Кодирование русского алфавита по системе ascii. Кодировка ASCII (American standard code for information interchange) - базовая кодировка текста для латиницы

Системы кодировки текста

См презентацию Двоичное кодиров.

Имеется две системы кодировки: на основе ASCII и Unicode.

В системе кодирования ASCII (American Standard Code for Information Interchange – стандартный код информационного обмена США) каждый символ представлен одним байтом, что позволяет закодировать 256 символов.

В ASCII имеется две таблицы кодирования - базовая и расширенная. Базовая таблица закрепляет значения кодов от 0 до 127, а расширенная относится к символам с номерами от 128 до 255. Этого хватит, чтобы выразить различными комбинациями восьми битов все символы английского и русского языков, как строчные, так и прописные, а также знаки препинания, символы основных арифметических действий и обще­принятые специальные символы, которые можно наблюдать на клавиатуре.

Первые 32 кода базовой таблицы, начиная с нулевого, отданы производителям аппаратных средств (в первую очередь, производителям компьютеров и печатаю­щих устройств). В этой области размещаются так называемые управляющие коды, которым не соответствуют никакие символы языков, и, соответственно, эти коды не выводятся ни на экран, ни на устройства печати, но ими можно управлять тем, как производится вывод прочих данных. Начиная с кода 32 по код 127, размещены символы английского алфавита, знаки препинания, цифры, арифметические действия и вспомогательные символы, все их можно видеть на латинской части клавиатуры компьютера.

Вторая, расширенная часть отдана национальным системам кодирования. В мире существует много нелатинских алфавитов (арабский, еврейский, греческий и пр.), в число которых входит и кириллица. Кроме того, немецкая, французская, испанская раскладки клавиатуры отличаются от английской.

В английской части клавиатуры раньше было много стандартов, а теперь все они заменены на единый код ASCII. Для русской клавиатуры тоже существовало много стандартов: ГОСТ, ГОСТ-альтернативная, ISO (International Standard Organization - Между­народный институт стандартизации), но эти три стандарта фактически уже вымерли, хотя и могут где-то встретиться, в каких-то допотопных компьютерах или сетях.

Основная кодировка символов русского языка, которая используется в компьютерах с операционной системой Windows называется Windows-1251 , она была разработана для алфавитов кириллицы компанией Microsoft. Естественно, что в Windows-1251 закодировано абсолютное большинство русскоязычных текстов. Кстати кодировки с другим четырехзначным номером разработаны Microsoft для других распространенных алфавитов:Windows-1250 для расширенной латиницы (различные национальные латинские буквы), Windows-1252 для иврита, Windows-1253 для арабской письменности, и т.д.

Другая, менее распространенная кодировка носит название КОИ-8 (код обмена информа­цией, восьмизначный). Ее происхождение относится к 60-м годам XX века. Тогда не существовало персональных компьютеров, сети Интернет, компании Microsoftи многого другого. Но в СССР уже было довольно много ЭВМ, и для них требовалось разработать стандарт кодировки кириллицы.

Сегодня кодировка КОИ-8 имеет распространение в компьютерных сетях на терри­тории бывшего СССР и в русскоязычном секторе Интернета. Бывает так, что какой-то текст письма или еще чего-то не читается, это значит, что надо перейти из КОИ-8 или другой кодировки в Windows-1251.

В 90-х годах крупнейшие производители программного обеспечения: Microsoft, Borland, та же Adobe приняли решение о разработке другой системы кодировки текста, в которой каждому символу будет отводиться не 1, а 2 байта. Она получила название Unicode.

С помощью 2-х байтов можно закодировать 65 536 символов. Этого массива оказалось достаточно для размещения в одной таблице всех национальных алфавитов, существующих на Земле. Кроме того, в Unicode включены много различных служебных обозначений: штрих коды, азбука Морзе, азбука флагов, азбука Брайля (для слепых), знаки валют, геометрические фигуры и многое другое.

Всего Unicode насчитывает более 90 страниц, на каждой расположен какой-либо национальный или служебный алфавит. И еще около 5 тысяч символов занимает так называемая «область общего назначения», незаполненная, оставленная в качестве резерва.

Самую большую страницу (около 70% всегоUnicode) занимают китайские иероглифы, которые в Китае набирают с помощью клавиатурных наборов. Водной только Индии имеется 11 различных алфавитов, есть в Unicodeмножество экзотических названий, например: письменность канадских аборигенов. Вообще рассмотрение национальных письменностей довольно занимательно с точки зрения географии и истории.

Преимущества Unicode очевидны. Система стандартизует все национальные и служебные текстовые символы. Устраняется путаница, возникающая из-за различных национальных стандартов. Создаются даже шрифты для всех алфавитов, например Arial Unicode.

Поскольку на кодирование каждого символа в Unicode отводится не 8, а 16 разрядов, объем текстового файла увеличивается примерно в 2 раза. Когда-то это было препятствием для введения 16-разрядной системы. А сейчас, при современном уровне развития компьютерной техники, увеличение размера текстовых файлов большого значения не имеет. Тексты занимают очень мало места в памяти компьютеров.

Кириллица занимает в Unicode места с 768 по 923 (основные знаки) и с 924 по 1023 (расширенная кириллица, различные малораспространенные национальные буквы). Если программа не адаптирована под кириллицу Unicode, то возможен вариант, когда символы текста распознаются не как кириллица, а как расширенная латиница (коды с 256 по 511). И в этом случае вместо текста на экране появляется бессмысленный набор экзотических символов.

Такое возможно, если программа устаревшая, созданная до 1995 года. Или малораспространенная, о русификации которой никто не позаботился. Еще возможен вариант, когда установленная на компьютере ОС Windowsне полностью настроена под кириллицу. В этом случае надо сделать соответствующие записи в реестре Windows.

Множество символов, с помощью которых записывается текст, называется алфавитом .

Число символов в алфавите – это его мощность .

