Настройка света из окна в 3d max. Стандартные источники света. Д. Неоновая лампа

Невероятные факты

Люди, как правило, обращают внимания на большие предметы, которые привлекают наше внимание сразу.

Напротив, маленькие вещи могут оставаться незамеченными, хотя от этого они не становятся менее важными.

Некоторые из них мы можем увидеть невооруженным глазом, другие только с помощью микроскопа, а есть и те, что можно представить себе только теоретически.

Вот коллекция самых маленьких вещей в мире, начиная от крошечных игрушек, миниатюрных животных и людей до гипотетической субатомной частицы.


Самый маленький пистолет в мире

Самый маленький револьвер в мире SwissMiniGun на вид не больше дверного ключа. Однако внешность обманчива, и пистолет длиною всего 5,5 см и весом чуть меньше 20-ти грамм может стрелять со скоростью 122 м в секунду. Этого достаточно, чтобы убить с близкого расстояния.

Самый маленький бодибилдер в мире

Согласно Книге рекордов Гиннеса Адития "Ромео" Дев (Aditya “Romeo” Dev) из Индии был самым маленьким бодибилдером в мире. При росте всего 84 см и весе 9 кг, он мог поднимать гантели весом 1,5 кг и проводил много времени, совершенствуя свое тело. К сожаленью, он умер в сентябре 2012 года из-за разрыва аневризмы мозга.

Самая маленькая ящерица в мире

Харагуанский сферо (Sphaerodactylus ariasae ) является самым маленьким пресмыкающимся в мире. Его длина составляет всего 16-18 мм, а вес 0,2 грамма. Он обитает в Национальном парке Харагуа в Доминиканской республике.

Самый маленький автомобиль в мире

Автомобиль Peel 50 весом 59 кг является самым маленьким серийным автомобилем в мире. В начале 1960-х годов было выпущено около 50-ти таких автомобилей, и сейчас осталось только несколько моделей. В автомобиле два колеса впереди и одно сзади, и он достигает скорости 16 км в час.

Самая маленькая лошадь в мире

Самая маленькая лошадь в мире по кличке Эйнштейн родилась в 2010 году в городе Барнстед в Нью-Гампшире, Великобритании. При рождении она весила меньше, чем новорожденный ребенок (2,7 кг). Ее рост составил 35 см. Эйнштейн не страдает от карликовости, а относится к породе лошадей пинто.

Самая маленькая страна в мире

Ватикан является самой маленькой страной в мире. Это маленькое государство площадью всего 0,44 кв. км и населением из 836 человек, которые не являются постоянным жителями. Крошечная страна окружает собор Святого Петра – духовный центр римских католиков. Сам Ватикан окружен Римом, Италией.

Самая маленькая школа в мире

Школа Калоу в Иране была признана ЮНЕСКО самой маленькой школой в мире. В деревушке, где находится школа, живет всего 7 семей, где насчитывается четверо детей: два мальчика и две девочки, которые и посещают школу.

Самый маленький чайник в мире

Самый маленький чайник в мире был создан известным мастером по керамике Ву Руишеном (Wu Ruishen) и он весит всего 1,4 грамма.

Самый маленький мобильный телефон в мире

Телефон Modu считается самым маленьким мобильным телефоном в мире согласно Книге Рекордов Гиннеса. При толщине 76 миллиметров, он весит всего 39 грамм. Его размеры составляют 72 мм x 37 мм x 7.8 мм. Несмотря на крошечные размеры, вы можете звонить, отправлять СМС сообщения, проигрывать MP3 и фотографировать.

Самая маленькая тюрьма в мире

Тюрьма Сарк на Нормандских островах была построена в 1856 году и вмещает одну камеру на 2-х заключенных.

Самая маленькая обезьянка в мире

Карликовые игрунки, которые обитают в тропических влажных лесах Южной Америки, считаются самыми крошечными обезьянками в мире. Вес взрослой обезьянки составляет 110-140 грамм, а длина достигает 15-ти см. Хотя у них довольно острые зубы и когти, они относительно послушные и популярны в качестве экзотических питомцев.

Самая маленькая почта в мире

Самая маленькая почтовая служба WSPS (World’s Smallest Postal Service) в городе Сан-Франсиско, США переводит ваши письма в миниатюрную форму, так что получателю придется читать его с увеличительным стеклом.

Самая маленькая лягушка в мире

Лягушка вида Paedophryne amauensis при длине 7,7 миллиметров обитает только в Папуа-Новой Гвинее, и является самой крошечной лягушкой и самым маленьким позвоночным в мире.

Самый маленький дом в мире

Самый маленький дом в мире американской компании Tumbleweed архитектора Джея Джафера (Jay Shafer) меньше, чем туалет у некоторых людей. Хотя этот дом площадью всего 9 кв. метров выглядит крошечным, он вмещает все, что вам нужно: рабочее место, спальню, ванную с душем и туалетом.

Самая маленькая собака в мире

В отношении высоты, самой маленькой собакой в мире согласно Книге Рекордов Гиннеса считается собака Бу Бу – чихуахуа высотой 10,16 см и весом 900 грамм. Она живет в штате Кентукки, США.

Кроме того на звание самой маленькой собаки в мире претендует Мейси - терьер из Польши высотой всего 7 см, и длиной 12 см.

Самый маленький парк в мире

Милл Эндс Парк в городе Портленд, штата Орегон, США - это самый маленький парк в мире диаметром всего 60 см. На небольшом круге, расположенном на пересечении дорог располагается бассейн для бабочек, маленькое колесо обозрения и миниатюрные статуи.

