии корешков конского хвоста, причиной которого являлось выпадение фрагмента диска со срединным расположением. При этом преобладали нарушения функции тазовых органов. Вторым неоспоримым показанием являлось наличие двигательных расстройств с развитием пареза или паралича нижних конечностей. Третьим показанием было наличие выраженного болевого синдрома,неподдающийся консервативному лечению.

Нейрохирургическое лечение неврологических осложнений грыж поясничных межпозвонковых дисков заключалось в устранении тех патологически измененных структур позвоночника, которые обуславливали непосредственно компрессию или рефлекторную сосудисто-трофическую патологию корешков конского хвоста; сосудов,идущих в составе корешка и участвующих в кровоснабжении нижних сегментов спинного мозга. К патологически измененным анатомическим структурам позвоночника относились элементы дегенерированного межпозвонкового диска; остеофиты; гипертрофия желтой связки,дужек,суставных отростков; варикозно расширенные вены эпидурального пространства; выраженный рубцово-спаечный эпидурит и т.д.
Выбор подхода опирался на выполнение основных требований при оперативном вмешательстве: минимальная травматизация, максимальный обзор объекта вмешательства, обеспечение наименьшей вероятности интра- и послеоперационных осложнений. Исходя из этих требований, при нейрохирургическом лечении неврологических осложнений грыж поясничных межпозвонковых дисков, мы использовали задние расширенные доступы типа геми- и ляминэктомии (частичная,полная) и ляминэктомии одного позвонка.

В нашем исследовании из 114 операций при неврологических осложнениях грыж поясничных межпозвонковых дисков в 61 случае пришлось сознательно пойти на расширенные операции. Отдавалось предпочтение гемиляминэктомии (52 больных), ляминэктомии одного позвонка (9 больных) перед интерламинарным доступом,который использован в 53 случае и служил контрольной группой для сравнительной оценки результатов оперативного лечения (Табл.1).

Во всех случаях оперативных вмешательств нам приходилось разделять рубцово-спаечные эпидуральные сращения. Это обстоятельство приобретает особое значение в нейрохирургической практике, если учесть, что операционная рана отличается значительной глубиной и относительной узостью, а в рубцово-спаечный процесс вовлекаются исключительно важные по функциональной значимости нервно-сосудистые элементы позвоночно-двигательного сегмента.

Табл.1. Объем оперативного вмешательства в зависимости от локализации грыжи диска.

Локализация грыжи диска

Всего

ИЛЭ

ГЛЭ

ЛЭ

Заднелатеральная

Парамедианная

Срединная

Итого

Сокращения слов: ИЛЭ-интерламинэктомия, ГЛЭ-гемиляминэктомия, ЛЭ-ляминэктомия.

Оценку ближайших результатов нейрохирургического лечения производили по следующей схеме:
-Хорошие: отсутствие болей в пояснице и ногах,полное или почти полное восстановление движений и чувствительности,хороший тонус и сила мышц нижних конечностей,восстановление нарушенных функций тазовых органов,трудоспособность сохранена полностью.

Удовлетворительные: значительный регресс болевого синдрома,неполное восстановление движений и чувствительности,хороший тонус мышц ног,значительное улучшение функции тазовых органов,трудоспособность почти сохранена или снижена.

Неудовлетворительные: неполный регресс болевого синдрома,двигательные и чувствительные нарушения сохраняются,тонус и сила мышц нижних конечностей снижены,функции тазовых органов не восстановлены,трудоспособность снижена или инвалидность.

В основной группе(61 пациент) получены следующие результаты: хорошие - у 45 больных (72%),удовлетворительные - у 11 (20%), неудовлетворительные - у 5 больных (8%). Среди последних 5 больных операция производилась в сроки от 6 мес. до 3 лет с момента развития осложнений.

В контрольной группе (53 пациента) ближайшие результаты оказались: хорошими - у 5 больных (9,6%),удовлетворительными - у 19 (34,6%), неудовлетворительными - у 29 (55,8%). Эти данные позволили считать интерламинарный доступ при неврологических осложнениях грыж поясничных межпозвонковых дисков малоэффективным.

При анализе результатов нашего исследования серьезных осложнений, отмеченных в литературе (повреждение сосудов и органов брюшной полости,воздушная эмболия, некроз тел позвонков, дисцит и т.д) не отмечалось. Эти осложнения были предупреждены путем применения оптического увеличения, микрохирургического инструментария, точного предоперационного определения уровня и характера поражения, адекватного анестезиологического пособия и ранней активизации больных после операции.

На опыте наших наблюдений доказано, что раннее оперативное вмешательство в лечении больных с неврологическими осложнениями грыж поясничных дисков дает более благоприятный прогноз.
Таким образом,применение комплекса методов топической диагностики и микронейрохирургической техники в сочетании с расширенными оперативными доступами эффективно способствует восстановлению трудоспособности больных, сокращению срока их пребывания в стационаре, а также улучшению результатов оперативного лечения больных с неврологическими осложнениями грыж поясничных межпозвонковых дисков.

Литература:

1. Верховский А. И. Клиника и хирургическое лечение рецидивирующих пояснично-крестцовых радикулитов // Автореф. дис... канд. мед. наук. - Л., 1983.
2. Гельфенбейн М. С. Международный конгресс, посвященный лечению хронического болевого синдрома после операций на поясничном отделе позвоночника "Pain management"98" (Failed back surgery syndrome) // Нейрохирургия. - 2000. - № 1-2. - С. 65.
3. Долгий А. С., Бодраков Н. К. Опыт хирургического лечения больных с грыжами пояснично-крестцового отдела позвоночника в клинике нейрохирургии // Актуальные проблемы неврологии и нейрохирургии. - Ростов н/Д., 1999. - С. 145.
4. Мусалатов Х.А., Аганесов А.Г. Хирургическая реабилитация корешкового синдрома при остеохондрозе поясничного отдела позвоночника (Микрохирургическая и пункционная дискэктомия). - М.: Медицина, 1998.- 88c.
5.Щурова E.H., Худяев А.Т., Щуров В.А. Информативность лазерной допплеровской флоуметрии в оценке состояния микроциркуляции дурального мешка и спинномозгового корешка у больных с поясничной межпозвонковой грыжей. Методология флоуметрии, Выпуск 4, 2000 г. стр.65-71.
6. Diedrich O, Luring C, Pennekamp PH, Perlick L, Wallny T, Kraft CN. Effect of posterior lumbar interbody fusion on the lumbar sagittal spinal profile. Z Orthop Ihre Grenzgeb. 2003 Jul-Aug;141(4):425-32.
7. Hidalgo-Ovejero AM, Garcia-Mata S, Sanchez-Villares JJ, Lasanta P, Izco-Cabezon T, Martinez-Grande M. L5 root compression resulting from an L2-L3 disc herniation. Am J Orthop. 2003 Aug;32(8):392-4.
8. Morgan-Hough CV, Jones PW, Eisenstein SM. Primary and revision lumbar discectomy. A 16-year review from one centre. J Bone Joint Surg Br. 2003 Aug;85(6):871-4.
9. Schiff E, Eisenberg E. Can quantitative sensory testing predict the outcome of epidural steroid injections in sciatica? A preliminary study. Anesth Analg. 2003 Sep;97(3):828-32.
10. Yeung AT, Yeung CA. Advances in endoscopic disc and spine surgery: foraminal approach. Surg Technol Int. 2003 Jun;11:253-61.