Формула определения количества информации: N = 2 b ,

где N – мощность алфавита (количество символов),

b – количество бит (информационный вес символа).

В алфавит мощностью 256 символов можно поместить практически все необходимые символы. Такой алфавит называется достаточным.

Т.к. 256 = 2 8 , то вес 1 символа – 8 бит.

Единице измерения 8 бит присвоили название 1 байт:

1 байт = 8 бит.

Двоичный код каждого символа в компьютерном тексте занимает 1 байт памяти.

Каким же образом текстовая информация представлена в памяти компьютера?

Удобство побайтового кодирования символов очевидно, поскольку байт - наименьшая адресуемая часть памяти и, следовательно, процессор может обратиться к каждому символу отдельно, выполняя обработку текста. С другой стороны, 256 символов – это вполне достаточное количество для представления самой разнообразной символьной информации.

Теперь возникает вопрос, какой именно восьмиразрядный двоичный код поставить в соответствие каждому символу.

Понятно, что это дело условное, можно придумать множество способов кодировки.

Все символы компьютерного алфавита пронумерованы от 0 до 255. Каждому номеру соответствует восьмиразрядный двоичный код от 00000000 до 11111111. Этот код просто порядковый номер символа в двоичной системе счисления.

Таблица, в которой всем символам компьютерного алфавита поставлены в соответствие порядковые номера, называется таблицей кодировки.

Для разных типов ЭВМ используются различные таблицы кодировки.

Международным стандартом для ПК стала таблица ASCII (читается аски) (Американский стандартный код для информационного обмена).

Таблица кодов ASCII делится на две части.

Международным стандартом является лишь первая половина таблицы, т.е. символы с номерами от 0 (00000000), до 127 (01111111).

Структура таблицы кодировки ASCII

Порядковый номер

Код

Символ

0 - 31

00000000 - 00011111

Символы с номерами от 0 до 31 принято называть управляющими.
Их функция – управление процессом вывода текста на экран или печать, подача звукового сигнала, разметка текста и т.п.

32 - 127

00100000 - 01111111

Стандартная часть таблицы (английский). Сюда входят строчные и прописные буквы латинского алфавита, десятичные цифры, знаки препинания, всевозможные скобки, коммерческие и другие символы.
Символ 32 - пробел, т.е. пустая позиция в тексте.
Все остальные отражаются определенными знаками.

128 - 255

10000000 - 11111111

Альтернативная часть таблицы (русская).
Вторая половина кодовой таблицы ASCII, называемая кодовой страницей (128 кодов, начиная с 10000000 и кончая 11111111), может иметь различные варианты, каждый вариант имеет свой номер.
Кодовая страница в первую очередь используется для размещения национальных алфавитов, отличных от латинского. В русских национальных кодировках в этой части таблицы размещаются символы русского алфавита.

Первая половина таблицы кодов ASCII


Обращаю ваше внимание на то, что в таблице кодировки буквы (прописные и строчные) располагаются в алфавитном порядке, а цифры упорядочены по возрастанию значений. Такое соблюдение лексикографического порядка в расположении символов называется принципом последовательного кодирования алфавита.

Для букв русского алфавита также соблюдается принцип последовательного кодирования.

Вторая половина таблицы кодов ASCII


К сожалению, в настоящее время существуют пять различных кодировок кириллицы (КОИ8-Р, Windows. MS-DOS, Macintosh и ISO). Из-за этого часто возникают проблемы с переносом русского текста с одного компьютера на другой, из одной программной системы в другую.

Хронологически одним из первых стандартов кодирования русских букв на компьютерах был КОИ8 ("Код обмена информацией, 8-битный"). Эта кодировка применялась еще в 70-ые годы на компьютерах серии ЕС ЭВМ, а с середины 80-х стала использоваться в первых русифицированных версиях операционной системы UNIX.

От начала 90-х годов, времени господства операционной системы MS DOS, остается кодировка CP866 ("CP" означает "Code Page", "кодовая страница").

Компьютеры фирмы Apple, работающие под управлением операционной системы Mac OS, используют свою собственную кодировку Mac.

Кроме того, Международная организация по стандартизации (International Standards Organization, ISO) утвердила в качестве стандарта для русского языка еще одну кодировку под названием ISO 8859-5.

Наиболее распространенной в настоящее время является кодировка Microsoft Windows, обозначаемая сокращением CP1251.

С конца 90-х годов проблема стандартизации символьного кодирования решается введением нового международного стандарта, который называется Unicode . Это 16-разрядная кодировка, т.е. в ней на каждый символ отводится 2 байта памяти. Конечно, при этом объем занимаемой памяти увеличивается в 2 раза. Но зато такая кодовая таблица допускает включение до 65536 символов. Полная спецификация стандарта Unicode включает в себя все существующие, вымершие и искусственно созданные алфавиты мира, а также множество математических, музыкальных, химических и прочих символов.

Попробуем с помощью таблицы ASCII представить, как будут выглядеть слова в памяти компьютера.

Внутреннее представление слов в памяти компьютера

Иногда бывает так, что текст, состоящий из букв русского алфавита, полученный с другого компьютера, невозможно прочитать - на экране монитора видна какая-то "абракадабра". Это происходит оттого, что на компьютерах применяется разная кодировка символов русского языка.

Здравствуйте, уважаемые читатели блога сайт. Сегодня мы поговорим с вами про то, откуда берутся кракозябры на сайте и в программах, какие кодировки текста существуют и какие из них следует использовать. Подробно рассмотрим историю их развития, начиная от базовой ASCII, а также ее расширенных версий CP866, KOI8-R, Windows 1251 и заканчивая современными кодировками консорциума Юникод UTF 16 и 8.

Кому-то эти сведения могут показаться излишними, но знали бы вы, сколько мне приходит вопросов именно касаемо вылезших кракозябров (не читаемого набора символов). Теперь у меня будет возможность отсылать всех к тексту этой статьи и самостоятельно отыскивать свои косяки. Ну что же, приготовьтесь впитывать информацию и постарайтесь следить за ходом повествования.

