На что влияет размер кеша жесткого диска. Откровения про дисковый кэш. Кэш-память на жестком диске

Интернет все чаще используется в качестве средства коммуникации между компьютерами, поскольку он предлагает эффективную и недорогую связь. Однако Интернет является сетью общего пользования и для того чтобы обеспечивать безопасную коммуникацию через него необходим некий механизм, удовлетворяющий как минимум следующим задачам:

    конфиденциальность информации;

    целостность данных;

    доступность информации;

Этим требованиям удовлетворяет механизм, названный VPN (Virtual Private Network – виртуальная частная сеть) – обобщённое название технологий, позволяющих обеспечить одно или несколько сетевых соединений (логическую сеть) поверх другой сети (например, Интернет) с использованием средств криптографии (шифрования, аутентификации, инфраструктуры открытых ключей, средств для защиты от повторов и изменений передаваемых по логической сети сообщений).

Создание VPN не требует дополнительных инвестиций и позволяет отказаться от использования выделенных линий. В зависимости от применяемых протоколов и назначения, VPN может обеспечивать соединения трёх видов: хост-хост, хост-сеть и сеть-сеть .

Для наглядности представим следующий пример: предприятие имеет несколько территориально отдаленных филиалов и "мобильных" сотрудников, работающих дома или в разъезде. Необходимо объединить всех сотрудников предприятия в единую сеть. Самый простой способ – это поставить модемы в каждом филиале и организовывать связь по мере необходимости. Такое решение, однако, не всегда удобно и выгодно – порой нужна постоянная связь и большая пропускная способность. Для этого придется либо прокладывать выделенную линию между филиалами, либо арендовать их. И то и другое довольно дорого. И здесь в качестве альтернативы при построении единой защищенной сети можно применять VPN-подключения всех филиалов фирмы через Интернет и настройку VPN-средств на хостах сети.

Рис. 6.4. VPN-соединение типа сеть-сеть

Рис. 6.5. VPN-соединение типа хост-сеть

В этом случае решаются многие проблемы – филиалы могут располагаться где угодно по всему миру.

Опасность здесь заключается в том, что, во-первых, открытая сеть доступна для атак со стороны злоумышленников всего мира. Во-вторых, по Интернету все данные передаются в открытом виде, и злоумышленники, взломав сеть, будут обладать всей информацией, передаваемой по сети. И, в-третьих, данные могут быть не только перехвачены, но и заменены в процессе передачи через сеть. Злоумышленник может, например, нарушить целостность баз данных, действуя от имени клиентов одного из доверенных филиалов.

Чтобы этого не произошло, в решениях VPN используются такие средства, как шифрование данных для обеспечения целостности и конфиденциальности, аутентификация и авторизация для проверки прав пользователя и разрешения доступа к виртуальной частной сети.

VPN-соединение всегда состоит из канала типа точка-точка, также известного под названием туннель. Туннель создаётся в незащищённой сети, в качестве которой чаще всего выступает Интернет.

Туннелирование (tunneling) или инкапсуляция (encapsulation) – это способ передачи полезной информации через промежуточную сеть. Такой информацией могут быть кадры (или пакеты) другого протокола. При инкапсуляции кадр не передается в том виде, в котором он был сгенерирован хостом-отправителем, а снабжается дополнительным заголовком, содержащим информацию о маршруте, позволяющую инкапсулированным пакетам проходить через промежуточную сеть (Интернет). На конце туннеля кадры деинкапсулируются и передаются получателю. Как правило, туннель создается двумя пограничными устройствами, размещенными в точках входа в публичную сеть. Одним из явных достоинств туннелирования является то, что данная технология позволяет зашифровать исходный пакет целиком, включая заголовок, в котором могут находиться данные, содержащие информацию, которую злоумышленники используют для взлома сети (например, IP-адреса, количество подсетей и т.д.).

Хотя VPN-туннель устанавливается между двумя точками, каждый узел может устанавливать дополнительные туннели с другими узлами. Для примера, когда трём удалённым станциям необходимо связаться с одним и тем же офисом, будет создано три отдельных VPN-туннеля к этому офису. Для всех туннелей узел на стороне офиса может быть одним и тем же. Это возможно благодаря тому, что узел может шифровать и расшифровывать данные от имени всей сети, как это показано на рисунке:

Рис. 6.6. Создание VPN-туннелей для нескольких удаленных точек

Пользователь устанавливает соединение с VPN-шлюзом, после чего пользователю открывается доступ к внутренней сети.

Внутри частной сети самого шифрования не происходит. Причина в том, что эта часть сети считается безопасной и находящейся под непосредственным контролем в противоположность Интернету. Это справедливо и при соединении офисов с помощью VPN-шлюзов. Таким образом, гарантируется шифрование только той информации, которая передаётся по небезопасному каналу между офисами.

Существует множество различных решений для построения виртуальных частных сетей. Наиболее известные и широко используемые протоколы – это:

    PPTP (Point-to-Point Tunneling Protocol) – этот протокол стал достаточно популярен благодаря его включению в операционные системы фирмы Microsoft.

    L2TP (Layer-2 Tunneling Protocol) – сочетает в себе протокол L2F (Layer 2 Forwarding) и протокол PPTP. Как правило, используется в паре с IPSec.

    IPSec(Internet Protocol Security) – официальный Интернет-стандарт, разработан сообществом IETF (Internet Engineering Task Force).

Перечисленные протоколы поддерживаются устройствами D-Link.

Протокол PPTP, в первую очередь, предназначен для виртуальных частных сетей, основанных на коммутируемых соединениях. Протокол позволяет организовать удаленный доступ, благодаря чему пользователи могут устанавливать коммутируемые соединения с Интернет-провайдерами и создавать защищенный туннель к своим корпоративным сетям. В отличие от IPSec, протокол PPTP изначально не предназначался для организации туннелей между локальными сетями. PPTP расширяет возможности PPP – протокола, расположенного на канальном уровне, который первоначально был разработан для инкапсуляции данных и их доставки по соединениям типа точка-точка.

Протокол PPTP позволяет создавать защищенные каналы для обмена данными по различным протоколам – IP, IPX, NetBEUI и др. Данные этих протоколов упаковываются в кадры PPP, инкапсулируются с помощью протокола PPTP в пакеты протокола IP. Далее они переносятся с помощью IP в зашифрованном виде через любую сеть TCP/IP. Принимающий узел извлекает из пакетов IP кадры PPP, а затем обрабатывает их стандартным способом, т.е. извлекает из кадра PPP пакет IP, IPX или NetBEUI и отправляет его по локальной сети. Таким образом, протокол PPTP создает соединение точка-точка в сети и по созданному защищенному каналу передает данные. Основное преимущество таких инкапсулирующих протоколов, как PPTP – это их многопротокольность. Т.е. защита данных на канальном уровне является прозрачной для протоколов сетевого и прикладного уровней. Поэтому, внутри сети в качестве транспорта можно использовать как протокол IP (как в случае VPN, основанного на IPSec), так и любой другой протокол.

В настоящее время за счет легкости реализации протокол PPTP широко используется как для получения надежного защищенного доступа к корпоративной сети, так и для доступа к сетям Интернет-провайдеров, когда клиенту требуется установить PPTP-соединение с Интернет-провайдером для получения доступа в Интернет.

Метод шифрования, применяемый в PPTP, специфицируется на уровне PPP. Обычно в качестве клиента PPP выступает настольный компьютер с операционной системой Microsoft, а в качестве протокола шифрования используется протокол Microsoft Point-to-Point Encryption (MPPE). Данный протокол основывается на стандарте RSA RC4 и поддерживает 40- или 128-разрядное шифрование. Для многих приложений такого уровня шифрования использование данного алгоритма вполне достаточно, хотя он и считается менее надежным, нежели ряд других алгоритмов шифрования, предлагаемых IPSec, в частности, 168-разрядный Triple-Data Encryption Standard (3DES).

Как происходит установление соединения PPTP ?

PPTP инкапсулирует пакеты IP для передачи по IP-сети. Клиенты PPTP создают управляющее туннелем соединение, которое обеспечивает работоспособность канала. Этот процесс выполняется на транспортном уровне модели OSI. После создания туннеля компьютер-клиент и сервер начинают обмен служебными пакетами.