Ртуть в рыбе не так опасна

id="2">Ртуть, которая формируется в мясе рыбы на самом деле не так опасна, как до этого считалось. Ученые выяснили, что молекулы ртути в рыбе не так уж токсичны для людей.

"У нас появился повод для оптимизма после наших исследований, - заявил Грэхэм Джордж, руководитель исследования из радиационной лаборатории Стэнфордского университета (Калифорния). - Ртуть, содержащаяся в рыбе, может быть не так токсична, как многие думают, но нам еще нужно много узнать прежде чем мы сможем сделать окончательный вывод".

Ртуть - сильнейший нейротоксин. Он попадет в большом количестве в организм, человек может потерять чувствительность, его скрутит судорога, появятся проблемы со слухом и зрением, кроме того, имеется большая вероятность сердечного приступа. Ртуть в чистом виде попасть в организм человека не может. Как правило, она оказывается там вместе со съеденным мясом животных, которые поедали зараженные ртутью растения или пили воду, в которой находились молекулы ртути.

В мясе хищных морских рыб, таких как тунец, рыба –мечь, акула, лофолатилус, королевская макрель, марлин и красный люциан, а также все виды рыб, обитающих в загрязненных водах, чаще всего имеется высокое содержание ртути. К слову, ртуть - тяжелый металл, который скапливается на дне водоема, где живут такие рыбы. Из-за этого, в США врачи рекомендуют беременным женщинам ограничивать потребление этих рыб.

Последствия потребления рыбы с высоким содержанием ртути еще недостаточно ясны. Однако исследования населения в районе финского озера, загрязненного ртутью, свидетельствуют о предрасположенности местных обитателей к сердечно сосудистым заболеваниям. Кроме того, предполагается, что даже более низкие концентрации ртути могут привести к определенным нарушениям.

Недавние исследования в Великобритании о концентрации ртути в тканях ногтей пальцев ног и содержания кислоты DHA в жировых клетках было доказано, что потребление рыбы является основным источником попадания ртути в организм человека.

Исследование же специалистов из Стэнфордского университета доказывает, что в организме у рыб ртуть взаимодействует с иными веществами нежели у людей. Как говорят исследователи, они надеются, что их разработки помогут создать лекарственные препараты выводящие токсины из организма.

Рост, вес и рак яичников

id="3">Результаты исследования, проведенного среди 1 миллиона норвежских женщин, опубликованные в издании Journal of the National Cancer Institute от 20 августа, свидетельствуют о том, что высокий рост и повышенный индекс массы тела в период полового созревания являются факторами риска развития рака яичников.

Ранее было выявлено, что рост напрямую связан с риском развития злокачественных опухолей, но его связь именно с раком яичников не получила особого внимания. Кроме того, результаты предыдущих исследований оказались противоречивыми, особенно в отношении взаимосвязи между индексом массы тела и риском развития рака яичников.

Для того чтобы внести ясность в сложившуюся ситуацию, группа ученых из Norwegian Institute of Public Health, Oslo, проанализировала данные приблизительно об 1.1 миллиона женщин подвергшихся наблюдению в среднем в течение 25 лет. Ориентировочно, к 40 годам у 7882 испытуемых подтвержден диагноз рака яичников.

Как выяснилось, индекс массы тела в юношеском возрасте был достоверным предвестником риска развития рака яичников. Женщины, у которых в юношеском возрасте показатели индекса массы тела были 85 и более перцентилей, оказались на 56 процентов более предрасположенными к возникновению рака яичников, чем женщины с показателем индекса в пределах от 25 до 74 перцентилей. Также следует учесть, что никакой достоверной связи между риском развития рака яичников и индексом массы тела во взрослом возрасте не обнаружено.

Исследователи заявляют о том, у женщин моложе 60 лет, рост, как и вес тоже является достоверным предвестником риска развития данной патологии, особенно эндометриоидной разновидности рака яичников. Например, женщины, чей рост 175 см и более, на 29 процентов более предрасположены к возникновению рака яичников, чем женщины ростом от 160 до 164 см.

Дорогие девушки и женщины, быть изящной и женственной, это не только красиво, но и здорОво, в смысле полезно для здоровья!

Фитнес и беременность

id="4">Итак, вы привыкли вести активный образ жизни, регулярно посещаете спортивный клуб… Но в один прекрасный день узнаете, что скоро станете мамой. Естественно, первая мысль о том, что придется поменять свои привычки и, видимо, отказаться от занятий фитнесом. Но врачи считают, что мнение это ошибочно. Беременность – это вовсе не повод для прекращения занятий спортом.

Надо сказать, что с этой точкой зрения в последнее время солидарны все больше женщин. Ведь выполнение во время беременности определенных, подобранных инструктором, упражнений не оказывает абсолютно никакого негативного влияния на рост и развитие плода, а так же не изменяют физиологического течения беременности и родов.
Наоборот, регулярные занятия фитнесом повышают физические возможности женского организма, повышают психо-эмоциональную устойчивость, улучшают деятельность сердечно-сосудистой, дыхательной и нервной систем, положительно влияют на обмен веществ, в результате чего мать и ее будущий малыш обеспечиваются достаточным количеством кислорода.
Перед тем как начать заниматься надо определить адаптационные возможности к физической нагрузке, учесть опыт спортивных занятий (человек занимался раньше или нет, его «спортивный стаж» и т.д.). Конечно для женщины, которая никогда не занималась каким-либо видом спорта, физические упражнения нужно проводить только под контролем врача (это может быть фитнес-врач в клубе).
Тренировочная программа для будущей мамы должна включать в себя как общеразвивающие упражнения, так и специальные, направленные на укрепление мышц позвоночника (особенно поясничная область), а также определенная дыхательная гимнастика (навыки дыхания) и упражнения на релаксацию.
Программа тренировок для каждого триместра разная, с учетом состояния здоровья женщины.
Кстати, многие упражнения направлены на уменьшение восприятия боли во время родов. Заниматься ими можно как на специальных курсах для будущих мам, так и во многих фитнес-клубах, где есть подобные программы. Регулярные пешие прогулки также снижают чувство дискомфорта и облегчают процесс родов. Кроме того, в результате занятий, повышается упругость и эластичность брюшной стенки, снижается риск висцероптоза, уменьшаются застойные явления в области малого таза и нижних конечностей, увеличивается гибкость позвоночника и подвижность суставов.
А согласно исследованиям, которые проводились норвежскими, датскими, американскими и российскими учеными, доказано, что спортивные занятия положительно влияют не только на саму женщину, но на развитие и рост будущего малыша.

С чего начать?
Перед тем как начать заниматься, женщина должна обязательно пройти медицинский осмотр, чтобы узнать о возможных противопоказаниях к физическим нагрузкам и определить свой физический уровень. Противопоказания к занятиям могут быть общими и специальными.
Общие противопоказания:
· острое заболевание
· обострение хронического заболевания
· декомпенсация функций любых систем организма
· общее тяжелое состояние или состояние средней тяжести

Специальные противопоказания:
· токсикоз
· привычное невынашивание беременности
· большое число абортов
· все случаи маточных кровотечений
· угроза выкидыша
· многоплодная беременность
· многоводие
· обвитие пуповины
· врожденные пороки развития плода
· особенности плаценты

Дальше следует решить, чем именно вы хотите заниматься, устраивают ли вас групповые тренировки или нет. Вообще, занятия могут быть очень разными:
· специальные, индивидуальные занятия, проводимые под контролем инструктора
· групповые занятия по самым разным направлениям фитнеса
· занятия в воде, обладающие успокаивающим действием
Самое главное при составлении тренировочной программы – это связь между упражнениями и сроком беременности, анализ состояния здоровья и процессов в каждом триместре, реакция организма на нагрузку.