ASCII — базовая кодировка текста для латиницы

Развитие кодировок текстов происходило одновременно с формированием отрасли IT, и они за это время успели претерпеть достаточно много изменений. Исторически все начиналось с довольно-таки не благозвучной в русском произношении EBCDIC, которая позволяла кодировать буквы латинского алфавита, арабские цифры и знаки пунктуации с управляющими символами.

Но все же отправной точкой для развития современных кодировок текстов стоит считать знаменитую ASCII (American Standard Code for Information Interchange, которая по-русски обычно произносится как «аски»). Она описывает первые 128 символов из наиболее часто используемых англоязычными пользователями — латинские буквы, арабские цифры и знаки препинания.

Еще в эти 128 знаков, описанных в ASCII, попадали некоторые служебные символы навроде скобок, решеток, звездочек и т.п. Собственно, вы сами можете увидеть их:

Именно эти 128 символов из первоначального вариант ASCII стали стандартом, и в любой другой кодировке вы их обязательно встретите и стоять они будут именно в таком порядке.

Но дело в том, что с помощью одного байта информации можно закодировать не 128, а целых 256 различных значений (двойка в степени восемь равняется 256), поэтому вслед за базовой версией Аски появился целый ряд расширенных кодировок ASCII , в которых можно было кроме 128 основных знаков закодировать еще и символы национальной кодировки (например, русской).

Тут, наверное, стоит еще немного сказать про системы счисления, которые используются при описании. Во-первых, как вы все знаете, компьютер работает только с числами в двоичной системе, а именно с нулями и единицами («булева алгебра», если кто проходил в институте или в школе). , каждый из которых представляет из себя двойку в степени, начиная с нулевой, и до двойки в седьмой:

Не трудно понять, что всех возможных комбинаций нулей и единиц в такой конструкции может быть только 256. Переводить число из двоичной системы в десятичную довольно просто. Нужно просто сложить все степени двойки, над которыми стоят единички.

В нашем примере это получается 1 (2 в степени ноль) плюс 8 (два в степени 3), плюс 32 (двойка в пятой степени), плюс 64 (в шестой), плюс 128 (в седьмой). Итого получает 233 в десятичной системе счисления. Как видите, все очень просто.

Но если вы присмотритесь к таблице с символами ASCII, то увидите, что они представлены в шестнадцатеричной кодировке. Например, «звездочка» соответствует в Аски шестнадцатеричному числу 2A. Наверное, вам известно, что в шестнадцатеричной системе счисления используются кроме арабских цифр еще и латинские буквы от A (означает десять) до F (означает пятнадцать).

Ну так вот, для перевода двоичного числа в шестнадцатеричное прибегают к следующему простому и наглядному способу. Каждый байт информации разбивают на две части по четыре бита, как показано на приведенном выше скриншоте. Т.о. в каждой половинке байта двоичным кодом можно закодировать только шестнадцать значений (два в четвертой степени), что можно легко представить шестнадцатеричным числом.

Причем, в левой половине байта считать степени нужно будет опять начиная с нулевой, а не так, как показано на скриншоте. В результате, путем нехитрых вычислений, мы получим, что на скриншоте закодировано число E9. Надеюсь, что ход моих рассуждений и разгадка данного ребуса вам оказались понятны. Ну, а теперь продолжим, собственно, говорить про кодировки текста.

Расширенные версии Аски — кодировки CP866 и KOI8-R с псевдографикой

Итак, мы с вами начали говорить про ASCII, которая являлась как бы отправной точкой для развития всех современных кодировок (Windows 1251, юникод, UTF 8).

Изначально в нее было заложено только 128 знаков латинского алфавита, арабских цифр и еще чего-то там, но в расширенной версии появилась возможность использовать все 256 значений, которые можно закодировать в одном байте информации. Т.е. появилась возможность добавить в Аски символы букв своего языка.

Тут нужно будет еще раз отвлечься, чтобы пояснить — зачем вообще нужны кодировки текстов и почему это так важно. Символы на экране вашего компьютера формируются на основе двух вещей — наборов векторных форм (представлений) всевозможных знаков (они находятся в файлах со ) и кода, который позволяет выдернуть из этого набора векторных форм (файла шрифта) именно тот символ, который нужно будет вставить в нужное место.

Понятно, что за сами векторные формы отвечают шрифты, а вот за кодирование отвечает операционная система и используемые в ней программы. Т.е. любой текст на вашем компьютере будет представлять собой набор байтов, в каждом из которых закодирован один единственный символ этого самого текста.

Программа, отображающая этот текст на экране (текстовый редактор, браузер и т.п.), при разборе кода считывает кодировку очередного знака и ищет соответствующую ему векторную форму в нужном файле шрифта, который подключен для отображения данного текстового документа. Все просто и банально.

Значит, чтобы закодировать любой нужный нам символ (например, из национального алфавита), должно быть выполнено два условия — векторная форма этого знака должна быть в используемом шрифте и этот символ можно было бы закодировать в расширенных кодировках ASCII в один байт. Поэтому таких вариантов существует целая куча. Только лишь для кодирования символов русского языка существует несколько разновидностей расширенной Аски.

Например, изначально появилась CP866 , в которой была возможность использовать символы русского алфавита и она являлась расширенной версией ASCII.

Т.е. ее верхняя часть полностью совпадала с базовой версией Аски (128 символов латиницы, цифр и еще всякой лабуды), которая представлена на приведенном чуть выше скриншоте, а вот уже нижняя часть таблицы с кодировкой CP866 имела указанный на скриншоте чуть ниже вид и позволяла закодировать еще 128 знаков (русские буквы и всякая там псевдографика):

Видите, в правом столбце цифры начинаются с 8, т.к. числа с 0 до 7 относятся к базовой части ASCII (см. первый скриншот). Т.о. русская буква «М» в CP866 будет иметь код 9С (она находится на пересечении соответствующих строки с 9 и столбца с цифрой С в шестнадцатеричной системе счисления), который можно записать в одном байте информации, и при наличии подходящего шрифта с русскими символами эта буква без проблем отобразится в тексте.