Самая маленькая рыба в мире

Рыба вида Paedocypris progenetica из семейства карповых, обнаруженная в торфяных болотах, вырастает всего до 7,9 миллиметров в длину.

Самый маленький человек в мире

72-летний непалец Чандра Бахадур Данги (Chandra Bahadur Dangi) при росте 54,6 см был признан самым невысоким человеком и мужчиной в мире.

Самая маленькая женщина в мире

Самой невысокой женщиной в мире является Йоти Амге (Jyoti Amge) из Индии. На свое 18-летие девушка при росте 62,8 см стала самой маленькой женщиной в мире.

Самый маленький полицейский участок

Эта небольшая телефонная будка в городе Карабелле, штата Флорида, США считается самым маленьким работающим полицейским участком.

Самый маленький младенец в мире

В 2004 году Румаиса Рахман (Rumaisa Rahman) стала самым маленьким новорожденным ребенком. Она родилась на 25-й неделе и весила всего 244 грамм, а ее рост составил 24 см. Ее сестра близнец Хиба весила почти в два раза больше - 566 грамм при росте 30 см. Их мать страдала от тяжелой формы предэклампсии, что может приводит к рождению детей меньшего размера.

Самые маленькие скульптуры в мире

Британский скульптор Уллард Уиган (Willard Wigan), который страдал от дислексии, не преуспевал в учебе и нашел утешение в создании миниатюрных произведений искусства, которые не видны невооруженным глазом. Его скульптуры помещаются в ушке иголки, достигая размеров 0,05 мм. Его недавние работы, которые называют не иначе, как "восьмым чудом света" не превышают размера клетки крови человека.

Самый маленький плюшевый мишка в мире

Мишка Мини-пух созданный немецким скульптором Беттиной Камински (Bettina Kaminski) стал самым крошечным сшитым вручную плюшевым медвежонком с подвижными лапками размером всего 5 мм.

Самая маленькая бактерия

Самый маленький вирус

Хотя среди ученых до сих пор спорят, что считать "живым", а что нет, большинство биологов не классифицируют вирусы в качестве живого организма, так как они не могут размножаться и не способны к обмену вне клетки. Однако вирус может быть меньше любого живого организма, включая бактерию. Самым маленьким одноцепочечным ДНК вирусом является цироковирус свиней (Porcine circovirus ). Диаметр его оболочки составляет всего 17 нанометров.

Самые маленькие объекты, видимые невооруженным глазом

Размер самого маленького объекта видимого невооруженным глазом составляет 1 миллиметр. Это означает, что при необходимых условиях вы сможете увидеть амебу обыкновенную, инфузорию-туфельку и даже яйцеклетку человека.

Самая маленькая частица во Вселенной

За последний век наука сделала огромный шаг к пониманию просторов Вселенной и ее микроскопических строительных материалов. Однако когда дело касается самой маленькой наблюдаемой частицы во Вселенной, возникают некоторые трудности.

Одно время самой маленькой частицей считался атом. Затем ученые открыли протон, нейтрон и электрон. Теперь же мы знаем, что, сталкивая частицы вместе (как например, в Большом адронном коллайдере) их можно разбить на еще больше частиц, таких как кварки, лептоны и даже антивещество . Проблема состоит лишь в определении того, что же является меньше.

Но на квантовом уровне размер становится несущественным, так как законы физики, к которым мы привыкли, не применимы. Так у некоторых частиц нет массы, у некоторых отрицательная масса. Решение этого вопроса, это все равно, что делить на нуль, то есть невозможно.

Самый маленький гипотетический объект во Вселенной

Учитывая, что было сказано выше о том, что понятие размера является неприменимым на квантовом уровне, можно обратиться к известной в физике теории струн.

Хотя это довольно противоречивая теория, она предполагает, что субатомные частицы состоят из вибрирующих струн , которые взаимодействуют, чтобы создать такие вещи, как масса и энергия. И хотя у таких струн нет физических параметров, склонность человека все обосновывать приводит нас к заключению, что это и есть самые маленькие объекты во Вселенной.

Итак, чтобы трехмерные модели выглядели естественно на визуализированном изображении, их необходимо правильно осветить. По умолчанию 3ds max 7 использует свою систему, которая равномерно освещает объекты трехмерной сцены. При такой системе освещения на финальном изображении отсутствуют тени, что выглядит неестественно. Чтобы объекты отбрасывали тени, в сцену необходимо добавить источники света. Сразу после того, как в сцене появляются источники света, система освещения, используемая 3ds max 7, автоматически выключается.

Источники света в 3ds max 7 делятся на направленные (Spot ) и всенаправленные (Omni ). К первой категории относятся Target Spot (Направленный с мишенью), Free Spot (Направленный без мишени) и mr Area Spot (Направленный, используемый визуализатором mental ray ). К всенаправленным источникам света относятся Omni (Всенаправленный) и mr Area Omni (Всенаправленный, используемый визуализатором mental ray ).

Направленные источники используются в основном для того, чтобы осветить конкретный объект или участок сцены. При помощи направленных источников света можно имитировать, например, свет автомобильных фар, луч прожектора или карманного фонарика и т. д. Всенаправленные источники света равномерно излучают свет во всех направлениях. Используя их, можно имитировать, например, освещение от электрических ламп, фонарей, свет пламени и др.

Независимо от того, какой источник света используется в сцене, он характеризуется такими параметрами, как Multiplier (Яркость), Decay (Затухание) и Shadow Map (Тип отбрасываемой тени) (рис. 6.1). По умолчанию, Multiplier (Яркость) любого источника света равна единице, а параметр Decay (Затухание) выключен.