Особенности тренировки по триместрам
Первый триместр (до 16-й недели)
В этот период происходит формирование и дифференцировка тканей, связь плодного яйца с материнским организмом очень слабая (а потому любая сильная нагрузка может вызвать прерывание беременности).
В этот период происходит нарушение равновесия вегетативной нервной системы, что часто приводит к тошноте, запорам, метеоризму, перестройка обменных процессов в сторону накопительных процессов, возрастает потребность тканей организма в кислороде.
Проводимые тренировки должны активизировать работу сердечно-сосудистой и бронхо-легочной систем, нормализовать функцию нервной системы, повысить общий психо-эмоциональный тонус.
В это период из комплекса упражнений исключаются:
· подъемы прямых ног
· подъёмы двух ног вместе
· резкий переход из положения лежа в положение сидя
· резкие наклоны туловища
· резкие прогибания туловища

Второй триместр (с 16 до 32 недели)
В это период происходит формирование третьего круга кровообращения мать – плод.
В этот период может наблюдаться неустойчивость артериального давления (с тенденцией к повышению), включение в обмен веществ плаценты (вырабатываемые ею эстрогены и прогестероны усиливают рост матки и молочных желез), изменение осанки (увеличение поясничного лордоза, угла наклона таза и нагрузки на разгибатели спины). Наблюдается уплощение стопы, возрастание давления в венах, что часто может привести к отекам и расширению вен на ногах.
Занятия в этот период должны формировать и закреплять навыки глубокого и ритмичного дыхания. Полезно также делать упражнения для уменьшения венозного застоя и укрепления свода стопы.
Во втором триместре чаще всего исключаются упражнения в положении лежа на спине.

Третий триместр (с 32 недели и до родов)
В это период происходит увеличение матки, возрастает нагрузка на сердце, происходят изменения в легких, ухудшается венозный отток от ног и малого таза, повышается нагрузка на позвоночник и свод стопы.
Занятия в этот период нацелены на улучшение кровообращения во всех органах и системах, на уменьшение различных застойных явлений, а также на стимуляцию работы
кишечника.
При составлении программы на третий триместр всегда происходит небольшое снижение общей нагрузки, а также уменьшение нагрузки на ноги и амплитуды движений ногами.
В этот период исключаются наклоны туловища вперед, а исходное положение стоя может использоваться только в 15-20% упражнений.

15 принципов тренировки во время беременности
РЕГУЛЯРНОСТЬ – проводить тренировки лучше 3-4 раза в неделю (через 1,5-2 часа после завтрака).
БАССЕЙН – отличное место для безопасных и полезных тренировок.
КОНТРОЛЬ ПУЛЬСА – в среднем до 135 уд/мин (в 20 лет может до 145уд/мин).
КОНТРОЛЬ ДЫХАНИЯ – проводится «разговорный тест», то есть во время упражнений вы должны спокойно разговаривать.
БАЗАЛЬНАЯ ТЕМПЕРАТУРА - не более 38 градусов.
ИНТЕНСИВНАЯ НАГРУЗКА - не более 15 минут (интенсивность очень индивидуальна и зависит от опыта тренировок).
АКТИВНОСТЬ - тренировка не должна резко начинаться и резко заканчиваться.
КООРДИНАЦИЯ – исключаются упражнения с высокой координацией, с быстрой сменой направления движения, а также прыжки, толчки, упражнения на равновесие, с максимальным сгибанием и разгибанием в суставах.
ИСХДНОЕ ПОЛОЖЕНИЕ - переход из горизонтального положения в вертикальное и наоборот должны быть медленными.
ДЫХАНИЕ - исключаем упражнения с натуживанием и задержкой дыхания.
ОДЕЖДА – легкая, открытая.
ВОДА – обязательно соблюдение питьевого режима.
ЗАЛ ДЛЯ ЗАНЯТИЙ – хорошо проветриваемый и с температурой 22-24 градуса.
ПОЛ (ПОКРЫТИЕ ЗАЛА) – должно быть устойчивым и не скользким.
ВОЗДУХ – обязательны ежедневные прогулки.

Голландия держит мировое первенство по либерализму

id="5">На этой неделе Голландия станет первой в мире страной, где гашиш и марихуана будут продаваться в аптеках по рецепту врача, сообщает 31 августа агентство Reuters.

Этот гуманный жест со стороны правительства поможет облегчить страдания больных раком, СПИДом, рассеянным склерозом и различными невралгиями. По оценкам экспертов, более 7 000 человек покупали эти легкие наркотики именно с обезбаливающей целью

Гашиш более 5 000 лет использовался как болеутоляющее средство, пока его не сменили более сильные синтетические наркотики. Причем взгляды медиков на его медицинские свойства расходятся: одни считают его естественным а потому более безобидным наркотиком. Другие утверждают, что гашиш увеличивает риск депрессии и шизофрении. Но и те и друнгие сходятся в одном: смертельнол больным людям ничего кроме облегчения страданий он не принесет.

Голландия вообще славится своими либеральными взглядами – напомним, что однополые браки и эвтаназия она также разрешила первой в мире.

Сердце – вечный ли двигатель?

id="6">Ученые из Proceedings of the National Academy of Sciences, заявляют, что стволовые клетки могут стать источником образования миокардиоцитов, при гипертрофии сердца у людей.

Ранее традиционно считалось, что увеличение массы сердца во взрослом возрасте возможно лишь за счет увеличения размеров миокардиоцитов, но не за счет прироста их количества. Однако, совсем недавно, эта истина была поколеблена. Ученые обнаружили, что в особо тяжелых ситуациях миокардиоциты могут размножаться делением или регенерировать. Но все-таки, пока еще не ясно, как именно происходит регенерация тканей сердца.

Группа ученых из New York Medical College, Valhalla изучали сердечную мышцу, взятую у 36 пациентов со стенозом клапанов аорты во время операции на сердце. Контролем служил материал сердечной мышцы, взятый у 12 умерших в первые 24 часа после смерти.

Авторы отмечают, что увеличение массы сердца у пациентов со стенозом клапанов аорты обусловлено как увеличением массы каждого миокардиоциты, так и увеличением их количества вообще. Углубившись в особенности процесса, ученые обнаружили, что новые миокардиоциты образуются из стволовых клеток, которым предназначалось стать этими клетками.

Выявлено, что содержание стволовых клеток в сердечной ткани больных стенозом клапанов аорты в 13 раз выше, чем у представителей контрольной группы. Более того, состояние гипертрофии усиливает процесс роста и дифференцировки этих клеток. Ученые заявляют: “наиболее значимым открытием этого исследования является то, что в сердечной ткани содержатся примитивные клетки, которые, как правило, ошибочно идентифицируются как клетки кроветворения, из-за сходной генетической структуры”. Регенераторная способность сердца, за счет стволовых клеток, в случае стеноза клапанов аорты равна приблизительно 15 процентам. Приблизительно такие цифры наблюдаются в случае пересадки сердца от женщины донора мужчине реципиенту. Происходит так называемая химеризация клеток, а именно, через какое-то время приблизительно 15 процентов клеток сердца обладают мужским генотипом.

Специалисты надеются, что данные этих исследований и результаты предыдущих работ по химеризму вызовут еще больший интерес в области регенерации сердца.

