Информационные характеристики дискретных каналов связи. Модели дискретных каналов связи михаил владимирович марков

Математическое моделирование непрерывных каналов связи требует знания физических процессов, протекающих в них. В большинстве случаев для их определения и перевода в аналитическую форму требуется проведение сложных экспериментов, испытаний и последующей аналитической обработки данных.

В подобных ситуациях очень полезной является модель двоичного симметричного канала связи (ДСК). Подобная модель является простейшим примеров взаимодействия двух источников без памяти. Подобная модель является дискретной двоичной моделью передачи информации по каналу с АБГШ. ДСК описывается с помощью диаграммы переходов (рис. 2.10).

Рис. 2.10. Модель двоичного симметричного канала

На диаграмме представлены возможные переходы двоичных символов от передатчика (источника ) в двоичные символы приемника (источника ). Каждому переходу приписана переходная вероятность. Ошибочным переходам соответствует вероятность . Эквивалентом диаграммы переходов является матрица канала. Она содержит переходные вероятности и является стохастической матрицей, у которой сумма всех элементов каждой строки равна единице. В общем случае матрица канала в входным алфавитом их символов и выходным алфавитом из символов , содержит все переходные вероятности и имеет вид

(2.51)

В случае ДСК матрица принимает вид

. (2.52)

Единственным параметром, характеризующим ДСК, является вероятность ошибки и из-за равновероятного появления входных символов и симметрии переходов следует равномерное распределение выходных символов, т.е.

Среднее значение информации, которыми обмениваются два дискретных источника без памяти и равно

Поскольку пропускная способность дискретного канал связи определяется как , то

После подстановки числовых значений выражение принимает вид

Важным частным случаем ДСК является двоичный симметричный канал со стираниями (ДСКС). Как и ДСК подобный канал является упрощенной моделью передачи информации по каналу с АБГШ. Схема переходных вероятностей стирающего канала представлена на рис. 2.11.

Рис. 2.11. Граф переходных состояний в стирающем канале связи

Матрица переходных вероятностей оказывается зависимой от двух параметров и имеет вид

. (2.56)

Входные символы равновероятны, поэтому . Тогда вероятности выходных символов равны

и .

Следовательно,

После преобразований получаем

Положив в полученном уравнении , получим . Введение стирающего канала связи обеспечивает выигрыш пропускной способности стирающего канала связи, при условии, что вероятность ошибки . Отклонение значений и от их минимальных значений приводит к образованию криволинейной поверхности, представляющей общий вид которой представлен на рис. 2.12.

Рис. 2.12. Пропускная способность стирающего канала связи

Рассматривая модель стирающего канала связи, в которойстирания разделяются на ложные и правильные, можно представить граф переходных вероятностей в виде рис. 2.13. Матрица переходных вероятностей оказывается зависимой от четырех параметров принимает вид

Рис. 2.13. Граф переходных состояний с разделением стираний на ложные и правильные стирания

Предположение о точном совпадении стертых позиций с ошибками является условием, которое никогда не выполняется в реальных канала связи. Для гауссовского канала связи соотношения между ложными и правильным стираниями в зависимости от ширины интервала стирания приведены в табл. 2.1.

Табл. 2.1 Соотношение вероятностей между ложными и правильными стираниями в канале без памяти

Значение интервала стирания

Ложные стирания

Относительный прирост

Правильные стирания

Прирост показателей для и в табл. 2.1 определялся относительно интервала стирания при этом показатель для ложных стираний в указанных пределах вырос практически на порядок. Это говорит о невозможности прямого применения стирающего канала связи в системах обмена информацией с целью снижения вероятности ошибочного приема данных.


Министерство образования и науки Республики Казахстан

Некоммерческое акционерное общество

«Алматинский университет энергетики и связи»

Кафедра Инфокоммуникационных технологий

КУРСОВАЯ РАБОТА

по дисциплине «Технологии цифровой связи»

Выполнила:

Алиева Д.А.

Введение

2. Система с РОС и непрерывной передачей информации (РОС - нп) и блокировки

3. Определение n, k, r, при наибольшей пропускной способности R

4. Построение схем кодера и декодера для выбранного g (x) полинома

8. Расчеты надежностных показателей основного и обходного каналов

9. Выбор магистрали по карте

Заключение

Список литературы

Введение

код циклический канал устройство

В последнее время все большее распространение получают цифровые системы передачи данных. В связи с этим особое внимание уделяется изучению принципов передачи дискретных сообщений. Рассмотрению принципов и методов передачи цифровых сигналов посвящена дисциплина «Технологии цифровой связи», которая базируется на ранее изученных дисциплинах: «Теория электрической связи», «Теория электрической цепей», «Основы построения и САПР телекоммуникационных систем и сетей», «Цифровые устройства и основы вычислительной техники» и др. В результате изучения данной дисциплины необходимо знать принципы построения систем передачи и обработки цифровых сигналов, аппаратные и программные методы повышения помехоустойчивости и скорости передачи цифровых систем связи, методы повышения эффективного использования каналов связи. Также необходимо уметь производить расчеты основных функциональных узлов, осуществлять анализ влияния внешних факторов на работоспособность средств связи; иметь навыки применения средств компьютерной техники для расчетов и проектирования программно-аппаратных средств связи.

Выполнение курсовой работы способствует получению навыков в решении задач и более основательному рассмотрению разделов курса «Технологии цифровой связи».

Целью данной работы является проектирование тракта передачи данных между источником и получателем информации с использованием циклического кода и решающей обратной связью, непрерывной передачей и блокировкой приемника. В курсовой работе необходимо рассмотреть принцип работы кодирующего и декодирующего устройства циклического кода. Для моделирования телекоммуникационных систем широко используются программные средства. С применением пакета «System View» в соответствии с заданным вариантом должны быть собраны схемы кодера и декодера циклического кода.

1. Модели частичного описания дискретного канала

В реальных каналах связи ошибки возникают по многим причинам. В проводных каналах наибольшее количество ошибок вызывается кратковременными прерываниями и импульсными помехами. В радиоканалах заметное влияние оказывают флуктуационные шумы. В коротковолновых радиоканалах основное количество ошибок возникает при изменениях уровня сигнала вследствие влияния замирания. Во всех реальных каналах ошибки распределяются во времени очень неравномерно, из-за этого неравномерны и потоки ошибок.

Существует большое количество математических моделей дискретного канала. Также помимо общих схем и частных моделей дискретного канала, существует большое число моделей, дающих частичное описание канала. Остановимся на одной из таких моделей - модели А. П. Пуртова.

Формула модели дискретного канала с независимыми ошибками:

Ошибки несут пакетный характер, поэтому вводится коэффициент

По этой модели можно определить зависимость вероятности появления искаженной комбинации от ее длины n и вероятность появления комбинаций длиной n с t ошибками(t

Вероятность P(>1,n) является неубывающей функцией n.

При n=1 P(>1,n)=Pош

Вероятность появления искажений кодовой комбинации длиной n:

где - показатель группирования ошибок.

При 0 имеем случай независимого появления ошибок, а при 1 появление групповых ошибок (при =1 вероятность искажений кодовой комбинации не зависит от n, так как в каждой ошибочной комбинации все елементы приняты с ошибкой). Наибольшее значение d (0,5 до 0,7) наблюдается, на КЛС, поскольку кратковременное прерывание приводит к появлению групп с большей плотностью ошибок. В радиорелейных линиях, где наряду с интервалами большой плотности ошибок наблюдается интервалы с редкими ошибками, значение d лежит в пределах от 0,3 до 0,5. В КВ радиотелеграфных каналах показатель группирования ошибок самый небольшой (0,3-0,4).