Поскольку в реальной жизни свет от источников подчиняется законам физики, то интенсивность распространения света зависит от расстояния до источника света. Если нужно смоделировать реалистичный источник света, в настройках источника света необходимо установить функцию Decay (Затухание), которая определяется обратной зависимостью света от расстояния или квадрата расстояния. Второй вариант наиболее точно описывает распространение света.

При создании освещенности сцены применительно к источникам света часто используются следующие эффекты.

  • Volume Light (Объемный свет) - свет, создаваемый источником, окрашивает пространство в цвет источника. В реальной жизни такой эффект можно наблюдать в темных запыленных или задымленных помещениях. Пучок света, пробиваясь в темноте, хорошо заметен.
  • Lens Effects (Эффекты линзы) - напоминает эффект, который в реальной жизни получается на изображении при использовании специальных объективов с различными системами линз. Это могут быть блики различной формы, отсветы и т. д.

Рис. 6.1. Настройки источника света типа Omni (Всенаправленный)

Чтобы использовать эффект, в свитке настроек Atmospheres & Effects (Атмосфера и эффекты) источника света нажмите кнопку Add (Добавить) и выберите требуемый эффект в окне Add Atmosphere or Effect (Добавить эффект или атмосферное явление) (рис. 6.2).

Рис. 6.2. Окно Add Atmosphere or Effect (Добавить эффект или атмосферное явление)

Вы также можете добавить в сцену эффект, выполнив команду Rendering > Environment (Визуализация >Окружение) или нажав клавишу 8. В окне Environment and Effects (Окружение и эффекты) перейдите на вкладку Effects (Эффекты) после чего при помощи кнопки Add (Добавить) добавьте в сцену один из эффектов.

Рис. 6.3. Окно Environment and Effects (Окружение и эффекты)

Для настройки эффекта используйте кнопку Setup (Настройка) в свитке настроек Atmospheres & Effects (Атмосфера и эффекты) источника света. При этом вы перейдете в окно Environment and Effects (Окружение и эффекты). Чтобы программа могла просчитывать эффект, в его настройках необходимо указать, к какому источнику света используется выбранный эффект. Нажмите кнопку Pick Light (Выбрать источник света) (рис. 6.3), после чего щелкните мышью на источнике света в окне проекции.

Приветствуем читателей нашего сайта. Представляем вашему вниманию статью — уроки освещения в 3ds max. Конечно, данную тему нельзя отнести полностью к профильным, но так как наш сайт посвящен электрике и свету, мы решили: а почему бы и нет — ведь свет, он и есть свет, где бы он ни был.

К тому же, данная тема наверняка заинтересует многих людей, желающих разобраться с этой весьма непростой программой.

Приступая к прочтению данного материала, мы уже предполагаем, что вы начали изучать основные принципы работы в 3D максе, и у вас не вызовут затруднения такие операции, как создание объектов, перемещение их по сцене, и прочие основы. В противном случае, боимся, что материал вам покажется сложным для освоения.

Но, как и всегда, мы попытаемся подать тему максимально просто. Перед вами небольшая фото инструкция по работе — так вы наверняка без проблем сможете сделать все своими руками.

Создаём рабочую сцену

Итак, запускаем программу. Если у вас её ещё нет, то вы можете приобрести её тремя способами:

  • Купить лицензионную версию за очень немаленькие деньги — цена на лицензионный продукт стартует от 50 тысяч рублей — и то, в период проведения распродаж;
  • Скачать и установить пробную версию абсолютно бесплатно , в которой вы прекрасно сможете проходить полноценное обучение, ведь функционально такой продукт ничем не отличается от уже купленного.
  • Ну или воспользоваться другим, всем известным способом, о котором мы, пожалуй, промолчим.

Мы же будем работать с программой версии 2012 года. Конечно, она уже немногим устарела, но основные принципы остались неизменными до сих пор.

Для начала, давайте создадим простенькую сцену, с которой мы и будем работать на протяжении всего урока.

Вызываем панель примитивов — для этого кликните по соответствующей кнопке в командной панели, расположенной в правой части экрана.

Теперь давайте создадим в рабочем поле плоскость (Plane). На фото выше, красным выделены все кнопки, которые потребуется нажать для выполнения описываемой операции. Так же мы будем поступать и на всех остальных изображениях, чтобы вы могли лучше ориентироваться в сухом тексте.

Далее, нам потребуется установить в центре сцены какие-нибудь фигуры, которые мы и будем освещать в дальнейшем. Вы можете использовать абсолютно любые свои модели, а мы установим два примитива, чтобы упростить сцену.

На открывшейся панели поочередно выбираем и устанавливаем куб (Box), и цилиндр (Cylinder), придавая им совершенно произвольные пропорции и размеры. Чтобы наши фигуры контрастировали на фоне друг друга, давайте изменим их цвета.

Для этого выделите цилиндр, и перейдите по вкладке «Modify». Перед вами откроется меню, в котором доступны все свойства выделенного объекта.

В выделенной, прямоугольной области отображается тип выделенного вами объекта — тут вы можете убедиться, что выделили нужный объект. Чуть выше находится окошко, в котором можно задать его имя.

Справа от него, расположен небольшой цветной квадратик — нажмите по нему, и перед вами откроется панель выбора цвета. Здесь мы выделяем синий, и жмем «ОК».

Аналогичным способом, меняем цвет куба на красный. В результате, мы получаем два контрастирующих ярких цвета, что позволит лучше наблюдать за тем, что происходит на сцене во время настройки освещения.

Создаем источник освещения

Теперь пришло время создать наш первый источник освещения. Для этого, на командной панели перейдите во вкладку Create (Создать). Затем нажмите на подменю Lights (Свет), и вы увидите перед собой панель создания освещения.