August 18, 2003, Proc Natl Acad Sci USA.

Несколько лет назад, во времена господства бренда Pentium, первого появления торговой марки Intel Core и одноимённой микроархитектуры (Architecture 101), на слайдах о будущих процессорах впервые было упомянуто следующее поколение микроархитектуры Intel с рабочим названием Gesher ("мост" на иврите), что чуть позже трансформировалось в Sandy Bridge.

В ту давнюю пору господства процессоров NetBurst, когда только-только начали проступать контуры грядущих ядер Nehalem, а мы знакомились с особенностями внутреннего строения первых представителей микроархитектуры Core - Conroe для настольных систем, Merom - для мобильных и Woodcrest - для серверных…

Словом, когда трава была зелёная, а до Sandy Bridge было ещё как до Луны, уже тогда представители Intel говорили, что это будет совершенно новая процессорная микроархитектура. Именно так, cкажем, сегодня можно представить таинственную микроархитектуру Haswell, которая появится после поколения Ivy Bridge, которое, в свою очередь, придёт на смену Sandy Bridge в следующем году.

Однако чем ближе дата выпуска новой микроархитектуры, чем больше мы узнаём об её особенностях, тем больше становятся заметны сходства соседних поколений, и тем более очевиден эволюционный путь изменений в схемотехнике процессоров. И действительно, если между начальными реинкарнациями первой архитектуры Core - Merom/Conroe, и первенцем второго поколения Core - Sandy Bridge - на самом деле пролегает пропасть различий, то нынешняя последняя версия поколения Core - ядро Westmere - и грядущая, рассматриваемая сегодня первая версия поколения Core II - ядро Sandy Bridge, могут показаться схожими.

И всё же различия существенны. Настолько существенны, что теперь окончательно можно говорить о конце 15-летней эпохи микроархитектуры P6 (Pentium Pro) и о появлении нового поколения микроархитектуры Intel.

⇡ Микроархитектура Sandy Bridge: с высоты птичьего полёта

Чип Sandy Bridge - это четырёхъядерный 64-битный процессор с изменяемой (out-of-order) последовательностью исполнения команд, поддержкой двух потоков данных на ядро (HT), исполнением четырёх команд за такт; с интегрированным графическим ядром и интегрированным контроллером памяти DDR3; с новой кольцевой шиной, поддержкой 3- и 4-операндных (128/256-битных) векторных команд расширенного набора AVX (Advanced Vector Extensions); производство которого налажено на линиях с соблюдением норм современного 32-нм технологического процесса Intel.

Так, вкратце, одним предложением можно попробовать охарактеризовать новое поколение процессоров Intel Core II для мобильных и настольных систем, массовые поставки которых начнутся в самое ближайшее время.

Процессоры Intel Core II на базе микроархитектуры Sandy Bridge будут поставляться в новом 1155-контактном конструктиве LGA1155 под новые системные платы на чипсетах Intel 6 Series.

Примерно такая же микроархитектура будет актуальна и для серверных решений Intel Sandy Bridge-EP, разве что с актуальными отличиями в виде большего количества процессорных ядер (до восьми), соответствующего процессорного разъёма LGA2011, большего объёма кеша L3, увеличенного количества контроллеров памяти DDR3 и поддержкой PCI-Express 3.0.

Предыдущее поколение, микроархитектура Westmere в исполнении Arrandale и Clarkdale для мобильных и настольных систем, представляет собой конструкцию из двух кристаллов - 32-нм процессорного ядра и дополнительного 45-нм «сопроцессора» с графическим ядром и контроллером памяти на борту, размещённых на единой подложке и производящих обмен данными посредством шины QPI. По сути, на этом этапе инженеры Intel, используя преимущественно предыдущие наработки, создали этакую интегрированную гибридную микросхему.

При создании архитектуры Sandy Bridge разработчики закончили начатый на этапе создания Arrandale/Clarkdale процесс интеграции и разместили все элементы на едином 32-нм кристалле, отказавшись при этом от классического вида шины QPI в пользу новой кольцевой шины. Суть микроархитектуры Sandy Bridge при этом осталась в рамках прежней идеологии Intel, которая делает ставку на увеличение суммарной производительности процессора за счёт улучшения «индивидуальной» эффективности каждого ядра.

Структуру чипа Sandy Bridge можно условно разделить на следующие основные элементы: процессорные ядра, графическое ядро, кеш-память L3 и так называемый «Системный агент» (System Agent).

В общем и целом структура микроархитектуры Sandy Bridge понятна. Наша сегодняшняя задача - выяснить назначение и особенности реализации каждого из элементов этой структуры.

Кольцевая шина (Ring Interconnect)

Вся история модернизации процессорных микроархитектур Intel последних лет неразрывно связана с последовательной интеграцией в единый кристалл всё большего количества модулей и функций, ранее располагавшихся вне процессора: в чипсете, на материнской плате и т.д. Соответственно, по мере увеличения производительности процессора и степени интеграции чипа, требования к пропускной способности внутренних межкомпонентных шин росли опережающими темпами. До поры до времени, даже после внедрения графического чипа в архитектуру чипов Arrandale/Clarkdale, удавалось обходиться межкомпонентными шинами с привычной перекрёстной топологией - этого было достаточно.

Однако эффективность такой топологии высока лишь при небольшом количестве компонентов, принимающих участие в обмене данными. В микроархитектуре Sandy Bridge для повышения общей производительности системы разработчики решили обратиться к кольцевой топологии 256-битной межкомпонентной шины, выполненной на основе новой версии технологии QPI (QuickPath Interconnect), расширенной, доработанной и впервые реализованной в архитектуре серверного чипа Nehalem-EX (Xeon 7500), а также планировавшейся к применению совместно с архитектурой чипов Larrabee .

Кольцевая шина в версии архитектуры Sandy Bridge для настольных и мобильных систем (Core II) служит для обмена данными между шестью ключевыми компонентами чипа: четырьмя процессорными ядрами x86, графическим ядром, кешем L3 и системным агентом. Шина состоит из четырёх 32-байтных колец : шины данных (Data Ring), шины запросов (Request Ring), шины мониторинга состояния (Snoop Ring) и шины подтверждения (Acknowledge Ring), на практике это фактически позволяет делить доступ к 64-байтному интерфейсу кеша последнего уровня на два различных пакета. Управление шинами осуществляется с помощью коммуникационного протокола распределённого арбитража, при этом конвейерная обработка запросов происходит на тактовой частоте процессорных ядер, что придаёт архитектуре дополнительную гибкость при разгоне. Производительность кольцевой шины оценивается на уровне 96 Гбайт в секунду на соединение при тактовой частоте 3 ГГц, что фактически в четыре раза превышает показатели процессоров Intel предыдущего поколения.

Кольцевая топология и организация шин обеспечивает минимальную латентность при обработке запросов, максимальную производительность и отличную масштабируемость технологии для версий чипов с различным количеством ядер и других компонентов. По словам представителей компании, в перспективе к кольцевой шине может быть "подключено" до 20 процессорных ядер на кристалл, и подобный редизайн, как вы понимаете, может производиться очень быстро, в виде гибкой и оперативной реакции на текущие потребности рынка. Кроме того, физически кольцевая шина располагается непосредственно над блоками кеш-памяти L3 в верхнем уровне металлизации, что упрощает разводку дизайна и позволяет сделать чип более компактным.