Распределение ошибок в комбинациях различной длины:

оценивает не только вероятность появления искаженных комбинаций (хотя бы одна ошибка), но и вероятность комбинаций длиной n с t наперед заданными ошибками P(>t,n).

Следовательно, группирование ошибок приводит к увеличению числа кодовых комбинаций, пораженную ошибками большей кратности. Анализируя все выше сказанное, можно заключить, что при группировании ошибок уменьшается число кодовых комбинаций заданной длины n. Это понятно также из чисто физических соображений. При одном и том же числе ошибок пакетирование приводит к сосредоточению их на отдельных комбинациях (кратность ошибок возрастает), а число искаженных кодовых комбинаций уменьшается.

2. Система с РОС и непрерывной передачей информации (РОС-нп) и блокировкой.

В системах с РОС-нп передатчик передает непрерывную последовательность комбинаций, не ожидая получения сигналов подтверждения. Приемник стирает лишь те комбинации, в которых решающее устройство обнаруживает ошибки, и по ним дает сигнал переспроса. Остальные комбинации выдаются ПИ по мере их поступления. При реализации такой системы возникают трудности, вызванные конечным временем передачи и распространения сигналов. Если в некоторый момент времени закончен прием кодовой комбинации, в которой обнаружена ошибка, то к этому моменту времени по прямому каналу уже ведется передача следующей кодовой комбинации. Если время распространения сигнала в канале t c превышает длительность кодовой комбинации nt o , то к моменту t" может закончиться передача одной или нескольких комбинаций, следующих за второй. Еще некоторое число кодовых комбинаций будет передано до того времени (t"), пока будет принят и проанализирован сигнал переспроса по второй комбинации.

Таким образом, при непрерывной передаче за время между моментом обнаружения ошибки (t") и приходом повторенной кодовой комбинации (t"") будет принято еще h комбинаций, где где символ [х] означает наименьшее целое число, большее или равное х.

Так как передатчик повторяет лишь комбинации, по которым принят сигнал переспроса, то в результате повторения с запаздыванием на h комбинаций порядок следования комбинаций в информации, выдаваемой системой ПИ, будет отличаться от порядка поступления кодовых комбинаций в систему. Но получателю кодовые комбинации должны поступать в том же порядке, в котором они передавались. Поэтому для восстановления порядка следования комбинаций в приемнике должны быть специальное устройство и буферный накопитель значительной емкости (не менее ih, где i -- число повторений), поскольку возможны многократные повторения.

Во избежание усложнения и удорожания приемников системы с РОС-нп строят в основном таким образом, что после обнаружения ошибки приемник стирает комбинацию с ошибкой и блокируется на h комбинаций (т.е. не принимает h последующих комбинаций), а передатчик по сигналу переспроса повторяет h последних комбинаций (комбинацию с ошибкой и h--1, следующий за ней). Такие системы с РОС-нп получили название систем с блокировкой РОС-нпбл. Эти системы позволяют организовать непрерывную передачу кодовых комбинаций с сохранением порядка их следования.

Рисунок 1 - Структурная схема системы с РОС

3. Определение n, k, r, при наибольшей пропускной способности R.

Длина кодовой комбинации n должна быть выбрана таким образом, чтобы обеспечить наибольшую пропускную способность канала связи. При использовании корректирующего кода кодовая комбинация содержит n разрядов, из которых k разрядов являются информационными, а r разрядов - проверочными:

Рисунок 2 - Структурная схема алгоритма системы с РОС-нпбл

Если в системе связи используются двоичные сигналы (сигналы типа «1» и «0») и каждый единичный элемент несет не более одного бита информации, то между скоростью передачи информации и скоростью модуляции существует соотношение:

C = (k/n)*B, (1)

где С - скорость передачи информации, бит/с;

В - скорость модуляции, Бод.

Очевидно, что тем меньше r, тем больше отношение k/n приближается к 1, тем меньше отличается С и В, т.е. тем выше пропускная способность системы связи.

Известно также, что для циклических кодов с минимальным кодовым расстоянием d 0 =3 справедливо соотношение:

Приведенное утверждение справедливо для больших d 0 , хотя точных соотношений для связей между r и n нет. Существуют только верхние и нижние оценки, указанные.

Из изложенного можно сделать вывод, что с точки зрения внесения постоянной избыточности в кодовую комбинацию выгодно выбирать длинные кодовые комбинации, так как с увеличением n относительная пропускная способность увеличивается, стремясь к пределу, равному 1:

В реальных каналах связи действуют помехи, приводящие к появлению ошибок в кодовых комбинациях. При обнаружении ошибки декодирующим устройством в системах с РОС производится переспрос группы кодовых комбинаций. Во время переспроса полезная информации уменьшается.

Можно показать, что в этом случае:

где Р 00 - вероятность обнаружения ошибки декодером (вероятность переспроса);

Р ПП - вероятность правильного приема (безошибочного приема) кодовой комбинации;

М - емкость накопителя передатчика в числе кодовых комбинаций.

При малых вероятностях ошибки в канале связи (Р ош. < 10 -3) вероятность Р 00 также мала, поэтому знаменатель мало отличается от 1 и можно считать:

При независимых ошибках в канале связи, при:

Емкость накопителя:

Знак < > - означает, что при расчете М следует брать большее ближайшее целое значение.

где L - расстояние между оконечными станциями, км;

v - скорость распространения сигнала по каналу связи, км/с;

B - скорость модуляции, Бод.

После простейших подстановок окончательно имеем

Нетрудно заметить, что при Р ош = 0 формула (8) превращается в формулу (3).

При наличии ошибок в канале связи величина R является функцией P ош, n, k, B, L, v. Следовательно, существует оптимальное n (при заданных P ош, B, L, v), при котором относительная пропускная способность будет максимальной.

Формула (8) еще более усложняется в случае зависимых ошибок в канале связи (при пакетировании ошибок).

Выведем эту формулу для модели ошибок Пуртова.

Как показано в , число ошибок t об в комбинации, длинной в n разрядов, определяется формулой 7.38 . Для обнаружения такого числа ошибок находим циклический код с кодовым расстоянием d 0 не менее. Поэтому, согласно формуле 7.38 , необходимо определить вероятность:

Как показано , с некоторым приближением можно связать вероятность с вероятностью не обнаружения декодером ошибки Р НО и числом проверочных разрядов в кодовой комбинации:

Подставляя значение в (9) с заменой t об на d 0 -1, имеем:

При расчетах на микрокалькуляторах удобнее пользоваться десятичными логарифмами.

После преобразований:

Возвращаясь к формулам (6) и (8) и производя замену k на n-r с учетом значения r, из формулы (11) получим:

Второй член формулы (8) с учетом группирования ошибок по соотношению 7.37 примет вид:

Определим оптимальную длину кодовой комбинации n, обеспечивающую наибольшую относительную пропускную способность R и число проверочных разрядов r обеспечивающих заданную вероятность необнаруженной ошибки Рош.