Самое первое выпадающее меню позволяет определить тип устанавливаемого осветителя. Их в программе всего три:

  • Standart (Стандартный) — самый простой и менее реалистичный свет, создаваемый программой. Именно его мы и изучим в первую очередь;
  • Photometric (Фотометрический) — более реалистичный свет, для создания живых сцен;
  • VRay — это профессиональный инструмент, которого мы не будем касаться в данном уроке.

Типы осветителей

Выбираем стандартное освещение, и перед нами открывается панель всех доступных осветителей и их основные настройки.

Сейчас нас интересуют первые два осветителя Target Spot (нацеленный светильник) и Free Spot (свободный светильник). Оба они имеют форму конуса, и отличаются лишь тем, что первый имеет цель, на которую будет направлено освещение, а второй — нет.

  • Выбираем Target Spot, и устанавливаем его на сцене. Для этого зажмите левую клавишу мыши, и вытяните конус нужной длины
  • Далее, при помощи стрелок осей координат, меняем его местоположение в пространстве.
  • При этом угол направления света всегда будет падать в сторону указанной цели.

При необходимости цель освещения можно передвинуть на новое место.

Как видите, после установки осветителя над сценой, у нас появилось какое-то подобие освещения, и даже появились тени. То есть, сцена стала более реалистичной. Но то, что вы видите сейчас, не совсем соответствует конечному результату.

Чтобы его увидеть, нужно визуализировать сцену, или, как говорят моделлеры — отрендерить. Для выполнения рендера, воспользуемся сочетанием горячих клавиш. По умолчанию, они назначены в программе, как Shift+Q.

Как можно увидеть на фото выше. После нажатия указанных клавиш, открывается отдельное окошко, в котором отображается наша сцена, но уже в визуализированном формате. То есть, мы видим, как падает наш свет. Он отображается в виде четкого круга, со слегка размытыми краями.

Удаляем Target Spot, и создаем Free Spot.

Данный источник света не имеет кубика, и по умолчанию направлен вниз. Чтобы осветить сцену, просто расположите его над плоскостью. Free Spot даст ровно такое же освещение, как и предыдущий источник.

Снова удаляем свет, устанавливаем новый, но теперь уже Target Direction (Целевое направление).

Новый источник света, в отличие от предыдущих, имеет форму цилиндра. Так же как и Target Spot, он имеет кубик для указания цели освещения. Как вы, наверное, догадались Free Direction (Свободное направление), нацеливаться не может и светит, как и Free Spot вниз.

И последний тип осветителя, которого мы коснемся в данном разделе, называется Omni. Обозначает он точечное всенаправленное освещение, которое не имеет ограничений в виде зон.

Форма источника света важна для правильного освещения сцены, к тому же каждый параметр можно предварительно настроить, о чем мы и поговорим в следующей главе.

Настройки света

Настраивать мы будем источник освещения типа Target Direct. Для того чтобы перейти к меню настроек, выделите источник и перейдите во вкладку Modify, как это было показано ранее.

В открывшемся меню, можно увидеть множество строк, справа от которых стоят плюсики. Это означает, что перед вами название выпадающего меню, которое можно открыть или закрыть просто, кликнув по нему.

Настроек очень много, поэтому мы пробежимся лишь по самым основным. Остальное вы можете просмотреть самостоятельно, наблюдая за тем, как меняется свет.

Но давайте обо всем по порядку:

  • Первая вкладка называется General Parameters (Основные настройки);
  • Здесь можно изменить тип осветителя, выбрав нужный из выпадающего списка;
  • Убирая, или устанавливая галочку напротив пункта On, мы включаем или выключаем свет;
  • Галочка Targeted определяет нацеленный наш источник, или нет;
  • В подпункте Shadows мы можем включать отображение теней, и выполнять их тонкую настройку.

Следующая вкладка Intensity\Color\Attenuation (Интенсивность\Цвет\Затухание) является одной из самых важных, так как в ней находятся очень интересные настройки.

Разбираем все по очереди:

  • Первый пункт Multiplier (Множитель) — определяет мощность нашего света . Увеличивая этот параметр, мы заставляем светить источник ярче, то есть делаем его насыщеннее, и наоборот, уменьшая — приглушаем.
  • По соседству расположен белый квадратик. Нажав на него, мы откроем панель, в которой сможем изменить цветовую температуру света.
  • Следующий пункт называется Decay (Распад) — позволяет ограничить распространение света, а точнее, выставить преграду, которая станет приглушать свет после себя. Чтобы увидеть процесс в действии, установите галочку напротив Show (Показать), смените тип на Inverse (Обратный), и добавьте параметр Start.

Совет! По сути, данная функция напоминает действие рассеивателя, делая свет более мягким и приглушенным.

Чтобы увидеть эффект от данного пункта, вам также потребуется визуализировать сцену.

  • Далее идут параметры Near Attenuation и Far Attenuation, которые ограничивают распространение света в пространстве сцены.
  • Если мы активируем первый параметр, путем установки галочки в пункте Use (Использовать) и Show, то увидим два ограничителя, которыми мы определяем зону, где свет будет попадать на объекты.
  • Пригодится для использования, в случаях, когда какие-то из объектов сцены не должны освещаться.

Давайте посмотрим, что будет, если вынести ограничители за пределы наших примитивов.

Второй параметр работает аналогично первому, но лишь с той разницей, что затемняет с обратной стороны — то есть, удаленной от источника света.

Следующий пункт настроек — это Directional Parameters, который содержит в себе очень интересные настройки.