L 3 - кеш-память последнего уровня, LLC

Как вы уже успели заметить, на слайдах Intel кеш-память L3 обозначается как «кеш последнего уровня», то есть, LLC - Last Level Cache. В микроархитектуре Sandy Bridge кеш L3 распределён не только между четырьмя процессорными ядрами, но, благодаря кольцевой шине, также между графическим ядром и системным агентом, в который, среди прочего, входит модуль аппаратного ускорения графики и блок видеовыхода. При этом специальный трассировочный механизм упреждает возникновение конфликтов доступа между процессорными ядрами и графикой.

Каждое из четырёх процессорных ядер имеет прямой доступ к «своему» сегменту кеша L3, при этом каждый сегмент кеша L3 предоставляет половину ширины своей шины для доступа кольцевой шины данных, при этом физическая адресация всех четырёх сегментов кеша обеспечивается единой хэш-функцией. Каждый сегмент кеша L3 обладает собственным независимым контроллером доступа к кольцевой шине, он отвечает за обработку запросов по размещению физических адресов. Кроме того, контроллер кеша постоянно взаимодействует с системным агентом на предмет неудачных обращений к L3, контроля межкомпонентного обмена данными и некешируемых обращений.

Дополнительные подробности о строении и особенностях функционирования кеш-памяти L3 процессоров Sandy Bridge будут появляться далее по тексту, в процессе знакомства с микроархитектурой, по мере возникновения необходимости.

Системный агент: контроллер памяти DDR 3, PCU и другие

Ранее вместо определения System Agent в терминологии Intel фигурировало так называемое «Неядро» - Uncore, то есть, «всё, что не входит в Core», а именно кеш L3, графика, контроллер памяти, другие контроллеры вроде PCI Express и т.д. Мы же по привычке частенько называли большую часть этого элементами северного моста, перенесённого из чипсета в процессор.

Системный агент микроархитектуры Sandy Bridge включает в себя контроллер памяти DDR3, модуль управления питанием (Power Control Unit, PCU), контроллеры PCI-Express 2.0, DMI, блок видеовыхода и пр. Как и все остальные элементы архитектуры, системный агент подключен в общую систему посредством высокопроизводительной кольцевой шины.

Архитектура стандартной версии системного агента Sandy Bridge подразумевает наличие 16 линий шины PCI-E 2.0, которые также могут быть распределены на две шины шины PCI-E 2.0 по 8 линий, или на одну шину PCI-E 2.0 на 8 линий и две шины PCI-E 2.0 по четыре линии. Двухканальный контроллер памяти DDR3 отныне «вернулся» на кристалл (в чипах Clarkdale он располагался вне процессорного кристалла) и, скорее всего, теперь будет обеспечивать значительно меньшую латентность.

Тот факт, что контроллер памяти в Sandy Bridge стал двухканальным, вряд ли обрадует тех, кто уже успел вывалить немалые суммы за оверклокерские комплекты трёхканальной памяти DDR3. Что ж, бывает, теперь будут актуальны наборы лишь из одного, двух или четырёх модулей.

По поводу возвращения к двухканальной схеме контроллера памяти у нас имеются кое-какие соображения. Возможно, в Intel начали подготовку микроархитектур к работе с памятью DDR4? Которая, из-за ухода от топологии «звезды» на топологию «точка-точка» в версиях для настольных и мобильных систем будут по определению только двухканальной (для серверов будут применяться специальные модули-мультиплексоры). Впрочем, это всего лишь догадки, для уверенных предположений пока что недостаточно информации о самом стандарте DDR4.

Расположенный в системном агенте контроллер управления питанием отвечает за своевременное динамичное масштабирование напряжений питания и тактовых частот процессорных ядер, графического ядра, кешей, контроллера памяти и интерфейсов. Что особенно важно подчеркнуть, управление питанием и тактовой частотой производится независимо для процессорных ядер и графического ядра.

Совершенно новая версия технологии Turbo Boost реализована не в последнюю очередь благодаря этому контроллеру управления питанием. Дело в том, что, в зависимости от текущего состояния системы и сложности решаемой задачи, микроархитектура Sandy Bridge позволяет технологии Turbo Boost «разогнать» ядра процессора и встроенную графику до уровня, значительно превышающего TDP на достаточно долгое время. И действительно, почему бы не воспользоваться такой возможностью штатно, пока система охлаждения ещё холодная и может обеспечить больший теплоотвод, чем уже разогретая?

Кроме того, что технология Turbo Boost позволяет теперь штатно «разгонять» все четыре ядра за пределы TDP, также стоит отметить, что управление производительностью и тепловым режимом графических ядер в чипах Arrandale/Clarkdale, по сути, только встроенных, но не до конца интегрированных в процессор, производилось с помощью драйвера. Теперь, в архитектуре Sandy Bridge, этот процесс также возложен на контроллер PCU. Такая плотная интеграция системы управления напряжением питания и частотами позволила реализовать на практике гораздо более агрессивные сценарии работы технологии Turbo Boost, когда и графика, и все четыре ядра процессора при необходимости и соблюдении определённых условий могут разом работать на повышенных тактовых частотах со значительным превышением TDP, но без каких-либо побочных последствий.

Принцип работы новой версии технологии Turbo Boost, реализованной в процессорах Sandy Bridge, отлично описывается в мультимедийной презентации, показанной в сентябре на Форуме Intel для разработчиков в Сан-Франциско. Представленный ниже видеоролик с записью этого момента презентации расскажет вам о Turbo Boost быстрее и лучше, чем любой пересказ.

Насколько эффективно эта технология будет работать в серийных процессорах, нам ещё предстоит узнать, но то, что показывали специалисты Intel во время закрытой демонстрации возможностей Sandy Bridge в дни IDF в Сан Франциско, просто поражает: и прирост тактовой частоты, и, соответственно, производительность процессора и графики, одномоментно могут достичь просто фантастических уровней.

Есть информация, что для штатных систем охлаждения режим такого «разгона» с помощью Turbo Boost и превышением TDP будет ограничен в BIOS периодом в 25 секунд. Но что если производители системных плат смогут гарантировать более качественный отвод тепла с помощью какой-нибудь экзотической системы охлаждения? Тут и открывается раздолье для оверклокеров…

Каждое из четырёх ядер Sandy Bridge может быть при необходимости независимо переведено в режим минимального энергопотребления, графическое ядро также можно перевести в очень экономичный режим. Кольцевая шина и кеш L3, в силу их распределения между другими ресурсами, не могут быть отключены, однако для кольцевой шины предусмотрен специальный экономичный ждущий режим, когда она не нагружена, а для кеш-памяти L3 применяется традиционная технология отключения неиспользуемых транзисторов, уже известная нам по предыдущим микроархитектурам. Таким образом, процессоры Sandy Bridge в составе мобильных ПК обеспечивают длительную автономную работу при питании от аккумулятора.

Модули видеовыхода и мультимедийного аппаратного декодирования также входят в число элементов системного агента. В отличие от предшественников, где аппаратное декодирование было возложено на графическое ядро (о его возможностях мы поговорим в следующий раз), в новой архитектуре для декодирования мультимедийных потоков используется отдельный, гораздо более производительный и экономичный модуль, и лишь в процессе кодирования (сжатия) мультимедийных данных используются возможности шейдерных блоков графического ядра и кеш L3.

В соответствии с современными веяниями, предусмотрены инструменты воспроизведения 3D-контента: аппаратный модуль декодирования Sandy Bridge способен без труда обрабатывать сразу два независимых потока MPEG2, VC1 или AVC в разрешении Full HD.