Таблица 1 - заданная вероятность необнаруженной ошибки Рош

Из таблицы 1 видно, что наибольшую пропускную способность

R = 0.9127649 обеспечивает циклический код с параметрами n =511, r = 7, k = 504.

Образующий полином степени r находим по таблице неприводимых полиномов (приложение А к настоящему МУ).

Выберем, для r = 7 полином g(x)=x 7 +x 4 +x 3 +x 2 +1

4. Построение схем кодера и декодера для выбранного g(x) полинома

а) Построим кодирующее устройство циклического кода.

Работа кодера на его выходе характеризуется следующими режимами :

1.Формирование k элементов информационной группы и одновременно деление полинома, отображающего информационную часть х r m(х), на порождающий (образующий) полином g(х) с целью получения остатка от деления r(х).

2. Формирование проверочных r элементов путем считывания их с ячеек схемы деления х r m(х) на выход кодера.

Структурная схема кодера приведена на рисунке 2.

Цикл работы кодера для передачи n = 511 единичных элементов составляет n тактов. Тактовые сигналы формируются передающим распределителем, который на схеме не указан.

Первый режим работы кодера длится k = 504 тактов. От первого тактового импульса триггер Т занимает положение, при котором на его прямом выходе появляется сигнал "1", а на инверсном - сигнал "0". Сигналом "1" открываются ключи (логические схемы И) 1 и 3. Сигналом "0" ключ 2 закрыт. В таком состоянии триггер и ключи находятся k+1 тактов, т.е. 505 тактов. За это время на выход кодера через открытый ключ 1 поступят 504 единичных элементов информационной группы k =504.

Одновременно через открытый ключ 3 информационные элементы поступают на устройство деления многочлена х r m(х) на g(х).

Деление осуществляется многотактным фильтром с числом ячеек, равным числу проверочных разрядов (степени порождающего полинома). В моем случае число ячеек г=7. Число сумматоров в устройстве равно числу ненулевых членов g(х) минус единица (примечание на стр. 307 ). В нашем случае число сумматоров равно четырем. Сумматоры устанавливаются после ячеек, соответствующих ненулевым членам g(х). Поскольку все неприводимые полиномы имеют член х 0 =1, то соответствующий этому члену сумматор установлен перед ключом 3 (логической схемой И).

После k=504 тактов в ячейках устройства деления окажется записанным остаток от деления г(х).

При воздействии k+1= 505 тактового импульса триггер Т изменяет свое состояние: на инверсном выходе появляется сигнал "1", а на прямом - "0". Ключи 1 и 3 закрываются, а ключ 2 открывается. За оставшиеся r=7 тактов элементы остатка от деления (проверочная группа) через ключ 2 поступают на выход кодера, также начиная со старшего разряда.

Рисунок 3 - Структурная схема кодера

б) Построим декодирующее устройство циклического кода.

Функционирование схемы декодера (рисунок 3) сводится к следующему. Принятая кодовая комбинация, которая отображается полиномом Р(х) поступает в декодирующий регистр и одновременно в ячейки буферного регистра, который содержит k ячеек. Ячейки буферного регистра связаны через логические схемы "нет", пропускающие сигналы только при наличии "1" на первом входе и "О" - на втором (этот вход отмечен кружочком). На вход буферного регистра кодовая комбинация поступит через схему И 1 . Этот ключ открывается с выхода триггера Т первым тактовым импульсом и закрывается k+1 тактовым импульсом (полностью аналогично работе триггера Т в схеме кодера). Таким образом, после k=504 тактов информационная группа элементов будет записана в буферный регистр. Схемы НЕТ в режиме заполнения регистра открыты, ибо на вторые входы напряжение со стороны ключа И 2 не поступает.

Одновременно в декодирующем регистре происходит в продолжение всех n=511 тактов деление кодовой комбинации (полином Р(х) на порождающий полином g(х)). Схема декодирующего регистра полностью аналогична схеме деления кодера, которая подробно рассматривалась выше. Если в результате деления получится нулевой остаток - синдром S(х)=0, то последующие тактовые импульсы спишут информационные элементы на выход декодера.

При наличии ошибок в принятой комбинации синдром S(х) не равен 0. Это означает, что после n - го (511) такта хотя бы в одной ячейке декодирующего регистра будет записана “1”.Тогда на выходе схемы ИЛИ появится сигнал. Ключ 2 (схема И 2) сработает, схемы НЕТ буферного регистра закроются, а очередной тактовый импульс переведет все ячейки регистра в состояние "0". Неправильно принятая информация будет стерта. Одновременно сигнал стирания используется как команда на блокировку приемника и переспрос.

5. Определение объема передаваемой информации W

Пусть требуется передавать информации за временной интервал Т, который называется темпом передачи информации. Критерий отказа t отк - это суммарная длительность всех неисправностей, которая допустима за время Т. Если время неисправностей за промежуток времени Т превысит t отк, то система передачи данных будет находиться в состоянии отказа.

Следовательно, за время Т пер -t отк можно передать С бит полезной информации. Определим W для рассчитанного ранее R = 0,9281713, В=1200 бод, Т пер =460 с., t отк =60 с.

W=R*B*(Tпер-tотк)=445522 бит

6. Построение схем кодирующего и декодирующего устройства циклического кода в среде System View

Рисунок 4 - Кодер циклического кода

Рисунок 5 - Выходной и входной сигнал кодера

Рисунок 7 - Входной сигнал декодера, ошибочный бит и выходной синдром

7. Нахождение емкости и построение временной диаграммы

Найдем емкость накопителя:

М=<3+(2 t p /t k)> (13)

где t p - время распространения сигнала по каналу связи, с;

t k - длительность кодовой комбинации из n разрядов, с.

Эти параметры находятся из следующих формул:

t p =L/v=4700/80000=0,005875 c (14)

h=1+ (16)

где t ож = 3t к +2t p +t ак + t аз =0,6388+0,1175+0,2129+0,2129=1,1821 с,

где t ак, t аз - время анализа в приемнике, t 0 - длительность единичного импульса:

h=1+<1,1821/511 8,333 10 -4 >=3

8. Расчет надежностных показателей основного и обходного каналов

Вероятность появления ошибки известна (Р ош =0,5 10 -3), полная вероятность будет складываться из суммы следующих составляющих р пр - правильный прием, р но - необнаружения ошибки, р об - вероятность обнаружения ошибки декодером (вероятность переспроса).

Зависимость вероятности появления искаженной комбинации от ее длины характеризуется как отношение числа искажения кодовых комбинаций N ош (n) к общему числу переданных комбинаций N(n):

Вероятность Р(?1,n) является не убывающей функцией n. При n=1 Р(?1,n)=р ош, а при n>? вероятность Р(?1,n) >1:

Р(?1,n)=(n/d 0 -1) 1- б р ош, (17)

Р(?1,n)=(511/5) 1-0,5 0,5 10 -3 =5,05 10 -3 ,

При независимых ошибках в канале связи, при n р ош <<1:

р об? n р ош (18)

р об =511 0,5 10 -3 =255,5 10 -3

Сумма вероятностей должна быть равна 1, т.е. имеем:

р пр + р но + р об =1 (19)

р пр +5,05 10 -3 +255,5 10 -3 =1

Временная диаграмма (рисунок 9) иллюстрирует работу системы с РОС НПбл при обнаружении ошибки во второй комбинации в случае с h=3. Как видно из диаграммы, передача комбинации ИИ осуществляется непрерывно до момента получения передатчиком сигнала переспроса. После этого передача информации от ИИ прекращается на время t ож и 3 комбинаций начиная со второй. В это время в приемнике стираются h комбинаций: вторая комбинация, в которой обнаружена ошибка (отмечена звездочкой) и 3 последующих комбинаций (заштрихованы). Получив переданные из накопителя комбинации (от второй до 5-ой включительно) приемник выдает их ПИ, а передатчик продолжает передачу шестой и последующих комбинаций.