  • Первое, что можно сделать — это изменить форму источника, сделав её прямоугольной. Для этого нужно отметить пункт Rectangle (Прямоугольник).
  • Hotspot\Beam (луч) — параметр регулирующий размер основного луча. Меняя значения в окошке, вы увидите как изменяется радиус внутреннего круга источника света.
  • Falloff\Field (поле) — аналогично предыдущему параметру, меняет размер внешнего круга.

На практике данные настройки позволяют создать плавное затухание света от центра к краям.

На этом, обзор основных настроек мы, пожалуй, закончим, так как более глубокое изучение остальных параметров новичкам на данном этапе будет бесполезно.

Фотометрические источники света

Теперь давайте попробуем создать более насыщенный и реалистичный свет на нашей сцене. Для этого мы используем фотометрические осветители.

Типы осветителей

Данные источники света бывают двух видов: Target Light (Нацеленный свет) и Free Light (Ненаправленный свет). Как вы уже знаете, разница между ними заключается в наличии цели. Данные источники не имеют какой-либо формы, так как имитируют естественный свет, который не ограничен в пространстве ничем.

Как вы уже могли заметить, внешнее отображение подобного источника света в программе отличается от стандартного. Он показан как сетчатый шар, связанный линией с кубиком, который и есть цель освещения.

Так же, как и в случае со стандартными источниками, его можно свободно перемещать и настраивать удобным способом. Вот как теперь стали выглядеть фигуры после рендера.

Для большей реалистичности, мы включили у объектов параметр тени. Как это сделать, можно узнать, вернувшись к описанию основных настроек.

Настройки фотометрического света

Как и прочие источники освещения в 3Ds Max, фотометрические обладают своими настройками. Какие-то из них ничем не отличаются от уже описанных выше, а какие-то уникальны. Давайте их и разберем.

Первый пункт настроек, который нас интересует — это Template (Шаблон). Здесь можно выбрать вид освещения нашей лампы, и сделать её, например, галогенной или флуоресцентной, и сразу установить её мощность в Ваттах.

Параметр Intensity\Color\Attenuation позволяет менять не только цветовую температуру, но и задать мощность освещения, выставляя значения в наиболее удобных для пользователя единицах (например в Люменах).

Чем выше значения данных параметров, тем ярче и мощнее становится наш свет. Далее рассмотрим пункт Shadow Parameters (Параметры тени).

Он состоит из следующих параметров:

  • Пункт Color отвечает за цвет теней, так что при желании, вы можете сделать их даже желтыми.
  • Density (Плотность) — отвечает за прозрачность теней. Если увеличить данный параметр, то тень станет очень четкой. Если же приблизить значение к нулю, то она станет еле заметной.
  • Значения ниже нуля приведут к тому, что тень исчезнет вовсе.
  • Size (Размер) — также регулирует насыщенность тени;
  • 2 Sided Shadows — делает тени двусторонними.

На этом мы закончим наш 3ds max урок освещения. Мы разобрали его основные типы, а также их параметры.

Данные знания позволят вам начать работу со светом, и делать свои первые творения более реалистичными. Дополнительно советуем вам узнать, как правильно расставлять освещение на сцене. Для этого поищите в сети видео соответствующей тематики.

Источники дневного света Sunlight (Солнечный свет) и Daylight (Дневной свет) расположены на вкладке Systems (Системы) панели Create (Создать) . Их отличительная особенность – пространствеая ориентация источников света относительно географического положения и времени суток.

Для пространственной ориентации используется вспомогельный объект Compass (Компас) , который задает географичкие направления (север, юг, запад и восток). Этот объект распагается в сцене вместе с источником света и не визуализируется (рис. 17.20).

Рис. 17.20. Объект Compass (Компас) на плоскости сетки

Чтобы создать источник солнечного света, нужно выполнить следующие действия:

1. Выбрать источник света Sunlight (Солнечный свет) .

2. В окне проекции Top (Сверху) щелкнуть левой кнопкой мыши по месту установки объекта Compass (Компас) и, удерживая кнопку, растянуть его до нужных размеров.

3. Переместить указатель мыши вверх или вниз по экрану для установки высоты источника света (будет задано орбитальное расстояние).

4. В свитке параметров источника света в группе параметров Location (Местоположение) нажать кнопку Get Location (Зать местоположение) .

5. В открывшемся диалоговом окне установить географическое положение по карте (рис. 17.21).

Рис. 17.21. Диалоговое окно Geographic Location (Географическое местоположение)

6. В группе параметров Time (Время) установить в поле Time Zone (Часовой пояс) сдвиг во времени, затем установить дату и время в соответствующих полях (рис. 17.22).

Рис. 17.22. Свиток параметров источника Sunlight (Солнечный свет)

Параметр Azimuth (Азимут) определяет угол между текущим положением и направлением на север. Параметр Altitude (Высота над уровнем моря) указывает на угол между текущим положенм и горизонтом.

Значения Latitude (Широта) и Longitude (Долгота) могут ввиться вручную.

Изменить параметры положения созданной солнечной систы можно в панели Motion (Движение) .

Источники дневного света широко применяются при анимии суточных интервалов (рис. 17.23).

Рис. 17.23. Применение источника солнечного света

Источник Daylight (Дневной свет) сочетает в себе комбинию солнечного и небесного света. Он создается аналогично иочнику солнечного света, параметры освещения настраиваются таким же образом (устанавливается географическое положение, дата и время).

Помимо настроек солнечного света, свитки параметров иочника Daylight (Дневной свет) содержат настройки источника небесного света.