Сегодня мы познакомились со структурой нового поколения микроархитектуры Intel Core II с рабочим названием Sandy Bridge, разобрались со строением и принципом работы ряда ключевых элементов этой системы: кольцевой шины, кеш-памяти L3 и системного агента, в состав которого входит контроллер памяти DDR3, модуль управления питанием и другие компоненты.

Однако это лишь малая часть новых технологий и идей, реализованных в микроархитектуре Sandy Bridge, не менее впечатляющие и масштабные изменения коснулись архитектуры процессорных ядер и интегрированной графической системы. Так что на этом наш рассказ о Sandy Bridge не заканчивается - продолжение следует.

В эти дни компания Intel представляет миру долгожданные процессоры Sandy Bridge , архитектура которых заранее была окрещена как революционная. Но не только процессоры стали новинками этих дней, а и все сопутствующие компоненты новых настольной и мобильной платформ.

Итак, на этой неделе анонсировано аж 29 новых процессоров, 10 чипсетов и 4 беспроводных адаптера для ноутбуков и настольных рабочих и игровых компьютеров.

К мобильным новинкам относятся:

    процессоры Intel Core i7-2920XM, Core i7-2820QM, Core i7-2720QM, Core i7-2630QM, Core i7-2620M, Core i7-2649M, Core i7-2629M, Core i7-2657M, Core i7-2617M, Core i5-2540M, Core i5-2520M, Core i5-2410M, Core i5-2537M, Core i3-2310M;

    чипсеты Intel QS67, QM67, HM67, HM65, UM67 Express;

    беспроводные сетевые контроллеры Intel Centrino Advanced-N + WiMAX 6150, Centrino Advanced-N 6230, Centrino Advanced-N 6205, Centrino Wireless-N 1030.

В настольном же сегменте появятся:

    процессоры Intel Core i7-2600K, Core i7-2600S, Core i7-2600, Core i5-2500K, Core i5-2500S, Core i5-2500T, Core i5-2500, Core i5-2400, Core i5-2400S, Core i5-2390T, Core i5-2300;

    чипсеты Intel P67, H67, Q67, Q65, B65 Express.

Но сразу же стоит отметить, что анонс новой платформы не является одночастным для всех моделей процессоров и чипсетов – с начала января доступны только решения класса «майнстрим», а большинство более массовых и не таких дорогих появятся в продаже немного позднее. Вместе с выпуском настольных процессоров Sandy Bridge представлен и новый процессорный разъем для них LGA 1155 . Таким образом, новинки не дополняют модельный ряд Intel Core i3/i5/i7, а являются заменой для процессоров под LGA 1156, большинство из которых теперь становятся совсем неперспективным приобретением, ибо в ближайшее время их выпуск вообще должен прекратиться. И только для энтузиастов до конца года Intel обещает продолжать выпуск старших четырехъядерных моделей на ядре Lynnfield.

Однако, судя по «роадмапу» платформа долгожитель Socket T (LGA 775) все еще будет оставаться актуальной как минимум до середины года, являясь основой для систем начального уровня. Для наиболее же производительных игровых систем и настоящих энтузиастов до конца года будут актуальны процессоры на ядре Bloomfield по разъем LGA 1366. Как видим, жизненный цикл двухъядерных процессоров с «интегрированным» графическим адаптером на ядре Clarkdale оказался очень коротки, всего один год, но именно они «протоптали» дорожку для представленных «сегодня» Sandy Bridge, приучив потребителя к мысли, что в процессоре может быть интегрирован не только контроллер памяти, а и видеокарта. Теперь же пришло время не просто выпустить более быстрые версии подобных процессоров, серьезно обновить архитектуру, чтобы обеспечить заметное увеличение их эффективности.

Ключевыми особенностями процессоров архитектуры Sandy Bridge являются:

    выпуск с соблюдением 32 нм техпроцесса;

    заметно увеличившаяся энергоэффективность;

    оптимизированная технология Intel Turbo Boost и поддержка Intel Hyper-Threading;

    значительное увеличение производительности встроенного графического ядра;

    реализация нового набора инструкций Intel Advanced Vector Extension (AVX) для ускорения обработки вещественных чисел.

Но все вышеуказанные нововведения не обеспечивали бы возможности говорить о действительно новой архитектуре, если бы все это не было реализовано теперь в пределах одного ядра (кристалла), в отличие от процессоров на ядре Clarkdale.

Естественно, чтобы все узлы процессора заработали согласовано, нужно было организовать быстрый обмен информацией между ними – важным архитектурным нововведением стала кольцевая шина Ring Interconnect.

Объединяет же Ring Interconnect через кэш-память L3, теперь называемую LLC (Last Level Cache), процессорные ядра, графическое ядро и системный агент (System Agent), включающий в себя контроллер памяти, контроллер шины PCI Express, контроллер DMI, модуль управления питанием и другие контроллеры и модули, ранее имеющие объединенные названием «uncore».

Кольцевая шина Ring Interconnect является следующим этапом развития шины QPI (QuickPath Interconnect), которая после «обкатки» в серверных процессорах с обновленной 8-ядерной архитектурой Nehalem-EX, перекочевала и в ядро процессоров для настольных и мобильных систем. Посредством Ring Interconnect образуются четыре 32-разрядных кольца для шин Данных (Data Ring), Запросов (Request Ring), Мониторинга состояния (Snoop Ring) и Подтверждения (Acknowledge Ring). Функционирует кольцевая шина на частоте ядер, поэтому её пропускная способность, задержки и энергопотребление полностью зависят от частоты работы вычислительных блоков процессора.

Кэш-память третьего уровня (LLC - Last Level Cache) является общей для всех вычислительных ядер, графического ядра, системного агента и других блоков. При этом графический драйвер определяет какие потоки данных разместить в кэш-памяти, но и любой другой блок может получить доступ ко всем данным в LLC. Специальный механизм контролирует распределение кэш-памяти, чтобы не возникло коллизий. В целях ускорения работы для каждого из процессорных ядер выделен «свой» сегмент кэш-памяти, к которому оно имеет прямой доступ. Каждый такой сегмент включает независимый контроллер доступа к шине Ring Interconnect, но при этом ведется постоянное взаимодействие с системным агентом, который производит общее управление кэш-памятью.

Системный агент (System Agent), по сути, является встроенным в процессор «северным мостом» и объединяет контроллеры шин PCI Express, DMI, оперативной памяти, блок обработки видео (медиапроцессор и управление интерфейсами), диспетчер питания и другие вспомогательные блоки. С остальными узлами процессора системный агент взаимодействует через кольцевую шину. Кроме упорядочения потоков данных, системный агент следит за температурой и загрузкой различных блоков, и через Power Control Unit обеспечивает управление напряжением питания и частотами, дабы обеспечить наилучшую энергоэффективность при высокой производительности. Здесь же можно отметить, что для питания новых процессоров нужно трехкомпонентный стабилизатор питания (или двух, если встроенное видеоядро останется неактивным) – отдельно для вычислительных ядер, системного агента и интегрированной видеокарты.

Встроенная в процессор шина PCI Express соответствует спецификации 2.0 и насчитывает 16 линий для возможности увеличения мощности графической подсистемы при помощи мощного внешнего 3D-ускорителя. В случае использования старших наборов системной логики и согласования лицензионных вопросов эти 16 линий могут быть разделены на 2 или три слота в режимах 8x+8x или 8x+4x+4x соответственно для NVIDIA SLI и/или AMD CrossFireX.

