ARM процессор - мобильный процессор для смартфонов и планшетов. Новые процессоры ARM готовы к приложениям ИИ

ARM процессор - мобильный процессор для смартфонов и планшетов.

В этой таблице представлены все известные на сегодняшний день ARM процессоры. Таблица ARM процессоров будет дополнятся и модернизироваться по мере появления новых моделей. В данной таблице используется условная система оценки производительности CPU и GPU. Данные о производительности ARM процессоров были взяты из самых разных источников, в основном исходя из результатов таких тестов, как: PassMark , Antutu , GFXBench .

Мы не претендуем на абсолютную точность. Абсолютно точно ранжировать и оценить производительность ARM процессоров невозможно, по той простой причине, что каждый из них, в чем-то имеет преимущества, а в чем-то отстает от других ARM процессоров. Таблица ARM процессоров позволяет увидеть, оценить и, главное, сравнить различные SoC (System-On-Chip) решения. Воспользовавшись нашей таблицей, Вы сможете сравнить мобильные процессора и достаточно точно узнать, как позиционируется ARM-сердце Вашего будущего (или настоящего) смартфона или планшета.

Вот мы провели сравнение ARM процессоров. Посмотрели и сравнили производительность CPU и GPU в различных SoC (System-оn-Chip). Но у читателя может возникнуть несколько вопросов: Где используются ARM процессора? Что такое ARM процессор? Чем отличается архитектура ARM от x86 процессоров? Попробуем разобраться во всем этом, не сильно углубляясь в подробности.

Для начала определимся с терминологией. ARM - это название архитектуры и одновременно название компании, ведущей ее разработку. Аббревиатура ARM расшифровывается как (Advanced RISC Machine или Acorn RISC Machine), что можно перевести как: усовершенствованная RISC-машина. ARM архитектура объединяет в себе семейство как 32, так и 64-разрядных микропроцессорных ядер, разработанных и лицензируемых компанией ARM Limited. Сразу хочется отметить, что компания ARM Limited занимается сугубо разработкой ядер и инструментария для них (средства отладки, компиляторы и т.д), но никак не производством самих процессоров. Компания ARM Limited продает лицензии на производство ARM процессоров сторонним фирмам. Вот неполный список компаний, получивших лицензию на производство ARM процессоров сегодня: AMD, Atmel, Altera, Cirrus Logic, Intel, Marvell, NXP, Samsung, LG, MediaTek, Qualcomm, Sony Ericsson, Texas Instruments, nVidia, Freescale ... и многие другие.

Некоторые компании, получившие лицензию на выпуск ARM процессоров, создают собственные варианты ядер на базе ARM архитектуры. Как пример можно назвать: DEC StrongARM, Freescale i.MX, Intel XScale, NVIDIA Tegra, ST-Ericsson Nomadik, Qualcomm Snapdragon, Texas Instruments OMAP, Samsung Hummingbird, LG H13, Apple A4/A5/A6 и HiSilicon K3.

На базе ARM процессоров сегодня работают фактически любая электроника: КПК, мобильные телефоны и смартфоны , цифровые плееры, портативные игровые консоли, калькуляторы, внешние жесткие диски и маршрутизаторы. Все они содержат в себе ARM-ядро, поэтому можно сказать, что ARM - мобильные процессоры для смартфонов и планшетов.

ARM процессор представляет из себя SoC , или "систему на чипе". SoC система, или "система на чипе", может содержать в одном кристалле, помимо самого CPU, и остальные части полноценного компьютера. Это и контроллер памяти, и контроллер портов ввода-вывода, и графическое ядро, и система геопозиционирования (GPS). В нем может находится и 3G модуль, а также многое другое.

Если рассматривать отдельное семейство ARM процессоров, допустим Cortex-A9 (или любое другое), нельзя сказать, что все процессоры одного семейства имеют одинаковую производительность или все снабжены GPS модулем. Все эти параметры сильно зависят от производителя чипа и того, что и как он решил реализовать в своем продукте.