В дополнение к управляющему соединению PPTP создается соединение для пересылки данных по туннелю. Инкапсуляция данных перед отправкой в туннель включает два этапа. Сначала создается информационная часть PPP-кадра. Данные проходят сверху вниз, от прикладного уровня OSI до канального. Затем полученные данные отправляются вверх по модели OSI и инкапсулируются протоколами верхних уровней.

Данные с канального уровня достигают транспортного уровня. Однако информация не может быть отправлена по назначению, так как за это отвечает канальный уровень OSI. Поэтому PPTP шифрует поле полезной нагрузки пакета и берет на себя функции второго уровня, обычно принадлежащие PPP, т. е. добавляет к PPTP-пакету PPP-заголовок (header) и окончание (trailer). На этом создание кадра канального уровня заканчивается. Далее, PPTP инкапсулирует PPP-кадр в пакет Generic Routing Encapsulation (GRE), который принадлежит сетевому уровню. GRE инкапсулирует протоколы сетевого уровня, например IP, IPX, чтобы обеспечить возможность их передачи по IP-сетям. Однако применение только GRE-протокола не обеспечит установление сессии и безопасность данных. Для этого используется способность PPTP создавать соединение для управления туннелем. Применение GRE в качестве метода инкапсуляции ограничивает поле действия PPTP только сетями IP.

После того как кадр PPP был инкапсулирован в кадр с заголовком GRE, выполняется инкапсуляция в кадр с IP-заголовком. IP-заголовок содержит адреса отправителя и получателя пакета. В заключение PPTP добавляет PPP заголовок и окончание.

На рис. 6.7 показана структура данных для пересылки по туннелю PPTP:

Рис. 6.7. Структура данных для пересылки по туннелю PPTP

Для организации VPN на основе PPTP не требуется больших затрат и сложных настроек: достаточно установить в центральном офисе сервер PPTP (решения PPTP существуют как для Windows, так и для Linux платформ), а на клиентских компьютерах выполнить необходимые настройки. Если же нужно объединить несколько филиалов, то вместо настройки PPTP на всех клиентских станциях лучше воспользоваться Интернет-маршрутизатором или межсетевым экраном с поддержкой PPTP: настройки осуществляются только на пограничном маршрутизаторе (межсетевом экране), подключенном к Интернету, для пользователей все абсолютно прозрачно. Примером таких устройств могут служить многофункциональные Интернет-маршрутизаторы серии DIR/DSR и межсетевые экраны серии DFL.

GRE -туннели

Generic Routing Encapsulation (GRE) – протокол инкапсуляции сетевых пакетов, обеспечивающий туннелирование трафика через сети без шифрования. Примеры использования GRE:

    передача трафика (в том числе широковещательного) через оборудование, не поддерживающее определенный протокол;

    туннелирование IPv6-трафика через сеть IPv4;

    передача данных через публичные сети для реализации защищенного VPN-соединения.

Рис. 6.8. Пример работы GRE-туннеля

Между двумя маршрутизаторами A и B ( рис. 6.8 ) находится несколько маршрутизаторов, GRE-туннель позволяет обеспечить соединение между локальными сетями 192.168.1.0/24 и 192.168.3.0/24 так, как если бы маршрутизаторы A и B были подключены напрямую.

L 2 TP

Протокол L2TP появился в результате объединения протоколов PPTP и L2F. Главное достоинство протокола L2TP в том, что он позволяет создавать туннель не только в сетях IP, но и в сетях ATM, X.25 и Frame relay. L2TP применяет в качестве транспорта протокол UDP и использует одинаковый формат сообщений как для управления туннелем, так и для пересылки данных.

Как и в случае с PPTP, L2TP начинает сборку пакета для передачи в туннель с того, что к полю информационных данных PPP добавляется сначала заголовок PPP, затем заголовок L2TP. Полученный таким образом пакет инкапсулируется UDP. В зависимости от выбранного типа политики безопасности IPSec, L2TP может шифровать UDP-сообщения и добавлять к ним заголовок и окончание Encapsulating Security Payload (ESP), а также окончание IPSec Authentication (см. в разделе "L2TP over IPSec"). Затем производится инкапсуляция в IP. Добавляется IP-заголовок, содержащий адреса отправителя и получателя. В завершение L2TP выполняет вторую PPP-инкапсуляцию для подготовки данных к передаче. На рис. 6.9 показана структура данных для пересылки по туннелю L2TP.

Рис. 6.9. Структура данных для пересылки по туннелю L2TP

Компьютер-получатель принимает данные, обрабатывает заголовок и окончание PPP, убирает заголовок IP. При помощи IPSec Authentication проводится аутентификация информационного поля IP, а ESP-заголовок IPSec помогает расшифровать пакет.

Далее компьютер обрабатывает заголовок UDP и использует заголовок L2TP для идентификации туннеля. Пакет PPP теперь содержит только полезные данные, которые обрабатываются или пересылаются указанному получателю.

IPsec (сокращение от IP Security) – набор протоколов для обеспечения защиты данных, передаваемых по межсетевому протоколу IP, позволяет осуществлять подтверждение подлинности и/или шифрование IP-пакетов. IPsec также включает в себя протоколы для защищённого обмена ключами в сети Интернет.

Безопасность IPSec достигается за счёт дополнительных протоколов, добавляющих к IP-пакету собственные заголовки – инкапсуляции. Т.к. IPSec – стандарт Интернет, то для него существуют документы RFC:

    RFC 2401 (Security Architecture for the Internet Protocol) – архитектура защиты для протокола IP.

    RFC 2402 (IP Authentication header) – аутентификационный заголовок IP.

    RFC 2404 (The Use of HMAC-SHA-1-96 within ESP and AH) – использование алгоритма хэширования SHA-1 для создания аутентификационного заголовка.

    RFC 2405 (The ESP DES-CBC Cipher Algorithm With Explicit IV) – использование алгоритма шифрования DES.

    RFC 2406 (IP Encapsulating Security Payload (ESP)) – шифрование данных.

    RFC 2407 (The Internet IP Security Domain of Interpretation for ISAKMP) – область применения протокола управления ключами.

    RFC 2408 (Internet Security Association and Key Management Protocol (ISAKMP)) – управление ключами и аутентификаторами защищенных соединений.

    RFC 2409 (The Internet Key Exchange (IKE)) – обмен ключами.

    RFC 2410 (The NULL Encryption Algorithm and Its Use With IPsec) – нулевой алгоритм шифрования и его использование.

    RFC 2411 (IP Security Document Roadmap) – дальнейшее развитие стандарта.

    RFC 2412 (The OAKLEY Key Determination Protocol) – проверка аутентичности ключа.

IPsec является неотъемлемой частью Интернет-протокола IPv6 и необязательным расширением версии Интернет-протокола IPv4.

Механизм IPSec решает следующие задачи:

    аутентификацию пользователей или компьютеров при инициализации защищенного канала;

    шифрование и аутентификацию данных, передаваемых между конечными точками защищенного канала;

    автоматическое снабжение конечных точек канала секретными ключами, необходимыми для работы протоколов аутентификации и шифрования данных.

Компоненты IPSec

Протокол AH (Authentication Header) – протокол идентификации заголовка. Обеспечивает целостность путём проверки того, что ни один бит в защищаемой части пакета не был изменён во время передачи. Но использование AH может вызвать проблемы, например, при прохождении пакета через NAT устройство. NAT меняет IP-адрес пакета, чтобы разрешить доступ в Интернет с закрытого локального адреса. Т.к. пакет в таком случае изменится, то контрольная сумма AH станет неверной (для устранения этой проблемы разработан протокол NAT-Traversal (NAT-T), обеспечивающий передачу ESP через UDP и использующий в своей работе порт UDP 4500). Также стоит отметить, что AH разрабатывался только для обеспечения целостности. Он не гарантирует конфиденциальности путём шифрования содержимого пакета.

Протокол ESP (Encapsulation Security Payload) обеспечивает не только целостность и аутентификацию передаваемых данных, но еще и шифрование данных, а также защиту от ложного воспроизведения пакетов.

Протокол ESP – инкапсулирующий протокол безопасности, который обеспечивает и целостность, и конфиденциальность. В режиме транспорта ESP-заголовок находится между исходным IP-заголовком и заголовком TCP или UDP. В режиме туннеля ESP-заголовок размещается между новым IP-заголовком и полностью зашифрованным исходным IP-пакетом.