Откуда взялось такое количество псевдографики в CP866 ? Тут все дело в том, что эта кодировка для русского текста разрабатывалась еще в те мохнатые года, когда не было такого распространения графических операционных систем как сейчас. А в Досе, и подобных ей текстовых операционках, псевдографика позволяла хоть как-то разнообразить оформление текстов и поэтому ею изобилует CP866 и все другие ее ровесницы из разряда расширенных версий Аски.

CP866 распространяла компания IBM, но кроме этого для символов русского языка были разработаны еще ряд кодировок, например, к этому же типу (расширенных ASCII) можно отнести KOI8-R :

Принцип ее работы остался тот же самый, что и у описанной чуть ранее CP866 — каждый символ текста кодируется одним единственным байтом. На скриншоте показана вторая половина таблицы KOI8-R, т.к. первая половина полностью соответствует базовой Аски, которая показана на первом скриншоте в этой статье.

Среди особенностей кодировки KOI8-R можно отметить то, что русские буквы в ее таблице идут не в алфавитном порядке, как это, например, сделали в CP866.

Если посмотрите на самый первый скриншот (базовой части, которая входит во все расширенные кодировки), то заметите, что в KOI8-R русские буквы расположены в тех же ячейках таблицы, что и созвучные им буквы латинского алфавита из первой части таблицы. Это было сделано для удобства перехода с русских символов на латинские путем отбрасывания всего одного бита (два в седьмой степени или 128).

Windows 1251 — современная версия ASCII и почему вылезают кракозябры

Дальнейшее развитие кодировок текста было связано с тем, что набирали популярность графические операционные системы и необходимость использования псевдографики в них со временем пропала. В результате возникла целая группа, которая по своей сути по-прежнему являлись расширенными версиями Аски (один символ текста кодируется всего одним байтом информации), но уже без использования символов псевдографики.

Они относились к так называемым ANSI кодировкам, которые были разработаны американским институтом стандартизации. В просторечии еще использовалось название кириллица для варианта с поддержкой русского языка. Примером такой может служить .

Она выгодно отличалась от используемых ранее CP866 и KOI8-R тем, что место символов псевдографики в ней заняли недостающие символы русской типографики (окромя знака ударения), а также символы, используемые в близких к русскому славянских языках (украинскому, белорусскому и т.д.):

Из-за такого обилия кодировок русского языка, у производителей шрифтов и производителей программного обеспечения постоянно возникала головная боль, а у нас с вам, уважаемые читатели, зачастую вылезали те самые пресловутые кракозябры , когда происходила путаница с используемой в тексте версией.

Очень часто они вылезали при отправке и получении сообщений по электронной почте, что повлекло за собой создание очень сложных перекодировочных таблиц, которые, собственно, решить эту проблему в корне не смогли, и зачастую пользователи для переписки использовали , чтобы избежать пресловутых кракозябров при использовании русских кодировок подобных CP866, KOI8-R или Windows 1251.

По сути, кракозябры, вылазящие вместо русского текста, были результатом некорректного использования кодировки данного языка, которая не соответствовала той, в которой было закодировано текстовое сообщение изначально.

Допустим, если символы, закодированные с помощью CP866, попробовать отобразить, используя кодовую таблицу Windows 1251, то эти самые кракозябры (бессмысленный набор знаков) и вылезут, полностью заменив собой текст сообщения.

Аналогичная ситуация очень часто возникает при , форумов или блогов, когда текст с русскими символами по ошибке сохраняется не в той кодировке, которая используется на сайте по умолчанию, или же не в том текстовом редакторе, который добавляет в код отсебятину не видимую невооруженным глазом.

В конце концов такая ситуация с множеством кодировок и постоянно вылезающими кракозябрами многим надоела, появились предпосылки к созданию новой универсальной вариации, которая бы заменила собой все существующие и решила бы, наконец, на корню проблему с появлением не читаемых текстов. Кроме этого существовала проблема языков подобных китайскому, где символов языка было гораздо больше, чем 256.

Юникод (Unicode) — универсальные кодировки UTF 8, 16 и 32

Эти тысячи знаков языковой группы юго-восточной Азии никак невозможно было описать в одном байте информации, который выделялся для кодирования символов в расширенных версиях ASCII. В результате был создан консорциум под названием Юникод (Unicode — Unicode Consortium) при сотрудничестве многих лидеров IT индустрии (те, кто производит софт, кто кодирует железо, кто создает шрифты), которые были заинтересованы в появлении универсальной кодировки текста.

Первой вариацией, вышедшей под эгидой консорциума Юникод, была UTF 32 . Цифра в названии кодировки означает количество бит, которое используется для кодирования одного символа. 32 бита составляют 4 байта информации, которые понадобятся для кодирования одного единственного знака в новой универсальной кодировке UTF.

В результате чего, один и тот же файл с текстом, закодированный в расширенной версии ASCII и в UTF-32, в последнем случае будет иметь размер (весить) в четыре раза больше. Это плохо, но зато теперь у нас появилась возможность закодировать с помощью ЮТФ число знаков, равное двум в тридцать второй степени (миллиарды символов , которые покроют любое реально необходимое значение с колоссальным запасом).

Но многим странам с языками европейской группы такое огромное количество знаков использовать в кодировке вовсе и не было необходимости, однако при задействовании UTF-32 они ни за что ни про что получали четырехкратное увеличение веса текстовых документов, а в результате и увеличение объема интернет трафика и объема хранимых данных. Это много, и такое расточительство себе никто не мог позволить.