Чем же отличается ARM от X86 процессоров ? Сама по себе RISC (Reduced Instruction Set Computer) архитектура подразумевает под собой уменьшенный набор команд. Что соответственно ведет к очень умеренному энергопотреблению. Ведь внутри любого ARM чипа находится гораздо меньше транзисторов, чем у его собрата из х86 линейки. Не забываем, что в SoC-системе все периферийные устройства находится внутри одной микросхемы, что позволяет ARM процессору быть еще более экономным в плане энергопотребления. ARM архитектура изначально была предназначена для вычисления только целочисленных операций, в отличии от х86, которые умеют работать с вычислениями с плавающей запятой или FPU. Нельзя однозначно сравнивать эти две архитектуры. В чем-то преимущество будет за ARM. А где-то и наоборот. Если попробовать ответить одной фразой на вопрос: в чем разница между ARMи X86 процессорами, то ответ будет таким: ARM процессор незнает того количества команд, которые знает х86 процессор. А те, что знает, выглядят гораздо короче. В этом его как плюсы, так и минусы. Как бы там ни было, в последнее время все говорит о том, что ARM процессора начинают медленно, но уверенно догонять, а кое в чем и перегонять обычные х86. Многие открыто заявляют о том, что в скором времени ARM процессоры заменят х86 платформу в сегменте домашних ПК. Как мы уже , в 2013 году уже несколько компаний с мировым именем полностью отказались от дальнейшего выпуска нетбуков в пользу планшетных пк. Ну а что будет на самом деле, время покажет.

Мы же будем отслеживать уже имеющиеся на рынке ARM процессоры.

Про ARM-архитектуру слышал каждый, кто интересуется мобильными технологиями. При этом для большинства людей это ассоциируется с процессорами планшетов или смартфонов. Другие же поправляют их, уточняя, что это не сам камень, а лишь его архитектура. Но практически никто из них уж точно не интересовался, откуда и собственно когда возникла эта технология.

А между тем данная технология широко распространена среди многочисленных современных гаджетов, которых с каждым годом становится все больше и больше. К тому же на пути развития компании, которая занялась разработкой ARM-процессоров, есть один интересный случай, о котором не грех упомянуть, возможно, для кого-то он станет уроком на будущее.

ARM-архитектура для чайников

Под аббревиатурой ARM скрывается довольно успешная британская компания ARM Limited в области IT-технологий. Расшифровывается она как Advanced RISC Machines и является одним из крупных мировых разработчиков и лицензиаров 32-разрядной архитектуры RISC-процессоров, которыми оснащается большинство портативных устройств.

Но, что характерно, сама компания не занимается производством микропроцессоров, а лишь разрабатывает и лицензирует свою технологию другим сторонам. В частности ARM-архитектура микроконтролеров закупается такими производителями:

  • Atmel.
  • Cirrus Logic.
  • Intel.
  • Apple.
  • nVidia.
  • HiSilicon.
  • Marvell.
  • Samsung.
  • Qualcomm.
  • Sony Ericsson.
  • Texas Instruments.
  • Broadcom.

Некоторые из них известны широкой аудитории потребителей цифровых гаджетов. По заверениям британской корпорации ARM, общая численность произведенных по их технологии микропроцессоров - более 2,5 миллиарда. Существует несколько серий мобильных камней:

  • ARM7 - тактовая частота 60-72 МГц, что актуально для мобильных бюджетных телефонов.
  • ARM9/ ARM9E - частота уже более высокая около 200 МГц. Такими микропроцессорами оснащаются более функциональные смартфоны и карманные компьютеры (КПК).

Cortex и ARM11 являются уже более современными семействами микропроцессоров в сравнении с прошлой архитектурой микроконтроллеров ARM, с тактовой частотой до 1 ГГц и расширенными возможностями обработки цифровых сигналов.

Популярные микропроцессоры xScale от компании Marvell (до середины лета 2007 года проект находился в распоряжении Intel) на самом деле представляют собой расширенный вариант архитектуры ARM9, дополненный набором инструкций Wireless MMX. Данное решение от Intel было ориентировано на поддержку мультимедийных приложений.

ARM-технология относится к 32-битной микропроцессорной архитектуре, содержащая сокращенный набор команд, что именуется как RISC. По проведенным подсчетам, применение процессоров ARM - это 82% от всего количества производимых RISC-процессоров, что говорит о довольно широкой зоне охвата 32-битных систем.

Многие электронные устройства оснащаются ARM-архитектурой процессора, и это не только PDA и сотовые телефоны, но и портативные игровые консоли, калькуляторы, компьютерная периферия, сетевое оборудование и многое другое.

Небольшое путешествие назад в прошлое

Отправимся на воображаемой машине времени на несколько лет назад и попробуем разобраться, с чего же все начиналось. Можно с уверенностью сказать, что компания ARM - это, скорее, монополист в своей области. И это подтверждается тем, что подавляющее большинство смартфонов и прочих электронных цифровых устройств работают под управлением микропроцессоров, созданных по данной архитектуре.

В 1980 году была основана компания Acorn Computers, которая начала создавать персональные компьютеры. Поэтому ранее ARM была представлена как Acorn RISC Machines.