Т.к. оба протокола – AH и ESP – добавляют собственные заголовки IP, каждый из них имеет свой номер (ID) протокола, по которому можно определить, что последует за IP-заголовком. Каждый протокол, согласно IANA (Internet Assigned Numbers Authority – организация, ответственная за адресное пространство сети Интернет), имеет свой собственный номер (ID). Например, для TCP этот номер равен 6, а для UDP – 17. Поэтому, очень важно при работе через межсетевой экран настроить фильтры таким образом, чтобы пропускать пакеты с ID AH и/или ESP протокола.

Для того чтобы указать, что в заголовке IP присутствует AH, устанавливается ID протокола 51, а для ESP – номер 50.

ВНИМАНИЕ : ID протокола не то же самое, что номер порта.

Протокол IKE (Internet Key Exchange) – стандартный протокол IPsec, используемый для обеспечения безопасности взаимодействия в виртуальных частных сетях. Предназначение IKE – защищенное согласование и доставка идентифицированного материала для ассоциации безопасности (SA).

SA – это термин IPSec для обозначения соединения. Установленный SA (защищенный канал, называемый "безопасной ассоциацией" или "ассоциацией безопасности" – Security Association, SA) включает в себя разделяемый секретный ключ и набор криптографических алгоритмов.

Протокол IKE выполняет три основные задачи:

    обеспечивает средства аутентификации между двумя конечными точками VPN;

    устанавливает новые связи IPSec (создаёт пару SA);

    управляет существующими связями.

IKE использует UDP-порт с номером 500. При использовании функции NAT Traversal, как упоминалось ранее, протокол IKE использует UDP-порт с номером 4500.

Обмен данными в IKE происходит в 2 фазы. В первой фазе устанавливается ассоциация SA IKE. При этом выполняется аутентификация конечных точек канала и выбираются параметры защиты данных, такие как алгоритм шифрования, сессионный ключ и др.

Во второй фазе SA IKE используется для согласования протокола (обычно IPSec).

При настроенном VPN-туннеле для каждого используемого протокола создаётся одна пара SA. SA создаются парами, т.к. каждая SA – это однонаправленное соединение, а данные необходимо передавать в двух направлениях. Полученные пары SA хранятся на каждом узле.

Так как каждый узел способен устанавливать несколько туннелей с другими узлами, каждый SA имеет уникальный номер, позволяющий определить, к какому узлу он относится. Этот номер называется SPI (Security Parameter Index) или индекс параметра безопасности.

SA храняться в базе данных (БД) SAD (Security Association Database).

Каждый узел IPSec также имеет вторую БД – SPD (Security Policy Database) – БД политики безопасности. Она содержит настроенную политику узла. Большинство VPN-решений разрешают создание нескольких политик с комбинациями подходящих алгоритмов для каждого узла, с которым нужно установить соединение.

Гибкость IPSec состоит в том, что для каждой задачи предлагается несколько способов ее решения, и методы, выбранные для одной задачи, обычно не зависят от методов реализации других задач. Вместе с тем, рабочая группа IETF определила базовый набор поддерживаемых функций и алгоритмов, который должен быть однотипно реализован во всех продуктах, поддерживающих IPSec. Механизмы AH и ESP могут использоваться с различными схемами аутентификации и шифрования, некоторые из которых являются обязательными. Например, в IPSec определяется, что пакеты аутентифицируются либо с помощью односторонней функции MD5, либо с помощью односторонней функции SHA-1, а шифрование осуществляется с использованием алгоритма DES. Производители продуктов, в которых работает IPSec, могут добавлять другие алгоритмы аутентификации и шифрования. Например, некоторые продукты поддерживают такие алгоритмы шифрования, как 3DES, Blowfish, Cast, RC5 и др.

Для шифрования данных в IPSec может быть применен любой симметричный алгоритм шифрования, использующий секретные ключи.

Протоколы защиты передаваемого потока (AH и ESP) могут работать в двух режимах – в транспортном режиме и в режиме туннелирования . При работе в транспортном режиме IPsec работает только с информацией транспортного уровня, т.е. шифруется только поле данных пакета, содержащего протоколы TCP / UDP (заголовок IP-пакета не изменяется (не шифруется)). Транспортный режим, как правило, используется для установления соединения между хостами.

В режиме туннелирования шифруется весь IP-пакет, включая заголовок сетевого уровня. Для того чтобы его можно было передать по сети, он помещается в другой IP-пакет. По существу, это защищённый IP-туннель. Туннельный режим может использоваться для подключения удалённых компьютеров к виртуальной частной сети (схема подключения "хост-сеть") или для организации безопасной передачи данных через открытые каналы связи (например, Интернет) между шлюзами для объединения разных частей виртуальной частной сети (схема подключения "сеть-сеть").

Режимы IPsec не являются взаимоисключающими. На одном и том же узле некоторые SA могут использовать транспортный режим, а другие – туннельный.

На фазе аутентификации вычисляется контрольная сумма ICV (Integrity Check Value) пакета. При этом предполагается, что оба узла знают секретный ключ, который позволяет получателю вычислить ICV и сравнить с результатом, присланным отправителем. Если сравнение ICV прошло успешно, считается, что отправитель пакета аутентифицирован.

В режиме транспорта AH

    весь IP-пакет, за исключением некоторых полей в заголовке IP, которые могут быть изменены при передаче. Эти поля, значения которых для расчета ICV равняются 0, могут быть частью службы (Type of Service, TOS), флагами, смещением фрагмента, временем жизни (TTL), а также заголовком контрольной суммы;

    все поля в AH;

    полезные данные пакетов IP.

AH в режиме транспорта защищает IP-заголовок (за исключением полей, для которых разрешены изменения) и полезные данные в исходном IP-пакете (рисунок 3.39).

В туннельном режиме исходный пакет помещается в новый IP-пакет, и передача данных выполняется на основании заголовка нового IP-пакета.

Для туннельного режима AH при выполнении расчета в контрольную сумму ICV включаются следующие компоненты:

    все поля внешнего заголовка IP, за исключением некоторых полей в заголовке IP, которые могут быть изменены при передаче. Эти поля, значения которых для расчета ICV равняются 0, могут быть частью службы (Type of Service, TOS), флагами, смещением фрагмента, временем жизни (TTL), а также заголовком контрольной суммы;

    все поля AH;

    исходный IP-пакет.

Как видно на следующей иллюстрации, режим туннелирования AH защищает весь исходный IP-пакет за счет дополнительного внешнего заголовка, который в режиме транспорта AH не используется:

Рис. 6.10. Туннельный и транспортный режимы работы протокола АН

В режиме транспорта ESP аутентифицирует не весь пакет, а обеспечивает защиту только полезных данных IP. Заголовок ESP в режиме транспорта ESP добавляется в IP-пакет сразу после заголовка IP, а окончание ESP (ESP Trailer), соответственно, добавляется после данных.

Режим транспорта ESP шифрует следующие части пакета:

    полезные данные IP;

Алгоритм шифрования, который использует режим шифрования цепочки блоков (Cipher Block Chaining, CBC) имеет незашифрованное поле между заголовком ESP и полезной нагрузкой. Это поле называется вектором инициализации IV (Initialization Vector) для расчета CBC, которое выполняется на получателе. Так как это поле используется для начала процесса расшифровки, оно не может быть зашифрованным. Несмотря на то, что у злоумышленника есть возможность просмотра IV, он никак не сможет расшифровать зашифрованную часть пакета без ключа шифрования. Для предотвращения злоумышленниками изменения вектора инициализации, он охраняется контрольной суммой ICV. В этом случае ICV выполняет следующие расчеты:

    все поля в заголовке ESP;

    полезные данные, включая открытый текст IV;

    все поля в ESP Trailer, за исключением поля данных проверки подлинности.

Туннельный режим ESP инкапсулирует весь исходный IP-пакет в заголовок нового IP, заголовок ESP и ESP Trailer. Для того чтобы указать, что в заголовке IP присутствует ESP, устанавливается идентификатор протокола IP 50, причем исходный заголовок IP и полезные данные остаются без изменений. Как и в случае с туннельным режимом AH, внешний IP-заголовок базируется на конфигурации туннеля IPSec. В случае использования туннельного режима ESP область аутентификации IP-пакета показывает, где была поставлена подпись, удостоверяющая его целостность и подлинность, а зашифрованная часть показывает, что информация является защищенной и конфиденциальной. Исходный заголовок помещается после заголовка ESP. После того, как зашифрованная часть инкапсулируется в новый туннельный заголовок, который не зашифровывается, осуществляется передача IP-пакета. При отправке через общедоступную сеть такой пакет маршрутизируется на IP-адрес шлюза принимающей сети, а уже шлюз расшифровывает пакет и отбрасывает заголовок ESP с использованием исходного заголовка IP для последующей маршрутизации пакета на компьютер, находящийся во внутренней сети. Режим туннелирования ESP шифрует следующие части пакета:

    исходный IP-пакет;

  • Для туннельного режима ESP расчет ICV производится следующим образом:

    все поля в заголовке ESP;

    исходный IP-пакет, включая открытый текст IV;

    все поля заголовка ESP, за исключением поля данных проверки подлинности.