Рис. 17.24. Освещение источником дневного света (закат)

В свитке параметров Daylight Parameters (Параметры источна дневного света) можно изменять типы параметров освещения солнечного и небесного света в соответствующих выпадающих свитках. В настоящее время для настройки источников дневного света широко применяются параметры mr Sky (Небо mr) и mr Sun (Солнце mr) совместно с активируемыми параметрами mr Physical Sky (Физическое небо mr) (рис. 17.24).

Для источников дневного света прусмотрена функция установки погоых условий на основе файлов данных о погодных условиях EnergyPlus Weather (EPW ).

В свитке параметров Control Parame- ters (Параметры управления) источника появился переключатель, определяющий способ указания координат источника: Manual (Пользовательский) , Date , Time

and Location (Дата, время и местопожение) и Weather Data File (Файл подных данных) (рис. 17.25).

Рис. 17.25. Фрагмент свитка Control Parameters (Параметры управления)

Рис. 17.26. Диалоговое окно

При нажатии кнопки напротив варианта Weather Data File (Файл погодных данных) откроется диалоговое окно Configure Weather Data (Настройка погодных данных) (рис. 17.26).

Нажатие кнопки Load Weather Data (Загрузить погодные даые) открывает стандартное окно обозревателя для выбора файла данных о погоде. Файлы с погодными данными доступны для скачивания в сети Интернет.

После выбора соответствующего файла появляется информия о месте, периоде записи данных и количество периодов.

На основе этих данных можно установить режимы анимации источника дневного света, его орбиту движения, интенсивность света, туманность и т.д. (рис. 17.27).

Рис. 17.27. Кадр анимационной последовательности источника дневного света (рассвет)

Общие сведения об освещении в трехмерной графике
В любом редакторе трехмерной графики (Lightwave 3D, Maya, Softimage, 3ds Max и др.) реалистичность визуализированного изображения зависит от трех главных факторов: качества созданной трехмерной модели, удачно выполненных текстур и освещения сцены. Одна и та же сцена, просчитанная при различном освещении, может выглядеть совершенно по-разному. При изменении положения источников света в сцене искажаются окрашивание объектов, форма отбрасываемых теней, возникают участки, чересчур залитые светом или слишком затемненные.
Создание реалистичного освещения в сцене - одна из самых больших проблем при разработке трехмерной графики. В реальности падающий луч света претерпевает огромное количество отражений и преломлений, поэтому очень редко можно встретить резкие, неразмытые тени. Другое дело - компьютерная графика. Здесь количество падений и отражений луча определяется только аппаратными возможностями компьютера. До определенного момента в трехмерной графике преобладали резкие тени. Сцена, с которой работает дизайнер, является лишь упрощенной физической моделью, поэтому визуализированное изображение далеко не всегда походит на настоящее. Но, несмотря на это, освещение в трехмерной сцене все же можно приблизить к реальному. Для этого нужно соблюсти два правила:
* установить источники света и подобрать их яркость (параметры) таким образом, чтобы сцена была равномерно освещена;
* задать настройки визуализации освещения.

ПРИМЕЧАНИЕ
Несмотря на то, что чаще всего источники света используются для освещения объектов в сцене, иногда свет применяется как самостоятельный объект, например для имитации далекого огонька в ночи, маяка, звезды на небе и т. д.

Проблема освещения в изображениях возникла задолго до появления трехмерной графики. Первыми задачу правильного освещения решали художники и фотографы, позже - кинооператоры, теперь она стала насущной и для разработчиков трехмерной графики.
Самым распространенным способом является освещение из трех точек (трехточечная система). Такой подход удачен при освещении одного объекта (например, портреты в фотостудии), для сложных трехмерных сцен он может не подойти. Выбор освещения зависит от количества объектов, отражательных свойств их материалов, а также от геометрии сцены.
Для освещения также является важным, какой тип источника света используется. Например, направленный источник света позволяет сконцентрировать внимание на каком-то определенном объекте, а всенаправленный точечный источник - осветить сцену целиком.

Освещение сцены
Итак, чтобы трехмерные модели выглядели естественно в визуализированном изображении, их необходимо правильно осветить. По умолчанию 3ds Max 8 использует свою систему, которая равномерно освещает объекты трехмерной сцены. При такой системе освещения в финальном изображении отсутствуют тени, что выглядит неестественно. Чтобы объекты отбрасывали тени, в сцену необходимо добавить источники света. Сразу после того, как в сцене появляются источники света, система освещения, используемая 3ds Max 8, автоматически выключается.
Источники света в 3ds Max 8 делятся на направленные (Spot) и всенаправленные (Omni). К первой категории относятся Target Spot (Направленный с мишенью), Free Spot (Направленный без мишени) и mr Area Spot (Направленный, используемый впзуалнзатором mental ray). К BCCHIтравленным источникам света относятся Omni (Всенапраиленный) и mr Area Omni (Всенаправленный, используемый визуализатором mental ray).
Направленные источники используются в основном для того, чтобы осветить конкретный объект или участок сцены. При помощи направленных источников света можно имитировать, например, свет автомобильных фар, луч прожектора или карманного фонарика и т. д. Всенаправленные источники света равномерно излучают свет во всех направлениях. Используя их, можно имитировать, например, освещение от электрических ламп, фонарей, свет пламени и др.
Независимо от того, какой источник света используется в сцене, он характеризуется такими параметрами, как Multiplier (Яркость), Decay (Затухание) и Shadow Map (Тип отбрасываемой тени) (рис 13.1). По умолчанию Multiplier (Яркость) любого источника света равна 1, а параметр Decay (Затухание) выключен.
Поскольку в реальной жизни свет от источников подчиняется законам физики, то интенсивность распространения света зависит от расстояния до источника света. Если нужно смоделировать реалистичный источник света, то в настройках источника света необходимо установить функцию Decay (Затухание), которая определяется обратной зависимостью света от расстояния или квадрата расстояния. Второй вариант наиболее точно описывает распространение света.
При создании освещенности сцены применительно к источникам света часто используются следующие эффекты.
* Volume Light (Объемный свет) - свет, создаваемый источником, окрашивает пространство в цвет источника. В реальной жизни такой эффект можно наблюдать в темных запыленных или задымленных помещениях. Пучок света, пробиваясь в темноте, хорошо заметен.
* Lens Effects (Эффекты линзы) - напоминает эффект, который в реальной жизни получается на изображении при использовании специальных объективов с различными системами линз. Это могут быть блики различной формы, отсветы и т. д.
Чтобы использовать эффект, в свитке настроек Atmospheres & Effects (Атмосфера И эффекты) источника света нажмите кнопку Add (Добавить) и выберите требуемый эффект в окне Add Atmosphere or Effect (Добавить эффект или атмосферное явление).