Рисунок 8 - Временные диаграммы работы системы с РОС-нпбл

9. Выбор магистрали по карте

Рисунок 9 - Магистраль Актюбинск - Алматы - Астана

Заключение

При выполнении курсовой работы была рассмотрена сущность модели частичного описания дискретного канала (модель Пуртова Л.П.), а также система с решающей обратной связью, непрерывной передачей и блокировкой приемника.

По заданным значениям были рассчитаны основные параметры циклического кода. В соответствии с ними был выбран тип порождающего полинома. Для этого полинома построены схемы кодера и декодера с пояснением принципов их работы. Эти же схемы были реализованы с применением пакета «System View». Все результаты проведенных экспериментов представлены в виде рисунков, подтверждающих правильность работы собранных схем кодера и декодера.

Для прямого и обратного дискретного канала передачи данных были рассчитаны основные характеристики: вероятность необнаруживаемой и обнаруживаемой циклическим кодом ошибки и др. Для системы РОС нпбл по рассчитанным параметрам были построены временные диаграммы, поясняющие принцип работы этой системы.

По географической карте Казахстана были выбраны два пункта (Актюбинск - Алматы - Астана). Выбранная между ними магистраль протяженностью 4700 км была разбита на участки длинной 200-700 км. Для наглядного представления в работе представлена карта.

Анализируя заданный показатель группирования ошибок, можно сказать, что в работе был произведен основной расчет для проектирования кабельных линий связи, так как, т.е. лежит в пределах 0,4-0,7.

Список литературы

1 Скляр Б. Цифровая связь. Теоретические основы и практическое применение: 2-е изд. /Пер. с англ. М.: Издательский дом «Вильямс», 2003. 1104 с.

2 Прокис Дж. Цифровая связь. Радио и связь, 2000.-797с.

3 А.Б. Сергиенко. Цифровая обработка сигналов: Учебник для вузов. - М.: 2002.

4 Фирменный стандарт. Работы учебные. Общие требования к построению, изложению, оформлению и содержанию. ФС РК 10352-1910-У-е-001-2002. - Алматы: АИЭС, 2002.

5 1 Шварцман В.О., Емельянов Г.А. Теория передачи дискретной информации. - М.: Связь, 1979. -424 с.

6 Передача дискретных сообщений / Под ред. В.П. Шувалова. - М.: Радио и связь, 1990. - 464 с.

7 Емельянов Г.А., Шварцман В.О. Передача дискретной информации. - М.: Радио и связь, 1982. - 240 с.

8 Пуртов Л.П. и др. Элементы теории передачи дискретной информации. - М.: Связь, 1972. - 232 с.

9 Колесник В.Д., Мирончиков Е.Т. Декодирование циклических кодов. - М.: Связь, 1968.

Подобные документы

    Модель частичного описания дискретного канала (модель Л. Пуртова). Определение параметров циклического кода и порождающего полинома. Построение кодирующего и декодирующего устройства. Расчет характеристик для основного и обходного канала передачи данных.

    курсовая работа , добавлен 11.03.2015

    Модели частичного описания дискретного канала. Система с РОС и непрерывной передачей информации (РОС-нп). Выбор оптимальной длины кодовой комбинации при использовании циклического кода в системе с РОС. Длина кодовой комбинации.

    курсовая работа , добавлен 26.01.2007

    Технические системы сбора телеметрической информации и охраны стационарных и подвижных объектов, методы обеспечения целостности информации. Разработка алгоритма и схемы работы кодирующего устройства. Расчет технико-экономической эффективности проекта.

    дипломная работа , добавлен 28.06.2011

    Исследование и специфика использования инверсного кода и Хемминга. Структурная схема устройства передачи данных, его компоненты и принцип работы. Моделирование датчика температуры, а также кодирующего и декодирующего устройства для инверсного кода.

    курсовая работа , добавлен 30.01.2016

    Проектирование среднескоростного тракта передачи данных между двумя источниками и получателями. Сборка схемы с применением пакета "System View" для моделирования телекоммуникационных систем, кодирующего и декодирующего устройства циклического кода.

    курсовая работа , добавлен 04.03.2011

    Расчет числа каналов на магистрали. Выбор системы передачи, определение емкости и конструктивный расчет оптического кабеля. Выбор и характеристика трассы междугородной магистрали. Расчет сигнала, числовой апертуры, нормированной частоты и числа мод.

    курсовая работа , добавлен 25.09.2014

    Модель частичного описания дискретного канала, модель Пуртова Л.П. Структурная схема системы с РОСнп и блокировкой и структурная схема алгоритма работы системы. Построение схемы кодера для выбранного образующего полинома и пояснение его работы.

    курсовая работа , добавлен 19.10.2010

    Классификация систем синхронизации, расчет параметров с добавлением и вычитанием импульсов. Построение кодера и декодера циклического кода, диаграммы систем с обратной связью и ожиданием для неидеального обратного канала, вычисление вероятности ошибок.

    курсовая работа , добавлен 13.04.2012

    Сущность кода Хэмминга. Схемы кодирующего устройства на четыре информационных разряда и декодера. Определение числа проверочных разрядов. Построение корректирующего кода Хэмминга с исправлением одиночной ошибки при десяти информационных разрядах.

    курсовая работа , добавлен 10.01.2013

    Изучение закономерностей и методов передачи сообщений по каналам связи и решение задачи анализа и синтеза систем связи. Проектирование тракта передачи данных между источником и получателем информации. Модель частичного описания дискретного канала.

Дискретный канал предназначен для передачи дискретных сигналов (символов). При передаче по такому каналу сообщение представляется некоторой последовательностью элементарных дискретных сообщений , принадлежащих конечному множеству. В результате помехоустойчивого кодирования последовательность заменяется другой последовательностью , которая ставится в соответствие сообщению . Последовательность , состоящая из кодовых символов , подается на вход дискретного канала. Кодовые символы обычно (но не всегда) являются цифрами двоичной системы счисления. Таким образом, сообщение на входе дискретного канала может быть представлено последовательностью , где - номер позиции, а - дискретная случайная величина, принимающая значение 0 и 1. Сообщение на выходе дискретного канала также представляется в виде , где , а - аналогичная случайная величина. В идеальном случае, при отсутствии помех и искажений, для всех .

Ограничения на входные символы дискретного канала обычно задаются указанием алфавита символов и скорости их следования. Основной характеристикой дискретного канала является вероятность того или иного изменения символа на данной позиции. Эта характеристика определяется теми преобразованиями, которые претерпевает символ при передаче по каналу:

Смещение во времени (задержка символов);

Отличие на некоторых позициях выходных символов от входных (аддитивные ошибки);

Смещение номеров позиций выходной последовательности относительно номеров входной (ошибки синхронизации);

Появление на некоторых позициях символов стирания (невозможность принять надежное решение по какому-либо символу).