В результате развития Юникода появилась UTF-16 , которая получилась настолько удачной, что была принята по умолчанию как базовое пространство для всех символов, которые у нас используются. Она использует два байта для кодирования одного знака. Давайте посмотрим, как это дело выглядит.

В операционной системе Windows вы можете пройти по пути «Пуск» — «Программы» — «Стандартные» — «Служебные» — «Таблица символов». В результате откроется таблица с векторными формами всех установленных у вас в системе шрифтов. Если вы выберете в «Дополнительных параметрах» набор знаков Юникод, то сможете увидеть для каждого шрифта в отдельности весь ассортимент входящих в него символов.

Кстати, щелкнув по любому из них, вы сможете увидеть его двухбайтовый код в формате UTF-16 , состоящий из четырех шестнадцатеричных цифр:

Сколько символов можно закодировать в UTF-16 с помощью 16 бит? 65 536 (два в степени шестнадцать), и именно это число было принято за базовое пространство в Юникоде. Помимо этого существуют способы закодировать с помощью нее и около двух миллионов знаков, но ограничились расширенным пространством в миллион символов текста.

Но даже эта удачная версия кодировки Юникода не принесла особого удовлетворения тем, кто писал, допустим, программы только на английском языке, ибо у них, после перехода от расширенной версии ASCII к UTF-16, вес документов увеличивался в два раза (один байт на один символ в Аски и два байта на тот же самый символ в ЮТФ-16).

Вот именно для удовлетворения всех и вся в консорциуме Unicode было решено придумать кодировку переменной длины . Ее назвали UTF-8. Несмотря на восьмерку в названии, она действительно имеет переменную длину, т.е. каждый символ текста может быть закодирован в последовательность длиной от одного до шести байт.

На практике же в UTF-8 используется только диапазон от одного до четырех байт, потому что за четырьмя байтами кода ничего уже даже теоретически не возможно представить. Все латинские знаки в ней кодируются в один байт, так же как и в старой доброй ASCII.

Что примечательно, в случае кодирования только латиницы, даже те программы, которые не понимают Юникод, все равно прочитают то, что закодировано в ЮТФ-8. Т.е. базовая часть Аски просто перешла в это детище консорциума Unicode.

Кириллические же знаки в UTF-8 кодируются в два байта, а, например, грузинские — в три байта. Консорциум Юникод после создания UTF 16 и 8 решил основную проблему — теперь у нас в шрифтах существует единое кодовое пространство . И теперь их производителям остается только исходя из своих сил и возможностей заполнять его векторными формами символов текста. Сейчас в наборы даже .

В приведенной чуть выше «Таблице символов» видно, что разные шрифты поддерживают разное количество знаков. Некоторые насыщенные символами Юникода шрифты могут весить очень прилично. Но зато теперь они отличаются не тем, что они созданы для разных кодировок, а тем, что производитель шрифта заполнил или не заполнил единое кодовое пространство теми или иными векторными формами до конца.

Кракозябры вместо русских букв — как исправить

Давайте теперь посмотрим, как появляются вместо текста кракозябры или, другими словами, как выбирается правильная кодировка для русского текста. Собственно, она задается в той программе, в которой вы создаете или редактируете этот самый текст, или же код с использованием текстовых фрагментов.

Для редактирования и создания текстовых файлов лично я использую очень хороший, на мой взгляд, . Впрочем, он может подсвечивать синтаксис еще доброй сотни языков программирования и разметки, а также имеет возможность расширения с помощью плагинов. Читайте подробный обзор этой замечательной программы по приведенной ссылке.

В верхнем меню Notepad++ есть пункт «Кодировки», где у вас будет возможность преобразовать уже имеющийся вариант в тот, который используется на вашем сайте по умолчанию:

В случае сайта на Joomla 1.5 и выше, а также в случае блога на WordPress следует во избежании появления кракозябров выбирать вариант UTF 8 без BOM . А что такое приставка BOM?

Дело в том, что когда разрабатывали кодировку ЮТФ-16, зачем-то решили прикрутить к ней такую вещь, как возможность записывать код символа, как в прямой последовательности (например, 0A15), так и в обратной (150A). А для того, чтобы программы понимали, в какой именно последовательности читать коды, и был придуман BOM (Byte Order Mark или, другими словами, сигнатура), которая выражалась в добавлении трех дополнительных байтов в самое начало документов.

В кодировке UTF-8 никаких BOM предусмотрено в консорциуме Юникод не было и поэтому добавление сигнатуры (этих самых пресловутых дополнительных трех байтов в начало документа) некоторым программам просто-напросто мешает читать код. Поэтому мы всегда при сохранении файлов в ЮТФ должны выбирать вариант без BOM (без сигнатуры). Таким образом, вы заранее обезопасите себя от вылезания кракозябров .

Что примечательно, некоторые программы в Windows не умеют этого делать (не умеют сохранять текст в ЮТФ-8 без BOM), например, все тот же пресловутый Блокнот Windows. Он сохраняет документ в UTF-8, но все равно добавляет в его начало сигнатуру (три дополнительных байта). Причем эти байты будут всегда одни и те же — читать код в прямой последовательности. Но на серверах из-за этой мелочи может возникнуть проблема — вылезут кракозябры.

Поэтому ни в коем случае не пользуйтесь обычным блокнотом Windows для редактирования документов вашего сайта, если не хотите появления кракозябров. Лучшим и наиболее простым вариантом я считаю уже упомянутый редактор Notepad++, который практически не имеет недостатков и состоит из одних лишь достоинств.

В Notepad ++ при выборе кодировки у вас будет возможность преобразовать текст в кодировку UCS-2, которая по своей сути очень близка к стандарту Юникод. Также в Нотепаде можно будет закодировать текст в ANSI, т.е. применительно к русскому языку это будет уже описанная нами чуть выше Windows 1251. Откуда берется эта информация?