Рис. 6.11. Туннельный и транспортный режим протокола ESP

Рис. 6.12. Сравнение протоколов ESP и AH

Резюме по применению режимов IPSec :

    Протокол – ESP (AH).

    Режим – туннельный (транспортный).

    Способ обмена ключами – IKE (ручной).

    Режим IKE – main (aggressive).

    Ключ DH – group 5 (group 2, group 1) – номер группы для выбора динамически создаваемых ключей сеанса, длина группы.

    Аутентификация – SHA1 (SHA, MD5).

    Шифрование – DES (3DES, Blowfish, AES).

При создании политики, как правило, возможно создание упорядоченного списка алгоритмов и Diffie-Hellman групп. Diffie-Hellman (DH) – протокол шифрования, используемый для установления общих секретных ключей для IKE, IPSec и PFS (Perfect Forward Secrecy – совершенная прямая секретность). В таком случае будет использована первая позиция, совпавшая на обоих узлах. Очень важно, чтобы всё в политике безопасности позволяло добиться этого совпадения. Если за исключением одной части политики всё остальное совпадает, узлы всё равно не смогут установить VPN-соединение. При настройке VPN-туннеля между различными системами нужно выяснить, какие алгоритмы поддерживаются каждой стороной, чтобы была возможность выбора наиболее безопасной политики из всех возможных.

Основные настройки, которые включает в себя политика безопасности:

    Симметричные алгоритмы для шифрования/дешифрования данных.

    Криптографические контрольные суммы для проверки целостности данных.

    Способ идентификации узла. Самые распространенные способы – это предустановленные ключи (pre-shared secrets) или СА-сертификаты.

    Использовать ли режим туннеля или режим транспорта.

    Какую использовать группу Diffie-Hellman (DH group 1 (768-bit); DH group 2 (1024-bit); DH group 5 (1536-bit)).

    Использовать ли AH, ESP, или оба вместе.

    Использовать ли PFS.

Ограничением IPSec является то, что он поддерживает только передачу данных на уровне протокола IP.

Существуют две основные схемы применения IPSec, отличающиеся ролью узлов, образующих защищенный канал.

В первой схеме защищенный канал образуется между конечными хостами сети. В этой схеме протокол IPSec защищает тот узел, на котором выполняется:

Рис. 6.13. Создание защищенного канала между двумя конечными точками

Во второй схеме защищенный канал устанавливается между двумя шлюзами безопасности. Эти шлюзы принимают данные от конечных хостов, подключенных к сетям, расположенным за шлюзами. Конечные хосты в этом случае не поддерживают протокол IPSec, трафик, направляемый в публичную сеть, проходит через шлюз безопасности, который выполняет защиту от своего имени.

Рис. 6.14. Создание защищенного канала между двумя шлюзами

Для хостов, поддерживающих IPSec, возможно использование как транспортного, так и туннельного режимов. Для шлюзов разрешается использование только туннельного режима.

Установка и поддержка VPN

Как упоминалось выше, установка и поддержка VPN-туннеля выполняется в два этапа. На первом этапе (фазе) два узла договариваются о методе идентификации, алгоритме шифрования, хэш-алгоритме и группе Diffie-Hellman. Они также идентифицируют друг друга. Всё это может пройти в результате обмена тремя нешифрованными сообщениями (т.н. агрессивный режим, Aggressive mode ) или шестью сообщениями, с обменом зашифрованной информацией об идентификации (стандартный режим, Main mode ).

В режиме Main Mode обеспечивается возможность согласований всех параметров конфигурации устройств отправителя и получателя, в то время как в режиме Aggressive Mode такой возможности нет, и некоторые параметры (группа Diffie-Hellman, алгоритмы шифрования и аутентификации, PFS) должны быть заранее одинаково настроены на каждом устройстве. Однако, в данном режиме меньше и число обменов, и число пересылаемых при этом пакетов, в результате чего требуется меньше времени для установки сеанса IPSec.

Рис. 6.15. Обмен сообщениями в стандартном (а) и агрессивном (б) режимах

Предполагая, что операция завершилась успешно, создаётся SA первой фазы – Phase 1 SA (также называемый IKE SA ) и процесс переходит ко второй фазе.

На втором этапе генерируются данные ключей, узлы договариваются об используемой политике. Этот режим, также называемый быстрым режимом (Quick mode), отличается от первой фазы тем, что может установиться только после первого этапа, когда все пакеты второй фазы шифруются. Правильное завершение второй фазы приводит к появлению Phase 2 SA или IPSec SA и на этом установка туннеля считается завершённой.

Сначала на узел прибывает пакет с адресом назначения в другой сети, и узел инициирует первую фазу с тем узлом, который отвечает за другую сеть. Допустим, туннель между узлами был успешно установлен и ожидает пакеты. Однако узлам необходимо переидентифицировать друг друга и сравнить политику по прошествие определённого периода времени. Этот период называется время жизни Phase One или IKE SA lifetime.

Узлы также должны сменить ключ для шифрования данных через отрезок времени, который называется временем жизни Phase Two или IPSec SA lifetime.

Phase Two lifetime короче, чем у первой фазы, т.к. ключ необходимо менять чаще. Нужно задать одинаковые параметры времени жизни для обоих узлов. Если не выполнить этого, то возможен вариант, когда изначально туннель будет установлен успешно, но по истечении первого несогласованного промежутка времени жизни связь прервётся. Проблемы могут возникнуть и в том случае, когда время жизни первой фазы меньше аналогичного параметра второй фазы. Если настроенный ранее туннель прекращает работу, то первое, что нуждается в проверке – это время жизни на обоих узлах.

Еще следует отметить, что при смене политики на одном из узлов изменения вступят в силу только при следующем наступлении первой фазы. Чтобы изменения вступили в силу немедленно, надо убрать SA для этого туннеля из базы данных SAD. Это вызовет пересмотр соглашения между узлами с новыми настройками политики безопасности.

Иногда при настройке IPSec-туннеля между оборудованием разных производителей возникают затруднения, связанные с согласованием параметров при установлении первой фазы. Следует обратить внимание на такой параметр, как Local ID – это уникальный идентификатор конечной точки туннеля (отправителя и получателя). Особенно это важно при создании нескольких туннелей и использовании протокола NAT Traversal.

Dead Peer Detection

В процессе работы VPN, при отсутствии трафика между конечными точками туннеля, или при изменении исходных данных удалённого узла (например, смена динамически назначенного IP-адреса), может возникнуть ситуация, когда туннель по сути таковым уже не является, становясь как бы туннелем-призраком. Для того чтобы поддерживать постоянную готовность к обмену данными в созданном IPSec-туннеле, механизм IKE (описанный в RFC 3706) позволяет контролировать наличие трафика от удалённого узла туннеля, и в случае его отсутствия на протяжении установленного времени, посылается hello- сообщение (в межсетевых экранах D-Link посылается сообщение "DPD-R-U-THERE"). При отсутствии ответа на это сообщение в течение определённого времени, в межсетевых экранах D-Link заданного настройками "DPD Expire Time", туннель демонтируется. Межсетевые экраны D-Link после этого, используя настройки "DPD Keep Time" ( рис. 6.18 ), автоматически пытаются восстановить туннель.

Протокол NAT Traversal

IPsec-трафик может маршрутизироваться по тем же правилам, что и остальные IP-протоколы, но так как маршрутизатор не всегда может извлечь информацию, характерную для протоколов транспортного уровня, то прохождение IPsec через NAT-шлюзы невозможно. Как упоминалось ранее, для решения этой проблемы IETF определила способ инкапсуляции ESP в UDP, получивший название NAT-T (NAT Traversal).