Первый фактор (задержка) является детерминированным или содержит детерминированную и случайную составляющие. Все остальные факторы случайны.

При действии рассмотренных факторов основная характеристика дискретного канала – вероятность искажения символа на определенной позиции – зависит от номера позиции, от значения передаваемого и всех ранее переданных символов.

Так определяются характеристики для нестационарного несимметричного канала с неограниченной памятью. Полное описание таких каналов задается совокупностью условных (переходных) вероятностей вида , т.е. вероятностей того, что выходные символы примут значения , если входные символы имеют значения , где и - номера позиций последовательностей и , - длина конечной последовательности (сообщение).

Естественно, что эти вероятности должны быть известны при любых и . Если рассматриваются стационарные каналы с идеальной синхронизацией, то полное описание канала задается системой переходных вероятностей . Располагая этой системой вероятностей, можно, например, найти такую важную характеристику, как пропускную способность дискретного канала.

В ряде случаев, особенно при анализе методов повышения достоверности, дискретный канал удобно описывать методами случайных процессов, а не заданием системы условных вероятностей рассмотренного вида.

Для канала с идеальной синхронизацией используется понятие потока ошибок. Поток представляет собой дискретный случайный процесс Е (иногда используется термин «последовательность ошибок»). Каждая позиция потока Е складывается по определенному правилу с соответствующей позицией процесса Y.

В общем случае реализации потока ошибок зависят от реализации помех в непрерывном канале, вида модели и реализации процесса Y. Так, например, при стационарном канале и стационарной передаваемой последовательности Y поток ошибок также будет стационарным.

Существует тип дискретного канала, для которого характеристики потока ошибок не зависят от вида информации, передаваемой по каналу. Такой тип канала принято называть симметричным. В этом случае переходные вероятности имеют вид , где - реализация потока ошибок.

Из изложенного следует, что модель двоичного канала это, но сути дела, статистическое описание двоичной последовательности Е. Полное описание таких последовательностей достигается на основе многомерных распределений, например, интервалов между элементами последовательности или через многомерные переходные вероятности. Располагая математической моделью, дающей полное описание ошибок двоичного симметричного канала, можно определить любую характеристику методов повышения достоверности при передаче информации по такому каналу. Наиболее удобный вариант модели для проектирования задается теорией случайных процессов в виде потока ошибок.

Представляется логичным и достаточно удобным рассматривать поток ошибок дискретного канала связи как ступенчатый случайный процесс. Такой подход позволяет при исследовании каналов связи использовать многочисленные важные результаты, полученные для случайных процессов.

Выделим среди различных способов задания потоков следующие два.

Первый способ описания потоков. Для задания потоков ошибок этим способом необходимо для любого натурального числа и произвольного набора чисел , указать r -мерную функцию распределения случайного вектора , где - количество ошибок, появившихся в промежутке времени , или найти

Где - начало отсчета времени.

Таким образом, есть вероятность того, что на последовательно расположенных промежутках времени (откладываемого от момента времени ), появится соответственно ошибок. Это распределение полностью определяет поток ошибок. На практике (1) наиболее часто используется для , что соответствует одномерному распределению числа ошибок в промежутке времени :

Для стационарного потока зависимость от отсутствует.

Второй способ описания потоков. Пусть - моменты наступления событий потока ошибок. Можно определить поток, задав распределение - мерного вектора:

Однако часто удобнее получать распределение моментов наступления событий потока не на основе , а несколько иначе. Положим , тогда поток считается заданным, если определено - мерное распределение вектора , т.е.

Если , то имеем одномерную функцию распределения интервалов, которая в общем случае может зависеть от номера интервала, что отражается следующим образом:

.


Владельцы патента RU 2254675:

Изобретение относится к области техники связи и может быть использован для моделирования дискретного канала связи с независимыми и группирующимися ошибками. Сущность изобретения состоит в том, что определяют множество состояний канала связи s 0 , s 1 ,..., s m-1 и вычисляют условные вероятности P(e/s) возникновения ошибки в каждом состоянии s>>i=0,..., m-1 канала связи и в соответствии с условной вероятностью ошибки для текущего состояния канала связи получают ошибки в канале связи, при этом определяют вероятность появления безошибочного интервала р(0 i) длиной i бит, по которым на основе вероятностей p(0 i) по рекуррентным правилам вычисляют условные вероятности p(0 i 1/11), p(0 i 1/01) безошибочных интервалов длины i бит в каждый текущий момент времени и предшествующий этому моменту времени при условии, что для генерации ошибок используют два состояния канала связи, соответствующие комбинации ошибок 11 или 01, генерируют равномерно распределенное в интервале от 0 до 1 случайное число р, осуществляют суммирование условных вероятностей p(0 i 1/11), p(0 i 1/01), начиная с i=0, и в результате получают последовательность 0 k 1, которая составляет побитный поток ошибок канала связи. Технический результат, достигаемый при осуществлении изобретения, состоит в повышении быстродействия. 1 табл.

Изобретение относится к области техники связи и может быть использовано для моделирования дискретного канала связи с независимыми и группирующимися ошибками.

Способ, описанный в настоящей заявке, может применяться для моделирования двоичного симметричного канала связи и позволяет получать побитный поток ошибок, необходимый для испытаний аппаратуры передачи данных.

Для сравнения возможных способов построения системы связи и прогнозирования ее характеристик без непосредственных экспериментальных испытаний необходимо располагать различными характеристиками входящих в нее каналов. Описание канала, позволяющее рассчитать или оценить его характеристики, называют моделью канала.

Во всем мире телекоммуникационные устройства тщательно тестируются на предмет соответствия требованиям подключения к сети связи (С1-ТЧ и С1-ФЛ в России; FCC Part 65, Part 15 в США; BS6305 в Великобритании). Испытания проводятся в сертификационных центрах и лабораториях МинСвязи, МПС, ФАПСИ, МВД, МО и т.п. - во всех ведомствах, имеющих свои каналы связи.

Крупные банки, государственные ведомства, владельцы сетей передачи данных - все те, кто активно эксплуатируют средства передачи данных, вынуждены проводить их сравнительные испытания. Пользователей интересует устойчивость устройств к различным помехам и искажениям.

Для проведения подобных сравнительных тестов используются различные модели каналов связи, позволяющие получать побитный поток ошибок канала связи.

Во многих случаях канал связи определяют блочной статистикой ошибок канала связи. Под блочной статистикой ошибок канала связи понимают распределение P(t,n) вероятностей t ошибок в блоке длины n бит для различных значений t и n (t≤n). Например, модель канала связи по Пуртову задается блочной статистикой ошибок канала связи. Предлагаемый способ позволяет на основании блочной статистики ошибок канала связи получать побитный поток ошибок канала, необходимый для проведения испытаний различных устройств.

Известен способ моделирования канала связи с независимыми ошибками, при котором сначала вычисляют среднюю вероятность ошибки на бит в канале, а затем в соответствии с этой вероятностью получают ошибки в канале связи .

Недостатком этого способа является ограниченная область его применения, поскольку распределение ошибок в реальных каналах связи существенным образом отличается от распределения независимых ошибок.