Она прописана в реестре вашей операционной системы Windows — какую кодировку выбирать в случае ANSI, какую выбирать в случае OEM (для русского языка это будет CP866). Если вы установите на своем компьютере другой язык по умолчанию, то и эти кодировки будут заменены на аналогичные из разряда ANSI или OEM для того самого языка.

После того, как вы в Notepad++ сохраните документ в нужной вам кодировке или же откроете документ с сайта для редактирования, то в правом нижнем углу редактора сможете увидеть ее название:

Чтобы избежать кракозябров , кроме описанных выше действий, будет полезным прописать в его шапке исходного кода всех страниц сайта информацию об этой самой кодировке, чтобы на сервере или локальном хосте не возникло путаницы.

Вообще, во всех языках гипертекстовой разметки кроме Html используется специальное объявление xml, в котором указывается кодировка текста.

Прежде, чем начать разбирать код, браузер узнает, какая версия используется и как именно нужно интерпретировать коды символов этого языка. Но что примечательно, в случае, если вы сохраняете документ в принятом по умолчанию юникоде, то это объявление xml можно будет опустить (кодировка будет считаться UTF-8, если нет BOM или ЮТФ-16, если BOM есть).

В случае же документа языка Html для указания кодировки используется элемент Meta , который прописывается между открывающим и закрывающим тегом Head:

... ...

Эта запись довольно сильно отличается от принятой в , но полностью соответствует новому внедряемому потихоньку стандарту Html 5, и она будет стопроцентно правильно понята любыми используемыми на текущий момент браузерами.

По идее, элемент Meta с указание кодировки Html документа лучше будет ставить как можно выше в шапке документа , чтобы на момент встречи в тексте первого знака не из базовой ANSI (которые правильно прочитаются всегда и в любой вариации) браузер уже должен иметь информацию о том, как интерпретировать коды этих символов.

Удачи вам! До скорых встреч на страницах блога сайт

посмотреть еще ролики можно перейдя на
");">

Вам может быть интересно

Что такое URL адреса, чем отличаются абсолютные и относительные ссылки для сайта
OpenServer - современный локальный сервер и пример его использования для установки WordPress на компьютер
Что такое Chmod, какие права доступа назначать файлам и папкам (777, 755, 666) и как это сделать через PHP
Поиск Яндекса по сайту и интернет-магазину

Кодирование текста: ASCII и Unicode (UTF-16)

Человек легко воспринимает текст. Наш мозг ежедневно обрабатывает огромные объёмы текста. В отличие от нас, процессор компьютера может работать только с числами. Поэтому все текстовые данные в памяти компьютера представляются числами. Но перед подробным обсуждением этого момента, давайте вспомним, как организована память компьютера.

Память компьютера - это последовательность битов. Бит - минимальная единица информации, которая может хранить два значения: ноль или единицу. Т.е. все данные, которые может выдавать компьютер (числа, текст, аудио, видео) - это последовательность нулей и единиц.

Бит слишком малая единица. Поэтому биты объединяются в байты. В одном байте восемь бит. Каждый байт имеет свой адрес. Именно байт является минимальной единицей, к которой может обратиться процессор - процессор не может обращаться к отдельным битам, только через соответствующие байты. Давайте посмотрим на небольшой участок памяти компьютера:

01001000 01000101 01001011 01001011 01001111 00100001

Сверху показаны адреса байтов, а снизу - значения, хранящиеся в данных адресах. В реальности не существует таких адресов, так как современные компьютеры работают с огромными адресными пространствами. Адреса в современных компьютерах записываются вот так: 0x01328921. Адреса записываются в шестнадцатеричном формате.

В одном байте может храниться 256 значений - 28 = 256. Диапазон значений: от нуля до 255 (для беззнаковых чисел), или от -128 до 127 (для чисел со знаком). В шестнадцатеричной форме максимальное значение байта - 0xff. Обратите внимание на удобство использования шестнадцатеричной системы счисления: для записи любого однобайтного значения требуется две цифры. Посмотрим на диапазоны однобайтного числа во всех трёх системах счисления:

00000000 ... 11111111

Процессор видит все числа в двоичном виде, но может преобразовывать их в другие системы счисления, чтобы нам их было удобно читать. Правила преобразования между различными системами счисления мы обсуждали в предыдущих уроках. Последовательность байтов, приведённую выше, можно представить и так:

0x48 0x45 0x4b 0x4b 0x4f 0x21 // шестнадцатеричная форма

Компьютеру удобнее использовать бинарную форму, а нам - шестнадцатеричную, или десятичную.

Кодировка ASCII

Чтобы представить текст числами, каждой букве присваивают числовое значение - кодируют значения букв. Присвоив всем буквам уникальное значение, мы получим кодировку (character set, endoding). Но использовать свою кодировку нет никакого смысла - вы сможете использовать её только в своей программе. На данный момент наибольшее распространение получила кодировка ASCII.



Первоначально один символ в кодировке ASCII занимал 7 бит. Но когда распространение получил 8-битный байт (да, существовали байты разных размеров), то ASCII была расширена до восьми бит. 7-битная кодировка в два раза меньше восьмибитной: 27=128 < 28=256.

Итак, первоначально в кодировке ASCII было 128 значений: от 0 до 127 (0x00 до 0x7f). Этого достаточно чтобы закодировать все буквы латинского алфавита, арабские цифры и ещё ряд знаков.

7-битная кодировка ASCII является основой для всех распространённых сейчас кодировок и чрезвычайно важна в программировании. Поэтому мы познакомимся с конкретными значениями:

0 - ноль. Это не цифра в выводимом тексте. К данному коду не привязан никакой символ. Т.е. вы никогда не увидите на экране представление нуля. Тем не менее, ноль очень важен в программировании и хранении текста. Для чего используется этот код, мы узнаем позже.

32 - пробел.

48 - код нуля. Когда мы видим на экране монитора ноль, в памяти компьютера этот символ представлен числом 48.