Протокол NAT Traversal инкапсулирует трафик IPSec и одновременно создает пакеты UDP, которые NAT корректно пересылает. Для этого NAT-T помещает дополнительный заголовок UDP перед пакетом IPSec, чтобы он во всей сети обрабатывался как обычный пакет UDP и хост получателя не проводил никаких проверок целостности. После поступления пакета по месту назначения заголовок UDP удаляется, и пакет данных продолжает свой дальнейший путь как инкапсулированный пакет IPSec. Таким образом, с помощью механизма NAT-T возможно установление связи между клиентами IPSec в защищённых сетях и общедоступными хостами IPSec через межсетевые экраны.

При настройке межсетевых экранов D-Link в устройстве-получателе нужно отметить два пункта:

    в полях Remote Network и Remote Endpoint указать сеть и IP-адрес удаленного устройства-отправителя. Необходимо разрешить преобразование IP-адреса инициатора (отправителя) с помощью технологии NAT (рисунок 3.48).

    при использовании общих ключей с несколькими туннелями, подключенными к одному удаленному межсетевому экрану, которые были преобразованы с помощью NAT в один и тот же адрес, важно убедиться в том, что Local ID является уникальным для каждого туннеля.

Local ID может быть одним из:

    Auto – в качестве локального идентификатора используется IP-адрес интерфейса исходящего трафика.

    IP – IP-адрес WAN-порта удаленного межсетевого экрана

    DNS – DNS-адрес

    Резервное копирование шифрованных файлов

    Важный аспект разработки любого механизма шифрования файлов заключается в том, что приложения не могут получить доступ к расшифрованным данным иначе, чем через механизмы шифрования. Это ограничение особенно важно для утилит резервного копирования, с помощью которых файлы сохраняются на архивных носителях. EFS решает эту проблему, предоставляя утилитам резервного копирования механизм, с помощью которого они могут создавать резервные копии файлов и восстанавливать их в шифрованном виде. Таким образом, утилитам резервного копирования не обязательно зашифровывать или расшифровывать данные файлов в процессе резервного копирования.

    EFS применяется, когда необходимо зашифровать содержимое файлов при хранении. Для обеспечения безопасной передачи файлов и других данных по сети используются другие механизмы. Один из них ¾ виртуальные частные сети.

    VPN (англ. Virtual Private Network - виртуальная частная сеть) - логическая сеть, создаваемая поверх другой сети, например Интернет. Несмотря на то, что коммуникации осуществляются по публичным сетям с использованием небезопасных протоколов, за счёт шифрования создаются закрытые от посторонних каналы обмена информацией. VPN позволяет объединить, например, несколько офисов организации в единую сеть с использованием для связи между ними неподконтрольных каналов.

    В Microsoft Windows термином «VPN» обозначают одну из реализаций виртуальной сети - PPTP, причём используемую зачастую не для создания частных сетей. Чаще всего для создания виртуальной сети используется инкапсуляция протокола PPP в какой-нибудь другой протокол - IP или Ethernet (PPPoE). Технология VPN в последнее время используется не только для создания собственно частных сетей, но и некоторыми провайдерами «последней мили» для предоставления выхода в Интернет.

    VPN состоит из двух частей: «внутренняя» (подконтрольная) сеть, которых может быть несколько, и «внешняя» сеть, по которой проходит инкапсулированное соединение (обычно используется Интернет). Возможно также подключение к виртуальной сети отдельного компьютера. Подключение удалённого пользователя к VPN производится посредством сервера доступа, который подключён как к внутренней, так и к внешней (общедоступной) сети. При подключении удалённого пользователя (либо при установке соединения с другой защищённой сетью) сервер доступа требует прохождения процесса идентификации, а затем процесса аутентификации. После успешного прохождения обоих процессов, удалённый пользователь (удаленная сеть) наделяется полномочиями для работы в сети, то есть происходит процесс авторизации.



    Классификация VPN

    Классифицировать VPN решения можно по нескольким основным параметрам:

    1. По типу используемой среды

    · Защищённые

    Наиболее распространённый вариант виртуальных частных сетей. C его помощью возможно создать надежную и защищенную подсеть на основе ненадёжной сети, как правило, Интернета. Примером защищённых VPN являются: IPSec, OpenVPN и PPTP.

    · Доверительные

    Используются в случаях, когда передающую среду можно считать надёжной и необходимо решить лишь задачу создания виртуальной подсети в рамках большей сети. Вопросы обеспечения безопасности становятся неактуальными. Примерами подобных VPN решении являются: Multi-protocol label switching (MPLS) и L2TP (Layer 2 Tunnelling Protocol). (Корректнее сказать, что эти протоколы перекладывают задачу обеспечения безопасности на другие, например L2TP, как правило, используется в паре с IPSec).

    2. По способу реализации

    · В виде специального программно-аппаратного обеспечения

    Реализация VPN сети осуществляется при помощи специального комплекса программно-аппаратных средств. Такая реализация обеспечивает высокую производительность и, как правило, высокую степень защищённости.

    · В виде программного решения

    Используют персональный компьютер со специальным программным обеспечением, обеспечивающим функциональность VPN.

    · Интегрированное решение

    Функциональность VPN обеспечивает комплекс, решающий также задачи фильтрации сетевого трафика, организации сетевого экрана и обеспечения качества обслуживания.

    3. По назначению

    Используют для объединения в единую защищённую сеть нескольких распределённых филиалов одной организации, обменивающихся данными по открытым каналам связи.

    · Remote Access VPN

    Используют для создания защищённого канала между сегментом корпоративной сети (центральным офисом или филиалом) и одиночным пользователем, который, работая дома, подключается к корпоративным ресурсам с домашнего компьютера или, находясь в командировке, подключается к корпоративным ресурсам при помощи ноутбука.

    Используют для сетей, к которым подключаются «внешние» пользователи. Уровень доверия к ним намного ниже, чем к сотрудникам компании, поэтому требуется обеспечение специальных «рубежей» защиты, ограничивающих доступ последних к особо ценной, конфиденциальной информации.

    4. По типу протокола

    Существуют реализации виртуальных частных сетей под TCP/IP, IPX и AppleTalk. Но на сегодняшний день наблюдается тенденция к всеобщему переходу на протокол TCP/IP, и абсолютное большинство VPN решений поддерживает именно его.

    5. По уровню сетевого протокола

    По уровню сетевого протокола на основе сопоставления с уровнями эталонной сетевой модели ISO/OSI.

    Контрольные вопросы

    1. Какие действия выполняются при первом шифровании файла EFS?

    2. Как в EFS решается проблема резервного копирования шифрованных файлов?

    3. Какие алгоритмы шифрования используются в EFS?

    4. Для чего используется VPN?

    5. Как классифицируются VPN по назначению?


    Лекция 8.

    МЕХАНИЗМЫ КОНТРОЛЯ ЦЕЛОСТНОСТИ
    В ОС СЕМЕЙСТВА WINDOWS

    Механизмы контроля целостности появились в последней версии MS Windows ¾ Vista.

    В последнее время в мире телекоммуникаций наблюдается повышенный интерес к так называемым Виртуальным Частным Сетям (Virtual Private Network - VPN). Это обусловлено необходимостью снижения расходов на содержание корпоративных сетей за счет более дешевого подключения удаленных офисов и удаленных пользователей через сеть Internet .
    В этой статье мы попробуем разобраться, что же такое VPN, какие существуют плюсы и минусы данной технологии и какие варианты реализации VPN существуют.

    Действительно, при сравнении стоимости услуг по соединению нескольких сетей через Internet, например, с сетями Frame Relay можно заметить существенную разницу в стоимости. Однако, необходимо отметить, что при объединении сетей через Internet, сразу же возникает вопрос о безопасности передачи данных, поэтому возникла необходимость создания механизмов позволяющих обеспечить конфиденциальность и целостность передаваемой информации. Сети, построенные на базе таких механизмов, и получили название VPN.

    В этой статье мы попробуем разобраться, что же такое VPN, какие существуют плюсы и минусы данной технологии и какие варианты реализации VPN существуют.

    Что такое VPN

    Что же такое VPN? Существует множество определений, однако главной отличительной чертой данной технологии является использование сети Internet в качестве магистрали для передачи корпоративного IP-трафика. Сети VPN предназначены для решения задач подключения конечного пользователя к удаленной сети и соединения нескольких локальных сетей. Структура VPN включает в себя каналы глобальной сети, защищенные протоколы и маршрутизаторы.

    Как работает Виртуальная Частная Сеть?