Для обмена данными с системой (накопителями, портами ввода-вывода, периферией, контроллеры которых находятся в чипсете) используется шина DMI 2.0, позволяющая прокачать до 2 ГБ/с полезной информации в обоих направлениях.

Важной частью системного агента является встроенный в процессор двухканальный контроллер памяти DDR3, номинально поддерживающий модули на частоте 1066-1333 МГц, но при использовании в материнских платах на чипсете Intel P67 Express без проблем обеспечивающий функционирование модулей на частоте до 1600 и даже 2133 МГц. Размещение контроллера памяти в одном кристалле с процессорными ядрами (ядро Clarkdale состояло из двух кристаллов) должно уменьшить латентность памяти и, соответственно, увеличить производительность системы.

Отчасти благодаря расширенному мониторингу параметров всех вычислительных ядер, кэш-памяти и вспомогательных блоков, который реализован в Power Control Unit, в процессорах Sandy Bridge появилась усовершенствованная технология Intel Turbo Boost 2.0. Теперь, в зависимости от нагрузки и выполняемых задач, ядра процессора при высокой необходимости могут ускоряться даже с превышением теплового пакета, как при обычном ручном разгоне. Но системный агент будет следить за температурой процессора и его компонентов, и когда будет зафиксирован «перегрев» частоты узлов будут постепенно уменьшаться. Однако в настольных процессорах лимитировано время работы в сверхускоренном режиме, т.к. здесь значительно легче организовать в разы более эффективное охлаждение, чем «боксовый» кулер. Такой «овербуст» позволит получить прибавку производительности в критичные для системы моменты, что должно создать у пользователя впечатление работы с более мощной системой, а также уменьшить время ожидания реакции системы. Также Intel Turbo Boost 2.0 гарантирует, что и в настольных компьютерах встроенное видеоядро имеет динамическую производительность.

Архитектура процессоров Sandy Bridge подразумевает не только изменения в структуре межкомпонентного взаимодействия и улучшение возможностей и энергоэффективности этих компонентов, но и внутренние изменения в каждом вычислительном ядре. Если отбросить «косметические» улучшения, то наиболее важными окажутся следующие:

    возврат к выделению кэш-памяти для примерно 1,5 тысяч декодированных микроопераций L0 (использовался в Pentium 4), являющейся обособленной частью L1, что позволяет одновременно обеспечить более равномерную загрузку конвейеров и снизить энергопотребление вследствие увеличения пауз в работе достаточно сложных схем декодеров операций;

    повышение эффективности блока предсказания ветвлений вследствие увеличение емкости буферов адресов результатов ветвления, истории команд, истории ветвлений, что увеличило эффективность конвейеров;

    увеличение емкости буфера переупорядоченных команд (ROB - ReOrder Buffer) и повышение эффективности этой части процессора благодаря внедрению физического регистрового файла (PRF – Physical Register File, тоже характерной особенности Pentium 4) для хранения данных, а также расширение других буферов;

    удвоение емкости регистров для работы с потоковыми вещественными данными, что в ряде случаев может обеспечить в два раза большую скорость выполнения операций, их использующих;

    увеличение эффективности исполнения инструкций шифрования для алгоритмов AES, RSA и SHA;

    введение новых векторных инструкций Advanced Vector Extension (AVX);

  • оптимизацию работы кэш-памяти первого L1 и второго L2 уровней.

Важной особенностью графического ядра процессоров Sandy Bridge является то, что оно теперь находится в одном кристалле с остальными блоками, а управление его характеристиками и слежение за состоянием выполняет на аппаратном уровне системный агент. При этом блок обработки медиаданных и формирования сигналов для видеовыходов вынесен в этот самый системный агент. Такая интеграция обеспечивает более тесное взаимодействие, меньшие задержки, большую эффективность и т.д.

Однако самой архитектуре графического ядра не так много изменений, как того хотелось бы. Вместо ожидаемой поддержки DirectX 11 была просто добавлена поддержка DirectX 10.1. Соответственно и не многие приложения с поддержкой OpenGL ограничены аппаратной совместимостью только с 3-й версией спецификации этого свободного API. При этом, хотя и говорится об усовершенствовании вычислительных блоков, но их осталось столько же – 12, и то только для старших процессоров. Однако увеличение тактовой частоты до 1350 МГц обещает заметный прирост производительности в любом случае.

С другой стороны, создать встроенное видеоядро с действительно высокой производительностью и функциональностью для современных игр при невысоком его энергопотреблении очень тяжело. Поэтому отсутствие поддержки новых API повлияет лишь на совместимость с новыми играми, а производительность при действительно большом желании комфортно играть нужно будет наращивать с помощью дискретного 3D-ускорителя. А вот расширение функциональности при работе с мультимедийными данными, в первую очередь при кодировании и декодировании видео в рамках Intel Clear Video Technology HD, можно причислить к достоинствам Intel HD Graphics II (Intel HD Graphics 2000/3000).

Обновленный медиапроцессор позволяет разгрузить процессорные ядра при кодировании видео в форматах MPEG2 и H.264, а также расширяет набор пост-процессинговых функций аппаратной реализацией алгоритмов для автоматической подстройки контрастности изображения (ACE – Adaptive Contrast Enhancement), корректировки цветов (TCC – Total Color Control) и улучшения отображения кожи (STE – Skin Tone Enhancement). Повышает перспективность использования встроенной видеокарты реализованная поддержка интерфейса HDMI версии 1.4, совместимой с Blu-ray 3D (Intel InTru 3D).

Все выше перечисленные архитектурные особенности обеспечивают новому поколению процессоров заметное превосходство по быстродействию над моделями предыдущего поколения, как в вычислительных задачах, так и при работе с видео.

В итоге платформа Intel LGA 1155 становится более производительной и функциональной, приходя на смену LGA 1156.

Если подытожить, то процессоры семейства Sandy Bridge спроектированы для решения очень широкого круга задач при высокой энергоэффективности, что должно их сделать действительно массовыми в новых производительных системах, особенно когда в продаже появятся более доступные модели в широком ассортименте.

В ближайшее время постепенно покупателям станут доступны 8 процессоров для настольных систем разного уровня: Intel Core i7-2600K, Intel Core i7-2600, Intel Core i5-2500K, Intel Core i5-2500, Intel Core i5-2400, Intel Core i5-2300, Intel Core i3-2120 и Intel Core i3-2100. Модели с индексом K отличаются свободным множителем и более быстрым встроенным видеоадаптером Intel HD Graphics 3000.

Также для критичных к энергопотреблению систем выпущены энергоэффективные (индекс S) и высокоэнергоэффективные (индекс T) модели.

Для поддержки новых процессоров уже сегодня доступны материнские платы на чипсетах Intel P67 Express и Intel H67 Express, в а недалеком будущем ожидаются на Intel Q67 Express и Intel B65 Express, ориентированные на корпоративных пользователей и малый бизнес. Все эти чипсеты наконец-то начали поддерживать накопители с интерфейсом SATA 3.0, хотя и не всеми портами. А вот поддержки, казалось бы даже более востребованной шины USB 3.0 в них нет. Интересными особенностями новых чипсетов для обычных материнских плат стало то, что в них отказались от поддержки шины PCI. Кроме того, теперь тактовый генератор встроен в чипсет и управлять его характеристиками без последствий для стабильности работы системы можно лишь в очень небольшом диапазоне, если повезет то всего ±10 МГц, а на практике и того меньше.