57 - девятка.

65 - прописная буква A (английский алфавит).

90 - прописная буква Z.

97 - строчная буква a.

122 - строчная буква z.

Давайте вернёмся к рассмотренной ранее последовательности байтов, и попробуем значению каждого поставить в соответствие код из ASCII:

01001000 01000101 01001011 01001011 01001111 00100001 // двоичная (бинарная) форма

72 69 76 76 79 33 // десятичная форма

H E L L O ! // символы ASCII

О, чудо! У нас получился текст "HELLO!"

Компьютер видит всего лишь последовательность байт, к которым он может обратиться по их адресам. Мы можем видеть как простые числа, так и текст, если смотреть на эти числа в кодировке ASCII.

Расширенная кодировка ASCII (extended ASCII)

С появлением восьмибитной кодировки, в ASCII смогли закодировать и другие алфавиты. Расширенных кодировок ASCII много - существуют версии для многих национальных алфавитов. При этом первая половина кодировки (значения от нуля до 127) везде одинаковая.

Русский алфавит (кириллица) закодирован в кодировке с названием windows-1251. Ещё одна популярная версия ASCII - windows-1252 - это кодировка для западноевропейских языков (в ней закодированы буквы специфические для французского и немецкого алфавитов). Кстати, текст, который вы сейчас читаете, закодирован в windows-1251.

Нам не важно, как закодированы русские буквы (да и английские тоже) в windows-1251 - не нужно знать конкретные значения. Если необходимо, можете найти полный список значений символов для windows-1251 в поисковиках.

Кодирование цифр в тексте

На практике не нужно знать закодированные значения букв. Но в то же время нужно обязательно запомнить закодированные значения цифр. В ASCII цифры имеют коды с 48 до 57. 48 - ноль, 49 - единица... 57 - девять. Напоминаю, что первые 128 значений одинаковы во всех кодировках, поэтому и коды цифр везде совпадают. И это, скажу я вам, очень здорово. Для чего нужно знать коды цифр, и как это связано с созданием игр?

Допустим, в нашей игре нужно выводить на экран значений юнитов пользователя. Внутри программы это простое число, представленное переменной. Но чтобы пользователь увидел это число, его нужно превратить в текст, который и будет отображён на экране. Поэтому при создании игры, нужно обязательно написать код, который занимается преобразованием чисел в текст.

Для примера рассмотрим два значения: в начале игры у пользователя нет юнитов, а через некоторое время он построил пятерых.

Сначала пользователю нужно вывести символ 0. Для этого потребуется использовать закодированное значение этого символа - 48. Затем пользователю нужно вывести символ 5, код которого - 53. Здесь видна интересная особенность: код символа цифры отличается от фактического значения на 48. Поэтому для однозначных (и только для однозначных) чисел мы можем использовать вот такой код:

int var = GetUnitNumber(); // узнать количество юнитов

char output = var+48;

Теперь можно вывести переменную output на экран. Только осталось решить одну проблему: в реальных ситуациях очень редко используются однозначные числа. Например, в Company of heroes у игрока в подчинении находятся в среднем больше 15 отрядов, в Age of Empires - больше 50. В других играх ситуация аналогичная. В шутерах может потребоваться выводить количество патронов и здоровья (значения которых практически всегда больше 9). Конечно же, и при создании своей игры нам нужно будет выводить многозначные числа. Вывод многозначных чисел мы рассмотрим в следующем уроке, а сейчас вернёмся к рассмотрению кодировок.

Кодировка (encoding) Юникод - Unicode

Один байт может иметь только 256 значений. Это значит, что в кодировке ASCII можно закодировать 256символов: цифр, букв, пиктограмм, знаков пунктуации и других различных символов. В то же время существуют письменности, в которых гораздо больше символов, например, китайские или японские иероглифы.

Для решения этой (и некоторых других) проблемы в начале девяностых была создана кодировка Юникод(Unicode). Первоначально все символы юникода занимали два байта. Соответственно, в unicode можно было закодировать 216 = 65536 значений. Затем кодовое пространство было расширено до более чем миллиона символов. В результате этого появилось несколько представлений юникода.

Наиболее популярными представлениями юникода являются два: UTF-8 - используется в интернете и UTF-16 - используется в Windows (Windows XP, Windows Vista, Windows 7).

В контексте создания игр не важно, как кодируются все символы в различных представлениях Unicode. Но важно то, что во всех представлениях арабские цифры кодируются так же, как и в ASCII.

Существует две версии UTF-16: UTF-16LE (little-endian) - кодировка с обратным порядком байтов и UTF-16BE (big-endian) - кодировка с прямым порядком байтов. В Windows, конечно же, используется UTF16-LE.

Код символов в юникоде обозначается так: U+hhhh (четыре шестнадцатеричных цифры, h - от hexadecimal - шестнадцатеричный). Например, U+221A - символ квадратного корня - √.

Часть символов в UTF-16 кодируются двумя байтами (первые 63 тысячи). Остальные символы кодируются суррогатными парами. Так как это не слишком важно для создания игр, то я не буду останавливаться на суррогатных парах подробно.

В UTF-8 первые 128 символов кодируются одним байтом. Остальные символы могут кодироваться несколькими байтами (от двух до четырёх).

И ещё один момент (самый важный): в юникод закодированы все символы всех современных и многих мёртвых письменностей плюс знаки из различных областей науки и культуры (математические и экономически символы, нотные знаки и многое другое). Именно по этой причине и нужно использовать юникод.

Ещё раз повторюсь, что знание стандарта юникода и особенностей его различных представлений, не сильно помогает в такой теме, как создание игр, поэтому дальнейшее знакомство с юникодом вам придётся продолжать самостоятельно. Неоценимую помощь в этом деле окажет, как обычно, стандарт.