Наиболее близким к предлагаемому способу является способ моделирования канала связи с группирующимися ошибками по марковской модели канала (прототип), заключающийся в том, что сначала определяют множество состояний канала связи s 0 , s 1 ,..., s m-1 и вычисляют условные вероятности P(e/s i) возникновения ошибки в каждом состоянии s i , i=0,..., m-1 канала связи. Далее в соответствии с условной вероятностью ошибки для текущего состояния канала связи получают ошибки в канале связи. При этом следующее состояние канала связи определяется переходными вероятностями P(s j /s i), соответствующими переходу из текущего состояния s i в следующие состояния канала связи s j .

Недостатком этого способа является высокая сложность моделирования канала связи по блочной статистике канала связи, поскольку при построении марковской модели по блочной статистике канала связи необходим большой объем вычислений для определения параметров марковской модели. При этом во многих случаях для получения преемлемой точности марковская модель будет иметь большое число состояний, что усложняет получение побитной статистики канала связи. Кроме того, этот способ имеет низкое быстродействие, обусловленное тем, что в каждом состоянии канала связи генерируется только один бит потока ошибок, а затем принимается решение о переходе в следующее состояние.

Цель изобретения - упрощение моделирования канала связи за счет получения потока ошибок непосредственно по блочной статистике канала связи и повышение быстродействия, поскольку в каждом состоянии канала связи может генерироваться последовательность ошибок, состоящая из одного или более бит, и только после этого принимается решение о переходе в следующее состояние канала связи.

Для достижения цели предложен способ, заключающийся в том, что сначала определяют множество состояний канала связи s 0 , s 1 ,..., s m-1 и вычисляют условные вероятности P(e/s i) возникновения ошибки в каждом состоянии s i , i=0,..., m-1 канала связи. Далее в соответствии с условной вероятностью ошибки для текущего состояния канала связи получают ошибки в канале связи. Новым является то, что каждое состояние канала связи соответствует событию возникновения определенной комбинации ошибок s i =0 i 1 в моменты времени, предшествующие текущему моменту времени, где 0 i 1=0...01 - двоичная комбинация, состоящая из i подряд идущих позиций, в которых отсутствует ошибка, и одной позиции, в которой имеет место ошибка, при этом для каждого из состояний канала связи вычисляют условные вероятности Р(0 k 1/s i), и ошибки в канале связи получают в виде последовательности вида 0 k 1 в соответствии с условной вероятностью Р(0 k 1/s i).

Реализацию предлагаемого способа моделирования канала связи рассмотрим на примере построения модифицированной модели канала связи по Пуртову .

Модифицированная модель канала связи по Пуртову задается блочной статистикой канала связи. Согласно модифицированной модели канала связи по Пуртову вероятность t и более ошибок (t≥2) в блоке длины n бит выражается формулой:

где р - средняя вероятность ошибок (р<0.5),

а - коэффициент группирования ошибок (0≤а≤1), значение а=0 приближенно соответствует каналу с независимыми ошибками, а=1 - каналу, когда все ошибки сосредоточены в одной группе,

Вероятность искажения кодовой комбинации равна

Эта модель ошибок определяется всего двумя параметрами р и а и при различных параметрах модели достаточно точно описывает многие реальные каналы связи.

Блочная статистика этого канала связи определяется уравнением

Блочная статистика канала позволяет во многих случаях достаточно просто получать различные характеристики системы связи, например определять достоверность приема сообщений, защищенных помехоустойчивым кодом. Вероятность правильного приема помехоустойчивого кода, исправляющего t ошибок и имеющего блоковую длину n, оценивается по формуле:

К сожалению, задание блочной статистики канала связи в модифицированной модели канала связи по Пуртову вызывает существенные затруднения при получении побитного потока ошибок, необходимого для испытаний аппаратуры передачи данных.

Поэтому предложен способ, который генерирует побитный поток ошибок, удовлетворяющий блочной статистике канала связи, в частности блочной статистике модифицированной модели канала связи по Пуртову.

Рассматривают двоичный симметричный канал. Пусть р(0 i) - вероятность появления безошибочного интервала длиной i бит, i=0,1,.... Эту вероятность вычисляют на основании формулы (2)

p(0 i)=1-P(≥1,i).

При построении модели канала по экспериментальным данным распределение вероятностей длин безошибочных интервалов определяют непосредственно по статистике ошибок реального канала связи.

На основе распределения вероятностей р(0 i) далее вычисляют следующие распределения вероятностей р(0 i 1), p(10 i 1), p(10 i 11), где 1 означает ошибочный бит.

Эти вероятности вычисляют по следующим рекуррентным правилам

откуда

Справедливо

Предлагаемый способ использует условные вероятности

где безусловные вероятности p(10 i+1 1) и p(110 i 1) вычисляют по формулам (5) и (7) соответственно, а p(11)=1-2×р(0)+р(00) и р(01)=р(0)-р(00).

Условные вероятности p(0 i 1/11) и p(0 i 1/01) задают вероятности безошибочных интервалов длины i бит при условии, что до этого моделью генерировалась комбинация 11 или 01 и для генерации ошибок используется всего два состояния канала связи, соответствующие комбинации ошибок 11 и 01. В нашей модели только такие комбинации ошибок и могут быть в моменты времени, предшествующие текущему моменту, поскольку генерируются последовательности вида 0 i 1. При i=0 состояние канала связи будет соответствовать комбинации 11, а при i>0 - состоянию 01. Определив в текущий момент времени состояние канала связи, далее по формулам (8) и (9) вычисляем условные вероятности р(0 i 1/11) и р(0 i 1/01) и в соответствии с этими вероятностями определяем последовательность вида 0 k 1, которая и составляет побитный поток ошибок канала связи. При этом сначала генерируют равномерно распределенное в интервале от 0 до 1 случайное число р и осуществляют суммирование условных вероятностей p(0 i 1/11) либо p(0 i 1/01), начиная с i=0, и в результате получают последовательность 0 k 1, которую выбирают по следующему правилу

где символ # может принимать значение 0 либо 1.

Отметим, что для повышения быстродействия модели канала длины неискаженных интервалов k для каждого случайного числа р, взятого с некоторой допустимой погрешностью, можно вычислить заранее перед началом моделирования и поместить в таблицу, входом которой будет величина р, а выходом - длина неискаженного интервала k. В процессе моделирования длины неискаженных интервалов тогда будут определяться по таблице, отображающей функциональную зависимость между р и k. Поскольку объем таблицы ограничен, "хвост" распределения, отображающий зависимость между р и k, не попавший в таблицу, следует аппроксимировать подходящей аналитической зависимостью, например прямо пропорциональной зависимостью (прямой). При этом события, соответствующие "хвосту" распределения, как правило, маловероятны и погрешность аппроксимации не существенно влияет на точность моделирования.

Пример. В таблице приведена блочная статистика P 1 (t,n) модифицированной модели канала связи по Пуртову, рассчитанная по формулам (1) и (2), и аналогичная статистика P 2 (t,n) потока ошибок для предлагаемого способа моделирования канала связи. Параметры модифицированной модели канала связи по Пуртову: р=0.01, а=0.3, длина блока n=31, объем потока ошибок составлял 1000000 бит.

Статистический критерий согласия хи - квадрат для теоретического P 1 (t,n) и экспериментального P 2 (t,n) распределения вероятностей будет равен χ 2 =0.974, что говорит о высокой степени приближения предлагаемой модели и модифицированной модели канала связи по Пуртову.