СОВЕТ
Вы также можете добавить в сцену эффект, выполнив команду Rendering --> Environment (Визуализация --> Окружение) или нажав клавишу 8. В окне Environment and Effects (Окружение и эффекты) перейдите на вкладку Environment (Окружение) (чтобы добавить эффект Volume Light (Объемный свет)) или на вкладку Effects (Эффекты) (для добавления Lens Effects (Эффекты линзы)), после чего, нажав кнопку Add (Добавить), добавьте в сцену один из эффектов.

Для настройки эффекта используйте кнопку Setup (Настройка) в свитке настроек Atmospheres & Effects (Атмосфера и эффекты) источника света. При этом вы перейдете в окно Environment and Effects (Окружение и эффекты). Чтобы программа могла просчитывать эффект, в его настройках необходимо указать, к какому источнику света используется выбранный эффект. Нажмите кнопку Pick Light (Выбрать источник света), после чего щелкните мышью на источнике света в окне проекции.

Правила расстановки источников света в сцене
Существует множество приемов, с помощью которых можно осветить сцену таким образом, чтобы скрыть мелкие недостатки и подчеркнуть важные детали. Например, чтобы придать объем трехмерной модели, ее достаточно осветить сзади. При этом появится отчетливая граница, визуально отделяющая объект от фона. Другой пример: если требуется осветить половину объекта, то вторая его половина должна быть также подсвечена источником света с малой интенсивностью. Иначе затененный участок трехмерной модели будет неестественно скрыт в абсолютной темноте. Особенно это будет заметно, если объект расположен темной стороной к стене. В этом случае свет должен отразиться от стены и слабо подчеркнуть контур затененной стороны объекта (так происходит в реальности).
Наряду с такими приемами существуют и общие рекомендации, как не нужно освещать сцену. Например, источник света не должен располагаться намного ниже освещаемого объекта, поскольку это придаст модели неестественный вид. В действительности чаще всего мы видим объекты, освещенные люстрой пли солнцем, поэтому и в трехмерных сценах источник света должен располагаться сверху. Это придает сценам реалистичность.
Следует очень осторожно использовать источники света с большой интенсивностью. Освещение, созданное с их помощью, может вызвать сильные засветы и исказить текстуру объекта. По умолчанию параметр Multiplier (Яркость) всех источников света в 3ds Max 8 имеет значение 1. Старайтесь по возможности избегать значений, превышающих это число, а использовать параметр Decay (Затухание).

Реалистичные источники света, искусственные и естественные, излучают свет, интенсивность которого по мере удаления от этих источников уменьшается. Все стандартные источники света в 3ds Max 8 могут использовать различную степень затухания - Inverse (Обратная зависимость) или Inverse Square (Обратно-квадратичная зависимость). Ее можно выбрать из списка Туре (Тип) свитка настроек Intensity/ Color/Attenuation (Интенсивность/цвет/затухание) источника света. Больше всего соответствует реальности степень затухания Inverse Square (Обратно-квадратичная зависимость), однако ее не всегда удобно использовать из-за того, что возле источника могут возникать слишком сильно освещенные участки, а на удалении от него - совсем темные. Решением этой проблемы может служить повышение значения параметра Multiplier (Яркость) при одновременном увеличении расстояния между источником света и объектом.
Для освещения сцены удобно использовать один главный источник света и несколько вспомогательных. В качестве основного источника можно применить, например, один из имеющихся в арсенале 3ds Max 8 направленных источников света. Интенсивность вспомогательных источников света должна быть значительно меньше, чем основного. Кроме этого, вспомогательные источники не должны создавать тени от объектов в сцене. Большое количество теней может внести беспорядочность в сцену.

СОВЕТ
Работая над освещением, не забывайте, что в свойствах любого источника света можно указать, какие объекты он будет освещать, а какие нет. Для этого необходимо нажать кнопку Exclude (Исключить) в свитке настроек General Parameters (Общие параметры) и в открывшемся окне выполнить необходимые настройки. Такая возможность нужна для того, чтобы рационально использовать ресурсы программы и не перегружать и без того сложный процесс визуализации. Исключение объектов из области воздействия источников света можно считать своего рода оптимизацией сцены.