    Для объединения удаленных локальных сетей в виртуальную сеть корпорации используются так называемые виртуальные выделенные каналы. Для создания подобных соединений используется механизм туннелирования. Инициатор туннеля инкапсулирует пакеты локальной сети (в том числе, пакеты немаршрутизируемых протоколов) в новые IP-пакеты, содержащие в своем заголовке адрес этого инициатора туннеля и адрес терминатора туннеля. На противоположном конце терминатором туннеля производится обратный процесс извлечения исходного пакета.

    Как уже отмечалось выше, при осуществлении подобной передачи требуется учитывать вопросы конфиденциальности и целостности данных, которые невозможно обеспечить простым туннелированием. Для достижения конфиденциальности передаваемой корпоративной информации необходимо использовать некоторый алгоритм шифрования, причем одинаковый на обоих концах туннеля.

    Для того чтобы была возможность создания VPN на базе оборудования и программного обеспечения от различных производителей необходим некоторый стандартный механизм. Таким механизмом построения VPN является протокол Internet Protocol Security (IPSec). IPSec описывает все стандартные методы VPN. Этот протокол определяет методы идентификации при инициализации туннеля, методы шифрования, используемые конечными точками туннеля и механизмы обмена и управления ключами шифрования между этими точками. Из недостатков этого протокола можно отметить то, что он ориентирован на IP.

    Другими протоколами построения VPN являются протоколы PPTP (Point-to-Point Tunneling Protocol), разработанный компаниями Ascend Communications и 3Com, L2F (Layer-2 Forwarding) - компании Cisco Systems и L2TP (Layer-2 Tunneling Protocol), объединивший оба вышеназванных протокола. Однако эти протоколы, в отличие от IPSec, не являются полнофункциональными (например, PPTP не определяет метод шифрования), поэтому мы, в основном, будем ориентироваться на IPSec.

    Говоря об IPSec, нельзя забывать о протоколе IKE (Internet Key Exchange), позволяющем обеспечить передачу информации по туннелю, исключая вмешательство извне. Этот протокол решает задачи безопасного управления и обмена криптографическими ключами между удаленными устройствами, в то время, как IPSec кодирует и подписывает пакеты. IKE автоматизирует процесс передачи ключей, используя механизм шифрования открытым ключом, для установления безопасного соединения. Помимо этого, IKE позволяет производить изменение ключа для уже установленного соединения, что значительно повышает конфиденциальность передаваемой информации.

    Как построить VPN

    Существуют различные варианты построения VPN. При выборе решения требуется учитывать факторы производительности средств построения VPN. Например, если маршрутизатор и так работает на пределе мощности своего процессора, то добавление туннелей VPN и применение шифрования/дешифрования информации могут остановить работу всей сети из-за того, что этот маршрутизатор не будет справляться с простым трафиком, не говоря уже о VPN.

    Опыт показывает, что для построения VPN лучше всего использовать специализированное оборудование,
    однако если имеется ограничение в средствах, то можно обратить внимание на чисто программное решение.

    Рассмотрим некоторые варианты построения VPN.

    1.VPN на базе брандмауэров

    Брандмауэры большинства производителей поддерживают туннелирование и шифрование данных. Все подобные продукты основаны на том, что если уж трафик проходит через брандмауэр, то почему бы его заодно не зашифровать. К программному обеспечению собственно брандмауэра добавляется модуль шифрования. Недостатком данного метода можно назвать зависимость производительности от аппаратного обеспечения, на котором работает брандмауэр. При использовании брандмауэров на базе ПК надо помнить, что подобное решение можно применять только для небольших сетей с небольшим объемом передаваемой информации.

    Рис.2. VPN на базе брандмауэра .

    В качестве примера решения на базе брандмауэров можно назвать FireWall-1 компании Check Point Software Technologies. FairWall-1 использует для построения VPN стандартный подход на базе IPSec. Трафик, приходящий в брандмауэр, дешифруется, после чего к нему применяются стандартные правила управления доступом. FireWall-1 работает под управлением операционных систем Solaris и Windows NT 4.0.

    2. VPN на базе маршрутизаторов

    Другим способом построения VPN является применение для создания защищенных каналов маршрутизаторов. Так как вся информация, исходящая из локальной сети, проходит через маршрутизатор, то целесообразно возложить на этот маршрутизатор и задачи шифрования.

    Ярким примером оборудования для построения VPN на маршрутизаторах является оборудование компании Cisco Systems. Начиная с версии программного обеспечения IOS 11.3(3)T маршрутизаторы Cisco поддерживают протоколы L2TP и IPSec. Помимо простого шифрования проходящей информации Cisco поддерживает и другие функции VPN, такие как идентификация при установлении туннельного соединения и обмен ключами.

    Рис.3. VPN на базе маршрутизаторов .

    Для построения VPN Cisco использует туннелирование с шифрованием любого IP-потока. При этом туннель может быть установлен, основываясь на адресах источника и приемника, номера порта TCP(UDP) и указанного качества сервиса (QoS).

    Для повышения производительности маршрутизатора может быть использован дополнительный модуль шифрования ESA (Encryption Service Adapter).

    Кроме того, компания Cisco System выпустила специализированное устройство для VPN, которое так и называется Cisco 1720 VPN Access Router (Маршрутизатор Доступа к VPN), предназначенное для установки в компаниях малого и среднего размера, а также в в отделениях крупных организаций.

    3. VPN на базе программного обеспечения

    Следующим подходом к построению VPN являются чисто программные решения. При реализации такого решения используется специализированное программное обеспечение, которое работает на выделенном компьютере и в большинстве случаев выполняет роль proxy-сервера. Компьютер с таким программным обеспечением может быть расположен за брандмауэром.

    Рис.4. VPN на базе программного обеспечения .

    В качестве примера такого решения можно выступает программное обеспечение AltaVista Tunnel 97 компании Digital. При использовании данного ПО клиент подключается к серверу Tunnel 97, аутентифицируется на нем и обменивается ключами. Шифрация производится на базе 56 или 128 битных ключей Rivest-Cipher 4, полученных в процессе установления соединения. Далее, зашифрованные пакеты инкапсулируются в другие IP-пакеты, которые в свою очередь отправляются на сервер. В ходе работы Tunnel 97 осуществляет проверку целостности данных по алгоритму MD5. Кроме того, данное ПО каждые 30 минут генерирует новые ключи, что значительно повышает защищенность соединения.

    Положительными качествами AltaVista Tunnel 97 являются простота установки и удобство управления. Минусами данной системы можно считать нестандартную архитектуру (собственный алгоритм обмена ключами) и низкую производительность.

    4. VPN на базе сетевой ОС

    Решения на базе сетевой ОС мы рассмотрим на примере системы Windows NT компании Microsoft. Для создания VPN Microsoft использует протокол PPTP, который интегрирован в систему Windows NT. Данное решение очень привлекательно для организаций использующих Windows в качестве корпоративной операционной системы. Необходимо отметить, что стоимость такого решения значительно ниже стоимости прочих решений. В работе VPN на базе Windows NT используется база пользователей NT, хранящаяся на Primary Domain Controller (PDC). При подключении к PPTP-серверу пользователь аутентифицируется по протоколам PAP, CHAP или MS-CHAP. Передаваемые пакеты инкапсулируются в пакеты GRE/PPTP. Для шифрования пакетов используется нестандартный протокол от Microsoft Point-to-Point Encryption c 40 или 128 битным ключом, получаемым в момент установки соединения. Недостатками данной системы являются отсутствие проверки целостности данных и невозможность смены ключей во время соединения. Положительными моментами являются легкость интеграции с Windows и низкая стоимость.

    5. VPN на базе аппаратных средств

    Вариант построения VPN на специальных устройствах может быть использован в сетях, требующих высокой производительности. Примером такого решения служит продукт cIPro-VPN компании Radguard

    Рис. 5 . VPN на базе аппаратных средств

    Данный продукт использует аппаратное шифрование передаваемой информации, способное пропускать поток в 100 Мбит/с. cIPro-VPN поддерживает протокол IPSec и механизм управления ключами ISAKMP/Oakley. Помимо прочего, данное устройство поддерживает средства трансляции сетевых адресов и может быть дополнено специальной платой, добавляющей функции брандмауэра

    Проблемы в VPN

      Основной проблемой сетей VPN является отсутствие устоявшихся стандартов аутентификации и обмена шифрованной информацией.
      Эти стандарты все еще находятся в процессе разработки и потому продукты различных производителей не могут устанавливать VPN-соединения и автоматически обмениваться ключами. Данная проблема влечет за собой замедление распространения VPN, так как трудно заставить различные компании пользоваться продукцией одного производителя, а потому затруднен процесс объединения сетей компаний-партнеров в, так называемые, extranet-сети.