В предлагаемом способе получение побитного потока ошибок канала связи осуществляется непосредственно на основе блочной статистики канала связи, в частности способ основан на использовании статистики неискаженных интервалов. Во многих случаях это позволяет упростить построение модели канала. Например, для сравнения, марковская модель модифицированной модели канала связи по Пуртову, позволяющая генерировать побитный поток ошибок и обеспечивающая преемлемую точность, будет иметь не менее 7 состояний. Число независимых параметров такой модели составляет соответственно не менее 49. Причем для получения параметров марковской модели по блочной статистике требуется большой объем вычислений. Рассматриваемый способ, даже при генерации потока ошибок на основе всего лишь двух состояний канала связи, обеспечивает высокую точность модели, что упрощает реализацию способа. Кроме того, в каждом состоянии канала сразу получают последовательность ошибок вида 0 k 1, состоящую из одного или большего числа бит, что увеличивает быстродействие способа.

Достигаемым техническим результатом предлагаемого способа моделирования канала связи является упрощение его реализации и повышение быстродействия.

Источники информации

1. Зелигер Н.Б. Основы передачи данных. Учебное пособие для вузов, М., Связь, 1974, стр.25.

2. Блох Э.Л., Попов О.В., Турин В.Я. Модели источника ошибок в каналах передачи цифровой информации. М.: 1971, стр.64.

3. Самойлов В.М. Обобщенная аналитическая модель канала с групповым распределением ошибок. Вопросы радиоэлектроники, сер. ОВР, вып. 6, 1990.

Способ моделирования канала связи, заключающийся в том, что определяют множество состояний канала связи s 0 , s 1 ,..., s m-1 и вычисляют условные вероятности P(e/s i) возникновения ошибки в каждом состоянии s i , где i=0,..., m-1 канала связи, и в соответствии с условной вероятностью ошибки для текущего состояния канала связи получают ошибки в канале связи, отличающийся тем, что определяют вероятность появления безошибочного интервала р(0 i) длиной i бит, по которым на основе вероятностей р(0 i) по рекуррентным правилам вычисляют условные вероятности p(0 i 1/11), p(0 i 1/01) безошибочных интервалов длины i бит в каждый текущий момент времени и предшествующий этому моменту времени, при условии, что для генерации ошибок используют два состояния канала связи, соответствующих комбинации ошибок 11 или 01, генерируют равномерно распределенное в интервале от 0 до 1 случайное число р, осуществляют суммирование условных вероятностей p(0 i 1/11), p(0 i 1/01), начиная с i=0, и в результате получают последовательность 0 k 1, которая составляет побитный поток ошибок канала связи.

Похожие патенты:

Изобретение относится к системам кодирования и декодирования. .

Изобретение относится к вычислительной технике и технике приема передачи сообщений и может применяться для повышения достоверности приема последовательной информации Цель изобретения - повышение достоверности приема последовательной информации.

Изобретение относится к области кодирования дискретной информации и может быть использовано для передачи информации. Техническим результатом является повышение достоверности передачи информации. Способ основан на преобразовании кодируемой информации в фазовые соотношения двух отрезков рекуррентных последовательностей на стороне передачи и обратных преобразованиях на стороне приема. 6 ил.

Изобретение относится к области информационной безопасности. Технический результат - высокий уровень криптозащиты переговорных процессов от их перехвата за счет использования алгоритмов криптографического кодирования. Способ шифрования/дешифрования аналоговых сигналов, состоящих из потока областей с n-множеством оцифрованных данных циклов квантования по Котельникову заключается в том, что при шифровании из области потока поступающих данных размерностью n-циклов квантования формируется кадр шифрования, затем из этих n-циклов квантования посредством вычислительных операций формируется достаточное количество кодированных циклов квантования, обладающих отличительными признаками от остальных циклов квантования кадров шифрования, далее, кадры шифрования подвергаются относительной перестановке порядка их следования в соответствии ключа шифрования, представляющего собой массив набора управляющих кодовых слов данного алгоритма криптографического кодирования и в пошаговом режиме цифроаналогового преобразования в виде непрерывного потока неразрывно следующих кадров шифрования выдается на канал связи, как шумоподобный выходной аналоговый сигнал. На приемной стороне канала связи дешифрация процесс дешифрования поступающего потока данных начинается с режима пошаговых операций циклов квантования для поиска и выделения из потока поступающих данных кадра шифрования, используя при этом соответствующее ключу шифрования распределение кодированных циклов квантования, имеющих свои отличительные признаки. В этих пошаговых операциях поиска и определения кадра шифрования применяется процесс вычисления корреляционной функции совпадения наборов кодовых слов ключей передающей и приемной сторон, при этом массив набора кодовых слов ключа дешифрования представляет собой алгоритм криптографического декодирования поступающих зашифрованных данных. После определения из потока поступающих данных кадра шифрования и совпадения набора кодовых слов ключей, осуществляется формирование посредством цифроаналогового преобразования восстановленных дешифрированных выходных аналоговых сигналов голосовой связи. Для защиты кодов ключа шифрования от возможного считывания и «взлома» на входе передающего канала предусматривается специальная программа цифровой заградительной фильтрации поступающего потока данных, также возможность применения большого количества вариантов ключей шифрования. 2 н.п. ф-лы.

Изобретение относится к области радиосвязи. Технический результат - повышение скорости передачи данных за счет оценки вероятности ошибки на бит при кодировании с помощью линейного блока помехоустойчивого кода. Способ оценки вероятности ошибки на бит, при котором источник сообщений формирует последовательность бит и передает ее на вход кодера, в котором с помощью линейного блокового кода кодируют последовательность, получая кодовое слово длиной n бит, а с выхода кодовое слово передают на вход модулятора, в котором осуществляют модуляцию и получают информационный сигнал, передают сигнал в канал связи, а с выхода канала связи передают сигнал на вход демодулятора, в котором получают принятую кодовую комбинацию, которая может содержать ошибки из-за наличия искажений в канале связи, передают кодовую комбинацию на вход декодера, в котором декодируют комбинацию и получают информационное слово, а также число q обнаруженных ошибок и с первого выхода декодера передают информационное слово на вход получателя сообщений, а со второго выхода декодера передают число q, равное количеству обнаруженных декодером ошибок в полученном кодовом слове, на вход блока проверки. 1 ил.

Изобретение относится к области техники связи и может быть использован для моделирования дискретного канала связи с независимыми и группирующимися ошибками

Дискретный канал связи (ДКС) имеет на входе множество символов кода X с энтропией источника Н(Х) , а на выходе - множество символов Y с энтропией H(Y) (рис. 42).

Если формируемые символы из множества X и вы­являемые из множества Y расположить в узлах графа, соединив эти узлы дугами, отображающими вероятности перехода одного сим­вола в другой, то получим модель дискретного канала связи, пред­ставленную на рис. 43.