Также нужно отметить, что разные чипсеты оптимизированы под использование с разными процессорами в системах, предназначенных для различных целей. То есть Intel P67 Express от Intel H67 Express отличается не только отсутствием поддержки работы со встроенным видео, но и расширенными возможностями для «оверклокинга» и тюнинга производительности. В свою очередь Intel H67 Express вообще не замечает свободный множитель у моделей с индексом K.

А ведь вследствие архитектурных особенностей, разгон процессоров Sandy Bridge пока возможен только с помощью множителя, если это модель K-серии. Хотя к некоторой оптимизации и «овербусту» склонны все модели.

Таким образом, временно для создания иллюзии работы на очень мощном процессоре даже модели с заблокированным множителем способны на заметное ускорение. Время такого ускорения для настольных систем, как было упомянуто выше, ограничено аппаратно, а не только температурой, как в мобильных ПК.

После представления всех архитектурных особенностей и нововведений, а также обновленных фирменных технологий, остается только еще раз просуммировать, чем же Sandy Bridge такие инновационные и напомнить о позиционировании.

Для высокопроизводительных и массовых производительных систем в ближайшее время можно будет купить процессоры серий Intel Core i7 и Intel Core i5, которые между собой отличаются поддержкой технологии Intel Hyper-Threading (для четырехъядерных моделей Intel Core i5 она отключена) и объемом кэш-памяти третьего уровня. Для более экономных покупателей представлены новые модели Intel Core i3, которые имеют в 2 раза меньше вычислительных ядер, хоть и с поддержкой Intel Hyper-Threading, всего 3 МБ кэш-памяти LLC, не поддерживают Intel Turbo Boost 2.0 и все укомплектованы Intel HD Graphics 2000.

В середине года для массовых систем будут представлены процессоры Intel Pentium (от этого бренда очень тяжело отказаться, хотя еще год назад это пророчили) на основе очень упрощенной архитектуры Sandy Bridge. Фактически эти процессоры для «рабочих лошадок» будут напоминать по возможностям еще вчера актуальные Core i3-3xx на ядре Clarkdale, т.к. практически всех функций, присущих старшим моделям для LGA 1155, они лишатся.

Остается отметить, что выпуск процессоров Sandy Bridge и целой настольной платформы LGA 1155 стал очередным «Так» в рамках концепции Intel «Тик-Так», т.е. серьезным обновлением архитектуры для выпуска по уже отлаженному 32 нм техпроцессу. Примерно через год нас будут ждать процессоры Ivy Bridge с оптимизированной архитектурой и выполненные по 22 нм техпроцессу, которые, наверняка, снова будут иметь «революционную энергоэффективность», но, надеемся, не упразднят процессорный разъем LGA 1155. Что ж, подождем – увидим. А пока у нас есть минимум год на изучение архитектуры Sandy Bridge и её всестороннее тестирование, к чему и собираемся приступить уже в ближайшие дни .

Статья прочитана 14947 раз(а)

Подписаться на наши каналы

1. Микроархитектура Sandy Bridge: кратко

Чип Sandy Bridge – это двух-четырёхъядерный 64-битный процессор ●с изменяемой(out-of-order) последовательностью исполнения команд, ●c поддержкой двух потоков данных на ядро (HT), ● c исполнением четырёх команд за такт; ● с интегрированным графическим ядром и интегрированным контроллером памяти DDR3; ● с новой кольцевой шиной, ● поддержкой 3- и 4-операндных (128/256-битных) векторных команд расширенного набора AVX (Advanced Vector Extensions); производство которого налажено на линиях с соблюдением норм 32-нм технологического процесса Intel.

Так, одним предло-жением можно оха-рактеризовать новое поколение процес-соров Intel Core 2 для мобильных и настольных систем, с поставкой c 2011 г.

МП Intel Core II на базе МА Sandy Bridge поставляются в новом 1155 контактном конструктиве LGA1155 под новые системные платы на чипсетах Intel 6 Series с наборами системной логики (Intel B65 Express, H61 Express, H67 Express, P67 Express, Q65 Express, Q67 Express и 68 Express, Z77).


Примерно такая же микроархитектура актуальна и для серверных решений Intel Sandy Bridge-E с отличиями в виде большего количества процессорных ядер (до 8), процессорного разъёма LGA2011 , большего объёма кеша L3, увеличенного количества контроллеров памяти DDR3 и поддержкой PCI-Express 3.0.

Предыдущее поколение, микроархитектура Westmere представляла собой конструкцию из двух кристаллов : ● 32-нм процессорного ядра и ● дополнительного 45-нм «сопроцессора» с графическим ядром и контроллером памяти на борту, размещённых на единой подложке и производящих обмен данными посредством шины QPI, т.е. интегрированную гибридную микросхему (в центре).

При создании МА Sandy Bridge разработ-чики разместили все элементы на едином 32-нм кристалле, отказа-вшись при этом от классического вида шины в пользу новой кольцевой шины.

Суть архитектуры Sandy Bridge осталась прежней - ставка на увеличении суммарной производительности процессора за счёт улучшения «индивидуа-льной» эффективности каждого ядра.



Структуру чипа Sandy Bridge можно условно разделить на следующие основные элементы : ■ процессорные ядра, ■ графическое ядро, ■кеш-память L3 и ■ «системный агент» (System Agent). Опишем назначение и особенности реализации каждого из элементов этой структуры.

Вся история модернизации процессорных микроархитектур Intel последних лет связана с последовательной интеграцией в единый кристалл всё большего количества модулей и функций, ранее располагавшихся вне МП : в чипсете, на материнской плате и т.д. По мере увеличения производительности процессора и степени интеграции чипа, требования к пропус-кной способности внутренних межкомпонентных шин росли опережающими темпами. Ранее обходились межкомпонентными шинами с перекрёстной топологией – и было достаточно.

Однако эффективность такой топологии высока лишь при небольшом количестве компонентов, принимающих участие в обмене данными. В Sandy Bridge для повышения общей производительности системы обратились к кольцевой топологии 256-битной межкомпонентной шины на основе новой версии QPI (QuickPath Interconnect).

Шина служит для обмена данными между компонентами чипа :


● 4-мя МП ядрами x86,

● графическим ядром,

● кешем L3 и

● системным агентом.


Шина состоит из 4-х 32-байтных колец :

■ шины данных (Data Ring), ■ шины запросов (Request Ring),

■ шины мониторинга состояния (Snoop Ring) и ■ шины подтверждения (Acknowledge Ring).


Управление шинами осуществляется с помощью коммуника-ционного протокола распределённого арбитража , при этом конвейерная обработка запросов происходит на тактовой частоте процессорных ядер, что придаёт МА дополнительную гибкость при разгоне. Производительность шины оценивается в 96 Гбайт/с на соединение при тактовой частоте 3 ГГц , что в 4 раза превышает показатели процессоров Intel предыдущего поколения.

Кольцевая топология и организация шин обеспечивает ●минимальную латентность при обработке запросов, ●максимальную производительность и ●отличную масштабируемость технологии для версий чипов с различным количеством ядер и других компонентов.

В перспективе к кольцевой шине может быть "подключено" до 20 процессорных ядер на кристалл, и подобный редизайн может производиться очень быстро, в виде гибкой и оперативной реакции на текущие потребности рынка.

Кроме того, физически кольцевая шина располагается непосредственно над блоками кеш-памяти L3 в верхнем уровне металлизации, что упрощает разводку дизайна и позволяет сделать чип более компактным.




Top