Таким образом, выбор положения источников света в сцене - достаточно сложная задача. Неудачное расположение источников света может создать слишком темные участки в сцене, а сами объекты могут быть плохо видны из-за недостаточной освещенности или, наоборот, слишком яркого света. Поскольку каждая трехмерная сцена обладает своими уникальными геометрическими характеристиками, расположение источников будет разным для различных сцен. По этой причине трудно разработать определенные правила, следуя которым можно было бы оптимально осветить сцену. Несмотря на это, есть несколько общих советов, которым необходимо следовать, чтобы не испортить трехмерную композицию неумело установленным освещением.
* Не стоит без реальной необходимости устанавливать значение яркости источников света больше или равным 1, так как из-за этого могут возникнуть засвеченные участки и нежелательные блики.
* Следует помнить, что объекты, на которые сзади падает несильный свет, в финальном изображении кажутся немного более объемными.
* При наличии в сцене нескольких источников света яркость в отдельно взятой точке равняется суммарной яркости всех источников в сцене.
* Наличие большого количества источников света в сцене может вызвать множество хаотичных теней, которые будут лишними в визуализированном изображении.
* Если вы желаете добиться фотографической реалистичности, то для визуализации сцены лучше использовать специальные подключаемые фотореалистичные визуализаторы, которые по точности просчета на порядок выше стандартного модуля визуализации (Default Scanline Renclerer).

Характеристики света и методы визуализации теней
Свет имеет три главные характеристики: яркость (Multiplier), цвет (Color) и отбрасываемые от освещенных им объектов тени (Shadows).
При расстановке источников света в сцене, обязательно обратите внимание на их цвет. Источники дневного света имеют голубой оттенок, для создания же источника искусственного света нужно придать ему желтоватый цвет. Также следует принимать во внимание, что цвет источника, имитирующего уличный свет, зависит от времени суток. Если сюжет сцепы подразумевает вечернее время, освещение может быть в красноватых оттенках летнего заката.
Различные визуализаторы предлагают свои алгоритмы формирования теней. Отбрасываемая от объекта тень может сказать о многом - как высоко он находится над землей, какова структура поверхности, па которую падает тень, каким источником освещен объект и т. д. Кроме этого, тень может подчеркнуть контраст между передним и задним планом, а также «выдать» объект, который не попал в поле зрения объектива виртуальной камеры. В зависимости от формы отбрасываемой объектом тени, сцена может выглядеть реалистично или не совсем правдоподобно.
Как мы уже говорили выше, настоящий луч света претерпевает большое количество отражений и преломлений, поэтому реальные тени всегда имеют размытые края. В трехмерной графике используется специальный термин, которым обозначают такие тени, - мягкие тени. Добиться мягких теней довольно сложно. Многие визуализаторы решают проблему мягких теней, добавляя в интерфейс 3ds Max 8 неточечный источник света, имеющий прямоугольную или другую форму. Такой источник излучает свет не из одной точки, а из каждой точки поверхности. При этом чем больше площадь источника света, тем более мягкими получаются тени при визуализации.
Существуют разные подходы к визуализации теней - использование карты теней (Shadow Map), трассировки (Raytraced) и глобального освещения (Global Illumination). Рассмотрим их по порядку.
Использование карты теней позволяет получить размытые тени с нечеткими краями. Главная настройка Shadow Map (Карта теней) - это размер карты теней (параметр Size (Размер) в свитке настроек Shadow Map Params (Параметры карты теней)). Если размер карты уменьшить, четкость полученных теней также снизится.
Метод трассировки позволяет получить идеальные по форме тени, которые, однако, выглядят неестественно из-за своего резкого контура. Трассировкой называют отслеживание путей прохождения отдельных световых лучей от источника света до объектива камеры с учетом их отражения от объектов сцены и преломления в прозрачных средах. Метод трассировки часто используется для визуализации сцен, в которых присутствуют зеркальные отражения.
Начиная с 3ds Max 5, для получения мягких теней используется метод Area Shadows (Распределение теней), в основе которого лежит немного видоизмененный метод трассировки. Area Shadows (Распределение теней) позволяет просчитать тени от объекта так, как будто в сцене присутствует не один источник света, а группа равномерно распределенных в некоторой области точечных источников света.
Несмотря на то, что метод трассировки лучей точно воспроизводит мелкие детали сформированных теней, его нельзя считать идеальным решением для визуализации из-за того, что полученные тени имеют резкие очертания.
Метод глобального освещения (Radiosity) позволяет добиться мягких теней в финальном изображении. Этот метод является альтернативой трассировке освещения. Если трассировка визуализирует только те участки сцены, на которые попадают лучи света, то глобальное освещение просчитывает рассеиваемость света и в неосвещенных или находящихся в тени участках сцены на основе анализа каждого пиксела изображения. При этом учитываются все отражения лучей света в сцене.


СОВЕТ
Глобальное освещение позволяет получить реалистичное изображение, однако процесс визуализации сильно нагружает рабочую станцию и к тому же требует много времени. Поэтому в некоторых случаях имеет смысл использовать систему освещения, имитирующую эффект рассеиваемого света. При этом источники света должны быть размещены таким образом, чтобы их положение совпадало с местами прямого попадания света. Такие источники не должны создавать теней и должны иметь небольшую яркость. При таком методе, безусловно, не получается настолько же реалистичное изображение, какое можно получить, используя настоящий метод глобального освещения. Однако в сценах, которые имеют простую геометрию, он вполне может пригодиться.

Существует несколько алгоритмом просчета глобального освещения, один из способов расчета отраженного света - фотонная трассировка (Photon Mapping). Этот метод подразумевает расчет глобального освещения, основанный на создании так называемой карты фотонов. Карта фотонов представляет собой информацию об освещенности сцены, собранную при помощи трассировки.
Преимущество метода фотонной трассировки заключается в том, что единожды сохраненные в виде карты фотонов результаты фотонной трассировки впоследствии могут использоваться для создания эффекта глобального освещения в сценах трехмерной анимации. Качество глобального освещения, просчитанное при помощи фотонной трассировки, зависит от количества фотонов, а также глубины трассировки. При помощи фотонной трассировки можно также просчитать эффект каустики.




Top