Множество символов X конечно и определя­ется основанием системы счисления кода К х на входе канала. Систе­ма счисления по выявляемым символам также конечна и составляет К у . Вероятности переходов, связывающих входные и выходные сим­волы, могут быть записаны в виде матрицы

В этой матрице i-й столбец определяет вероятность выявления выходе дискретного канала связи символа у i . Вероятности, рас положенные на главной диагонали, называются вероятностями прохождения символов, остальные вероятности есть вероятность трансформации. Анализ модели дискретного канала связи возможен, если известна статистика появления символов на входе канала. Тогда может быть определена энтропия Н(Х) . Если известна стати­стика символов на выходе канала, то нетрудно установить энт­ропию Н(Y) . Потери информации могут быть вызваны действием помех, которые отображаются в дискретном канале в виде некото­рого потока ошибок. Поток ошибок задается с помощью опреде­ленной модели ошибок, на основании которой может быть установ­лена матрица Р . Зная эту матрицу, находят условную энтропию , которая, как выше показано, отображает потери инфор­мации при прохождении ее по каналу связи. В данном случае - это потери информации из-за действия ошибок в диск­ретном канале связи. Исходя из модели дискретного канала связи, можно выполнить классификацию дискретных каналов.

По основанию системы счисления коды на входе ДКС различают двоичные, троичные, четверичные каналы связи и дру­гие.

По соотношению системы счисления на выходе и на входе ДКС выделяют каналы со стиранием, если К у >К х , и каналы без стирания, если К у =К х .

По наличию зависимости вероятности переходов сим­волов в ДКС от времени выделяют нестационарные каналы, для которых такая зависимость существует, и стационарные каналы, где вероятности переходов постоянны. Нестационарные каналы могут быть классифицированы по наличию зависимости вероятности пе­реходов от предшествующих значений. Выделяют дискретные кана­лы с памятью, в которых такая зависимость имеет место, и дискрет­ные каналы без памяти, где этой зависимости не существует.

При определенных соотношениях между вероятностями перехо­дов, входящих в матрицу Р, выделяют: симметричные каналы по входу, для которых вероятности, входящие в строку матрицы. являются перестановками одних и тех же чисел; симметричные каналы по выходу, для которых это относится к вероятностям, входящим в столбцы; симметричные каналы по входу и по выходу при соблюдении обоих условий. На основе представленной клас­сификации матрица двоичного симметричного канала имеет вид

где Р - вероятность искажения символа.

Соответственно матрица двоичного симметричного канала со стиранием

где Р - вероятность трансформации; 1-Р-q - вероятность про­хождения символа; q - вероятность стирания символа.

Для гранич­ного случая двоичного симметричного канала без шума матрица переходов имеет вид

Граф К -го канала без шума представлен на рис. 44.

С использованием дискретного канала связи могут быть решены основные проблемы передачи. Для канала без шума - это выбор оптимального кода, который по своим свойствам согласуется с ис­точником, т. е. имеет наименьшую среднюю длину. Для канала с шумом - это выбор кода, который обеспечивает заданную веро­ятность передачи при максимально возможной скорости. Для реше­ния этих проблем рассмотрим основные характеристики ДКС.

Основной характеристикой дискретного канала является про­пускная способность , Под которой понимают верхний предел количества информации, которую можно передать через канал связи, отоб­ражаемый заданной моделью. Оценим пропускную способность дискретного канала связи. Количество взаимной информации, свя­зывающей множества символов X , Y , составит . Пропускная способность .

Раскроем данное выражение для отдельных вариантов дискретного канала связи.

Пропускная способность дискретного канала связи без шума . При отсутствии шума потерь информации в канале нет, а поэтому , тогда C=I max =H max (Y) . Как известно, максимум энтропии для дискретных событий достигается при их равновероятности. Учитывая, что на выходе канала связи может появиться К у символов, получим, что . Отсюда C=log 2 K у .

Таким образом, пропускная способность дискретного канала без шума зависит только от основания кода. Чем оно больше, тем выше информативное» каждого символа, тем больше пропускная способность. Пропускная способность измеряется в двоичных еди­ницах на символ и не связана в данном представлении со временем. При переходе от двоичного кода к четвертичному пропускная спо­собность ДКС без шума увеличивается в два раза.

Пропускная способность дискретного симметричного канала связи с шумом . Рассмотрим канал без стирания, для которого К x =К y =К . При наличии шума в ДКС входной символ x j переходит в символ у i , с вероятностью . Вероятность трансформации символа составит . Если ка­нал симметричен, то вероятности, входящие в данную сумму, одинаковы, а поэтому . Вероятность прохож­дения символа (рис. 45). Пропускная спо­собность рассматриваемого канала . Ранее показано, что H max (Y)=log 2 K ,

Принимая, что на входе ДКС символы равновероятны, т. е. , находим

Минимум условной энтропии достигается соответствующим вы­бором порога срабатывания приемной схемы, при котором обес­печивается минимальное значение вероятности трансформации Р . Отсюда пропускная способность

Видно, что она увеличивается с ростом основания кода и с уменьшением вероятности трансформации символа.

В случае двоичного симметричного канала с шумом пропускная способность может быть найдена при К=2 , т. е. С=1+(1-P)log 2 (1-P)+Plog 2 P . Зависимость пропускной способности двоичного симметричного канала от вероятности искажения символа представлена на рис. 46. При Р=0 получим С=1. С ростом вероят­ности искажения до 0,5 пропускная способность падает до нуля.

Рабочий диапазон дискретного канала соответствует вероятности Р<0,1. При этом пропускная способность близка к единице.

Пропускная способность двоичного симметричного канала со стиранием . Если на входе двоичного канала имеют место символы х 1 , х 2 , то при наличии стирания на выходе канала возникают символы у 1 , у 2 и символы стирания у 3 . Символ стирания формируется при наличии в приемном устройстве специальной зоны стирания, попадание в которую означает возникновение сим­вола неопределенности (стирания). Введение зоны стирания в при­емное устройство позволяет снизить вероятность трансформации символа Р за счет появления вероятности стирания символа q (рис. 47). Тогда вероятность прохождения символа составляет l-P-q . Пропускная способность . При наличии сим­вола стирания стремление к равновероятности символов на выходе канала не имеет смысла, поэтому энтропия на выходе H(Y) опреде­ляется как

,

где P(y i) - вероятность возникновения на выходе дискретного ка­нала символа у i .

Найдем вероятности возникновения символов на выходе при Условии, что символы на входе равновероятны, тогда

,

Соответственно условная энтропия

Отсюда пропускная способность

Опыт применения канала со стиранием показал, что введение зоны стирания эффективно лишь при наличии помех. Тогда удает­ся получить P«q и повысить пропускную способность канала связи.

В общем случае в условиях действия помех повышение пропуск­ной способности дискретного канала достигается за счет равноверо­ятности символов на выходе и снижения вероятности искажения символа. В случае симметричного канала связи равновероятность символов на выходе означает необходимость равновероятности символов на входе канала. Это условие соответствует полученному ранее требованию построения оптимального кода. Снижение веро­ятности искажения символа в дискретном канале зависит от конст­руирования приемной схемы на физическом уровне. Закон распреде­ления помехи на выходе непрерывного канала связи позволяет найти оптимальное значение порога срабатывания приемной схемы и исходя из него оценить и минимизировать вероятность искаже­ния символов. Таким образом, на основании модели дискретного канала связи можно установить верхний предел скорости передачи информации и согласовать производительность источника с про­пускной способностью канала связи. Условная энтропия дает возможность оценить минимально необходимую избыточ­ность, отнесенную к одному символу кода. Это позволяет найти нижний предел избыточности при построении обнаруживающих и корректирующих кодов для каналов связи с шумами. Конкретное значение избыточности устанавливается из требований к вероят­ностно-временным характеристикам процесса передачи. Эти харак­теристики могут быть рассчитаны на основе модели функциониро­вания системы передачи данных.




Top