      Как можно заметить из вышесказанного , продукты построения VPN могут оказаться узким местом в сети.
      Это происходит из-за того, что для поддержки множества соединений и шифрования информации, передаваемой по этим соединениям, требуется высокая производительность используемого оборудования (и/или программного обеспечения). Это является еще одним проблемным моментом в построении VPN.

      Еще одним уязвимым местом VPN можно считать отсутствие единых, надежных способов управления такими сетями, что может стать кошмаром для сетевых администраторов.

      И, наконец, отсутствие (или слабое развитие) механизмов обеспечения качества сервиса в сети Internet является проблемой построения сетей VPN,
      требующих для некоторых приложений гарантированной доставки информации за ограниченное время.

    Что ждать в будущем

    Чего же можно ожидать в плане развития технологий VPN в будущем? Без всякого сомнения, будет выработан и утвержден единый стандарт построения подобных сетей. Скорее всего, основой этого стандарта будет, уже зарекомендовавший себя протокол IPSec. Далее, производители сконцентрируются на повышении производительности своих продуктов и на создании удобных средств управления VPN.

    Скорее всего, развитие средств построения VPN будет идти в направлении VPN на базе маршрутизаторов, так как данное решение сочетает в себе достаточно высокую производительность, интеграцию VPN и маршрутизации в одном устройстве. Однако, будут развиваться и недорогие решения на базе сетевых ОС для небольших организаций.

    В заключение, надо сказать, что, несмотря на то, что технология VPN еще очень молода, ее ожидает большое будущее.

    Виртуальная частная сеть

    Чаще всего для создания виртуальной сети используется инкапсуляция протокола PPP в какой-нибудь другой протокол - Ethernet (провайдерами «последней мили» для предоставления выхода в Интернет .

    При должном уровне реализации и использовании специального программного обеспечения сеть VPN может обеспечить высокий уровень шифрования передаваемой информации. При правильной настройке всех компонентов технология VPN обеспечивает анонимность в Сети.

    Структура VPN

    VPN состоит из двух частей: «внутренняя» (подконтрольная) сеть, которых может быть несколько, и «внешняя» сеть, по которой проходит инкапсулированное соединение (обычно используется Интернет). Возможно также подключение к виртуальной сети отдельного компьютера . Подключение удалённого пользователя к VPN производится посредством сервера доступа, который подключён как к внутренней, так и к внешней (общедоступной) сети. При подключении удалённого пользователя (либо при установке соединения с другой защищённой сетью) сервер доступа требует прохождения процесса идентификации , а затем процесса аутентификации . После успешного прохождения обоих процессов, удалённый пользователь (удаленная сеть) наделяется полномочиями для работы в сети, то есть происходит процесс авторизации .

    Классификация VPN

    Классификация VPN

    Классифицировать VPN решения можно по нескольким основным параметрам:

    По типу используемой среды

    • Защищённые

    Наиболее распространённый вариант виртуальных частных сетей. C его помощью возможно создать надежную и защищенную подсеть на основе ненадёжной сети, как правило, Интернета. Примером защищённых VPN являются: IPSec , PPTP.

    • Доверительные

    Используются в случаях, когда передающую среду можно считать надёжной и необходимо решить лишь задачу создания виртуальной подсети в рамках большей сети. Вопросы обеспечения безопасности становятся неактуальными. Примерами подобных VPN решении являются: Multi-protocol label switching (L2TP (Layer 2 Tunnelling Protocol). (точнее сказать, что эти протоколы перекладывают задачу обеспечения безопасности на другие, например L2TP, как правило, используется в паре с IPSec).

    По способу реализации

    • В виде специального программно-аппаратного обеспечения

    Реализация VPN сети осуществляется при помощи специального комплекса программно-аппаратных средств. Такая реализация обеспечивает высокую производительность и, как правило, высокую степень защищённости.

    • В виде программного решения

    Используют персональный компьютер со специальным программным обеспечением, обеспечивающим функциональность VPN.

    • Интегрированное решение

    Функциональность VPN обеспечивает комплекс, решающий также задачи фильтрации сетевого трафика, организации сетевого экрана и обеспечения качества обслуживания.

    По назначению

    Используют для объединения в единую защищённую сеть нескольких распределённых филиалов одной организации, обменивающихся данными по открытым каналам связи.

    • Remote Access VPN

    Используют для создания защищённого канала между сегментом корпоративной сети (центральным офисом или филиалом) и одиночным пользователем, который, работая дома, подключается к корпоративным ресурсам с домашнего компьютера, корпоративнoго ноутбука , смартфона или интернет-киоскa.

    • Extranet VPN

    Используют для сетей, к которым подключаются «внешние» пользователи (например, заказчики или клиенты). Уровень доверия к ним намного ниже, чем к сотрудникам компании, поэтому требуется обеспечение специальных «рубежей» защиты, предотвращающих или ограничивающих доступ последних к особо ценной, конфиденциальной информации.

    • Internet VPN

    Используется для предоставления доступа к интернету провайдерами .

    • Client/Server VPN

    Он обеспечивает защиту передаваемых данных между двумя узлами (не сетями) корпоративной сети. Особенность данного варианта в том, что VPN строится между узлами, находящимися, как правило, в одном сегменте сети, например, между рабочей станцией и сервером. Такая необходимость очень часто возникает в тех случаях, когда в одной физической сети необходимо создать несколько логических сетей. Например, когда надо разделить трафик между финансовым департаментом и отделом кадров, обращающихся к серверам, находящимся в одном физическом сегменте. Этот вариант похож на технологию VLAN, но вместо разделения трафика, используется его шифрование.

    По типу протокола

    Существуют реализации виртуальных частных сетей под TCP/IP, IPX и AppleTalk. Но на сегодняшний день наблюдается тенденция к всеобщему переходу на протокол TCP/IP, и абсолютное большинство VPN решений поддерживает именно его.

    По уровню сетевого протокола

    По уровню сетевого протокола на основе сопоставления с уровнями эталонной сетевой модели ISO/OSI.

    Примеры VPN

    Многие крупные провайдеры предлагают свои услуги по организации VPN-сетей для бизнес-клиентов.