Кодирование текста в Microsoft Windows (Windows XP, Windows Vista, Windows 7)

В современных версиях Windows существует два способа представления текста: UTF-16 и кодовые страницы (в основном это восьмибитные кодировки). Основной способ - юникод. Кодовые страницы нужны для совместимости со старыми приложениями (в Windows 95, Windows 98 - в основном использовалась ASCII). Кроме того, юникод не понимает одна очень важная программа - консоль.

Пусть вас не смущает новый термин - кодовая страница (code page). В windows так называются все кодировки (character sets или encodings). Т.е. понятие кодировка равнозначно кодовой странице.

Сразу сделаю замечание, которое лучше запомнить. В Windows есть чёткое разделение: вот юникод (UTF-16LE), а вот все остальные кодировки. И юникод, и остальные кодировки в Windows называются кодовыми страницами, но этот термин (кодовые страницы) я буду применять ко всем кодировкам за исключением юникода.

Когда мы писали консольные программы, вывод текста осуществлялся с помощью кодовой страницы windows-1252. Именно поэтому нам приходилось вызывать setlocale (она меняет кодовую страницу на windows-1251):

Эта функция меняет локальность.

Locale (местная специфика) - локальность

В Windows есть такое понятие как Locale. Здесь я не совсем верно использую кальку этого слова - локальность, но, на мой взгляд, она довольно ёмкая, чтобы вместить весь смысл понятия Locale. Locale переводится как местные особенности. Т.е. это какие-то параметры используемы в данном конкретном месте (регионе, стране). setlocale как раз и меняет эти особенности:

setlocale(LC_CTYPE,"Russian");

В данном вызове локальность меняется на российскую. Поэтому Windows может использовать наши местные особенности: представление даты и времени, систему измерения, валюту и, конечно же, кодовую страницу.

Первый параметр этой функции говорит, какие категории местных особенностей можно изменить. Можно изменить только кодовую страницу (LC_CTYPE), можно формат представления даты и времени (LC_TIME), а можно изменить и все категории (LC_ALL, all - всё).

Возвращаемся к кодировкам.

Одновременно может использоваться только одна кодовая страница, при этом с символами кодовой страницы в программе можно использовать и юникод, так как юникод стоит особняком от всех остальных кодовых страниц. Старайтесь в своих программах всегда использовать юникод. Кодовые страницы имеет смысл использовать только в консоли.

Кодирование текста

Кодирование текста-это установление таблицы соответствия между кодируемым символом и комбинацией состояния битов, то есть процесс кодирования заключается в том, что каждому символу ставится в соответствие уникальный код. В настоящее время существуют различные системы кодирования, основное различие между ними заключается в количестве бит, необходимых для кодирования одного символа.

· ASCII (American Standard Code for Information Interchange): для кодирования одного символа используется количество информации=7 бит. Если рассматривать символы как возможные события (см. лекцию 1), то можно вычислить количество символов, которые можно закодировать:

2*26-латинские буквы

32-различные знаки

34-служебные символы

128-символов

Таким образом, количество кодируемых символов ограничено, поэтому в семибитной системе кодировки невозможно закодировать буквы русского алфавита. Возникла задача одновременно изображать и русские, и латинские символы. Способами решения этой задачи являются транслитерация и расширение кодировки.

· Восьмибитные системы кодировки:

Если старший бит кода-0, то система кодировки совпадает с ASCII, если старший бит –1, то вводятся дополнительные кодов-ые страницы.

В России была создана одна из таких систем КОИ-8, ее недостаток в том, что русские буквы расположены не по алфавиту.Кроме того существуют СР-866, СР-1251, ANSI, использующиеся в операционной системе Windows.

· Большие кодовые страницы:

На кодирование одного символа необходимо 16 бит

естественно с такой системой кодирования не возникает проблемы невозможности кодировки того или иного символа, так как 65535 с избытком покрывает многообразие используемых символов, но UNICODE имеет другой недостаток: при переводе текстов из ASCII в UNICODE существенно увеличивается размер компьютерного текста. В связи с этим разработан еще один класс систем кодировки, использующих переменное число бит для кодирования символов.

Если старший бит кода равен нулю (бит8=0), то система кодировки совпадает с ASCII, причем каждый из первых 128 символов кодируется одним байтом.
Если старший равен единице (бит8=1, бит7=0), то следующие 16384 символа кодируются аналогично UNICODE, то есть для кодировки каждого символа используется два байта. Оставшиеся символы (65535-128-16384=49023) кодируются тремя байтами.

Пример: рассмотрим, сколько информации несет цепочка символов "Information×-×Информация"
в различных системах кодировки. В случае СР1251 каждый символ кодируется одним байтом Þ количество информации: 24*1=24 байт. В UNICODE каждый символ кодируется двумя байтами Þ количество информации: 24*2=48 байт. В UTF-8 на кодировку латинских букв, знаков пробела и тире необходимо один байт на каждый символ, а каждый символ слова "Информация" кодируется двумя байтами Þ количество информации: 14*1+10*2=34 байт.


С одной стороны, компьютерный текст – это алфавитный, по которому текст представляется как цепочка символов (алфавитный подход). Другой подход заключается в том, что компьютерный текст рассматривается уже как сложная структура, состоящая из множества всех цепочек символов.

t:{1, 2, 3...k} - одна из таких цепочек длиной k.

Такой подход дает возможность понять алгоритм преобразования текста, который осуществляется по принципу функционального отображения, то есть одной текстовой цепочке, входящей в область определения этого алгоритма, ставится в соответствие другая цепочка, являющаяся результатом преобразования: t 1 ®t 2 . В таком случае областью определения функции (алгоритма) будет являться язык.

Грамматика языка это правила, порождающие все входящие в язык цепочки. Отдельный символ алфавита – это регулярное выражение. Грамматики, построенные на регулярных выражениях, записываются в виде программы, которая порождает цепочку символов. Назначение регулярных выражений – задать множество цепочек, составляющих язык.




Top