    Литература

    • Иванов М. А. Криптографические методы защиты информации в компьютерных системах и сетях. - М.: КУДИЦ-ОБРАЗ, 2001. - 368 с.
    • Кульгин М. Технологии корпоративных сетей. Энциклопедия. - СПб.: Питер, 2000. - 704 с.
    • Олифер В. Г., Олифер Н. А. Компьютерные сети. Принципы, технологии, протоколы: Учебник для вузов. - СПб.: Питер, 2001. - 672 с.
    • Романец Ю. В.. Тимофеев П. А., Шаньгин В. Ф. Защита информации в компьютерных системах и сетях. 2-е изд. - М: Радио и связь, 2002. −328 с.
    • Столлингс В. Основы защиты сетей. Приложения и стандарты = Network Security Essentials. Applications and Standards. - М.: «Вильямс» , 2002. - С. 432. - ISBN 0-13-016093-8
    • Продукты для виртуальных частных сетей [Электронный документ] - http://www.citforum.ru/nets/articles/vpn_tab.shtml
    • Анита Карве Реальные виртуальные возможности // LAN. - 1999.- № 7-8 http://www.osp.ru/lan/1999/07-08/107.htm
    • Linux’s answer to MS-PPTP [Электронный документ] / Peter Gutmann. - http://www.cs.auckland.ac.nz/~pgut001/pubs/linux_vpn.txt
    • Джоул Снайдер VPN: поделенный рынок // Сети. - 1999.- № 11 http://www.citforum.ru/nets/articles/vpn.shtml
    • VPN Primer [Электронный документ] - www.xserves.com/downloads/anexgate/VPNPrimer.pdf
    • PKI или PGP? [Электронный документ] / Наталья Сергеева. - http://www.citforum.ru/security/cryptography/pki_pgp/
    • IPSec - протокол защиты сетевого трафика на IP-уровне [Электронный документ] / Станислав Коротыгин. - http://www.ixbt.com/comm/ipsecure.shtml
    • OpenVPN FAQ [Электронный документ] - http://openvpn.net/faq.html
    • Назначение и структура алгоритмов шифрования [Электронный документ] / Панасенко Сергей. - http://www.ixbt.com/soft/alg-encryption.shtml
    • О современной криптографии [Электронный документ] / В. М. Сидельников. - http://www.citforum.ru/security/cryptography/crypto/
    • Введение в криптографию / Под ред. В. В. Ященко. - М.: МЦНМО, 2000. - 288 с http://www.citforum.ru/security/cryptography/yaschenko/
    • Подводные камни безопасности в криптографии [Электронный документ] / Bruce Schneier. - http://www.citforum.ru/security/cryptography/pitfalls.shtml
    • IPSec: панацея или вынужденная мера? [Электронный документ] / Евгений Патий. - http://citforum.ru/security/articles/ipsec_standard/
    • VPN и IPSec на пальцах [Электронный документ] / Dru Lavigne. - http://www.nestor.minsk.by/sr/2005/03/050315.html
    • A Framework for IP Based Virtual Private Networks [Электронный документ] / B. Gleeson, A. Lin, J. Heinanen. - http://www.ietf.org/rfc/rfc2764.txt
    • OpenVPN and the SSL VPN Revolution [Электронный документ] / Charlie Hosner. - http://www.sans.org/rr/whitepapers/vpns/1459.php
    • Маркус Файльнер Виртуальные частные сети нового поколения // LAN.- 2005.- № 11
    • Что такое SSL [Электронный документ] / Максим Дрогайцев. - http://www.ods.com.ua/win/rus/security/ssl.html
    • Cryptanalysis of Microsoft’s PPTP Authentication Extensions (MS-CHAPv2) [Электронный документ] / Bruce Schneier. - http://www.schneier.com/paper-pptpv2.html
    • Point to Point Tunneling Protocol (PPTP) Technical Specifications [Электронный документ] / Kory Hamzeh, Gurdeep Singh Pall, William Verthein, Jeff Taarud, W. Andrew Little. - http://infodeli.3com.com/infodeli/tools/remote/general/pptp/pptp.htm
    • Райан Норманн Выбираем протокол VPN // Windows IT Pro. - 2001. - № 7 http://www.osp.ru/win2000/2001/07/010.htm
    • MPLS: новый порядок в сетях IP? [Электронный документ] / Том Нолле. - http://www.emanual.ru/get/3651/
    • Layer Two Tunneling Protocol «L2TP» [Электронный документ] / W. Townsley, A. Valencia, A. Rubens. - http://www.ietf.org/rfc/rfc2661.txt
    • Алексей Лукацкий Неизвестная VPN // Компьютер Пресс.- 2001.- № 10 http://abn.ru/inf/compress/network4.shtml
    • Первый кирпич в стене VPN Обзор устройств VPN начального уровня [Электронный документ] / Валерий Лукин. - http://www.ixbt.com/comm/vpn1.shtml
    • Обзор оборудования VPN [Электронный документ] - http://www.networkaccess.ru/articles/security/vpn_hardware/
    • Pure hardware VPNs rule high-availability tests [Электронный документ] / Joel Snyder, Chris Elliott. - http://www.networkworld.com/reviews/2000/1211rev.html
    • VPN: Type of VPN [Электронный документ] - http://www.vpn-guide.com/type_of_vpn.htm
    • KAME FAQ [Электронный документ] - http://orange.kame.net/dev/cvsweb2.cgi/kame/FAQ?rev=HEAD&content-type=text/x-cvsweb-markup
    • Особенности российского рынка VPN [Электронный документ] - http://www.cnews.ru/reviews/free/security2006/articles/vpnmarket/
    • Отечественные средства построения виртуальных частных сетей [?] / И. Гвоздев, В. Зайчиков, Н. Мошак, М. Пеленицын, С. Селезнев, Д. Шепелявый
    • Сергей Петренко Защищенная виртуальная частная сеть: современный взгляд на защиту конфиденциальных данных // Мир Internet. - 2001. - № 2

    Издаваемого жестким диском.

    Также не обошли стороной интерфейс HDD, где было рассмотрено основные особенности и отличия интерфейса SATA и устаревшего IDE. И конечно же не забыли, пожалуй, самую главную характеристику - это объем жесткого диска .

    В этом материале мы поговорим относительно оставшихся характеристик жестких дисков, которые не менее важны нежели вышеуказанные.

    Форм-фактор жесткого диска

    На данный момент, широко распространены два форм-фактора жестких дисков – это 2,5 и 3,5 дюйма. Форм-фактором, в большей мере, определяются габариты жестких дисков. К слову, в жесткий диск 3,5”, помещается до 5-ти пластин накопителя, а в 2,5” – до 3-х пластин. Но в современных реалиях это не является преимуществом, так как разработчики определили для себя, что устанавливать более 2-ух пластин в обычные высокопроизводительные жесткие диски – не целесообразно. Хотя, форм-фактор 3,5” совсем не намерен сдаваться и по уровню спроса уверенно перевешивает 2,5” в десктопном сегменте.


    То есть для настольной системы, пока есть смысл приобретать только 3,5”, так как среди преимуществ данного форм-фактора, можно отметить более низкую стоимость за гигабайт пространства, при большем объёме. Это достигается за счет большей, по размеру пластины, которая при одинаковой плотности записи вмещает больший объем данных нежели 2,5”. Традиционно, 2,5” всегда позиционировался как форм-фактор для ноутбуков, в большей мере благодаря своим габаритам.

    Существуют и другие форм-факторы. К примеру, во многих портативных устройствах используются жесткие диски форм-фактора 1,8”, но на них мы детально останавливаться не будем.

    Объём кэш-памяти жесткого диска

    Кэш-память – это специализированное ОЗУ, которое выступает в роли промежуточного звена (буфера), для хранения данных, которые уже считаны с жесткого диска, но еще не были переданы непосредственно на обработку. Само наличие буфера было вызвано существенной разницей в скорости работы между остальными компонентами системы и жестким диском.

    Как таковой характеристикой кэш-памяти HDD, является объем. На данный момент наиболее популярны жесткие диски с буфером 32 и 64 МБ. На самом деле, покупка жесткого диска с большим объемом кэш-памяти, не даст двухкратного увеличения производительности, как это может показаться исходя из классической арифметики. Более того, тестирования показали, что преимущество у жестких дисков с кэшем 64 Мб, проявляется довольно редко и только при выполнении специфических задач. Поэтому, по-возможности стоит приобрести жесткий диск с более объемной кэш-памятью, но если это будет идти в значительный ущерб ценнику, то это не тот параметр, на который следует ориентироваться в первую очередь.

    Время произвольного доступа

    Показатель времени произвольного доступа жесткого диска характеризует время, за которое винчестер гарантированно проведет операцию чтения в любом месте жесткого диска. То есть за какой промежуток времени, головка чтения сможет добраться до самого отдаленного сектора жесткого диска. Это, в большей мере, зависит от ранее рассмотренной характеристики скорости вращения шпинделя жесткого диска. Ведь, чем больше скорость вращения, тем быстрее головка может добраться до нужной дорожки. В современных жестких дисках этот показатель составляет от 2 до 16 мс.

    Остальные характеристики HDD

    Теперь тезисно и вкратце перечислим оставшиеся характеристики жестких дисков:

    • Потребление энергии – потребляют жестки диски совсем немного. При чем, зачастую указывается максимальная потребляемая мощность, которая имеет место быть, только на промежуточных этапах работы во время пиковой загрузки. В среднем – это 1,5-4,5 Вт;
    • Надежность (MTBF) – так называемое время наработки на отказ;
    • Скорость передачи данных – с внешней зоны диска: от 60 до 114 Мб/c, а с внутренней – от 44,2 до 75 Мб/с;
    • Количество операций ввода-вывода в секунду (IOPS) – у современных жестких дисков этот показатель составляет около 50/100 оп./c, при произвольном и последовательном доступе.


    Вот мы и рассмотрели все характеристики жестких дисков с помощью небольшой серии статей. Естественно, что многие параметры пересекаются и, в некоторой мере, влияют друг на друга. Но, зато на основе информации относительно всех этих параметров, можно смоделировать для себя будущее устройство, и при выборе, четко понимать, какой из моделей следует отдать преимущество в вашем частном случае.


    А вот такие игрушки могут получиться из старых жестких дисков, вернее из составляющих жесткого диска. К примеру, колеса сделаны из шпиндельного двигателя винчестера, который приводит в движение ось с головкой считывания.




Top