Год спустя на суд потребителей была представлена домашняя версия ПК BBC Micro с самой первой ARM-архитектурой процессора. Это был успех, тем не менее чип не справлялся с графическими задачами, а прочие варианты в лице процессоров Motorola 68000 и National Semiconductor 32016 тоже не годились для этого.

Тогда руководство компании задумалось над созданием своего микропроцессора. Инженеров заинтересовала новая процессорная архитектура, придуманная выпускниками местного университета. В ней как раз использовался сокращенный набор команд, или RISC. И после появления первого компьютера, который управлялся процессором Acorn Risc Machine, успех пришел довольно быстро - в 1990 году между британским брендом и Apple был заключен договор. Это положило началу разработки нового чипсета, что, в свою очередь, привело к образованию целой команды разработчиков, именуемой как Advanced RISC Machines, или ARM.

Начиная с 1998 года, компания сменила название на ARM Limited. И теперь специалисты не занимаются производством и реализацией ARM-архитектуры. Что это дало? На развитии компании это никоим образом не сказалось, хоть основным и единственным направлением компании стала разработка технологий, а также продажа лицензий сторонним фирмам, чтобы те могли пользоваться процессорной архитектурой. При этом некоторые компании приобретают права на готовые ядра, другие же по приобретенной лицензии оснащают процессоры своими ядрами.

Согласно некоторым данным заработок компании на каждом подобном решении составляет 0,067 $. Но эти сведения усредненные и устаревшие. Ежегодно количество ядер в чипсетах растет, соответственно и себестоимость современных процессоров превосходит старые образцы.

Область применения

Именно развитие мобильных устройств и принесло компании ARM Limited огромную популярность. А когда производство смартфонов и прочих портативных электронных устройств приобрело массовый характер, энергоэффективным процессорам тут же нашлось применение. Вот интересно, а есть ли linux на arm-архитектуре?

Кульминационный период развития компании ARM приходится на 2007 год, когда были возобновлены партнерские отношения с брендом Apple. После этого на суд потребителей был представлен первый iPhone на базе ARM процессора. Начиная с этого времени подобная процессорная архитектура стала неизменной составляющей практически любого выпускаемого смартфона, которые только можно найти на современном мобильном рынке.

Можно сказать, что практически каждое современное электронное устройство, которое нуждается в управлении процессором, так или иначе оснащенном чипами ARM. А тот факт, что такая процессорная архитектура поддерживает многие операционные системы, будь то Linux, Android, iOS, и Windows, является неоспоримым преимуществом. Среди них числиться и Windows embedded CE 6.0 Core, архитектура arm тоже ею поддерживается. Данная платформа рассчитана на наладонные компьютеры, мобильные телефоны и встраиваемые системы.

Отличительные особенности x86 и ARM

Многие пользователи, которые наслышаны о ARM и x86, немного путают эти две архитектуры между собой. А между тем у них есть определенные различия. Существует два основных типа архитектур:

  • CISC (Complex Instruction Set Computing).
  • Computing).

К CISC относятся процессоры x86 (Intel либо AMD), к RISC, как уже можно понять, семейство ARM. У архитектуры x86, и arm есть свои почитатели. Благодаря стараниям специалистов ARM, которые делали упор на энергоэффективность и использование простого набора инструкций, процессоры сильно выиграли от этого - мобильный рынок начал стремительно развиваться, а многие смартфоны практически почти приравнялись с возможностями компьютеров.

В свою очередь Intel всегда славилась выпуском процессоров с высокой производительностью и пропускной способностью для настольных ПК, ноутбуков, серверов и даже суперкомпьютеров.

Эти два семейства по-своему завоевывали сердца пользователей. Но в чем их различие? Отличительных признаков или даже особенностей несколько, разберем наиболее важные из них.

Мощность обработки

Начнем разбор различий архитектур ARM и x86 с этого параметра. Особенность профессоров RISC заключается в использовании как можно меньшего количества инструкций. Причем они должны быть максимально простыми, что наделяет их преимуществами не только для инженеров, но и разработчиков программного обеспечения.

Философия здесь несложная - если инструкция простая, то для нужной схемы не нужно слишком большое количество транзисторов. Как результат, освобождается дополнительное пространство для чего-либо или же размеры чипов становятся меньше. По этой причине микропроцессоры ARM стали объединять в себе периферийные устройства, вроде графических процессоров. Показательный пример - компьютер Raspberry Pi, у которого минимальное количество компонентов.

Однако простота инструкций обходится дорого. Чтобы выполнять те или иные задачи необходимы дополнительные инструкции, что обычно приводит к росту потребления памяти и времени на выполнение задач.

В отличие от arm-архитектуры процесора инструкции чипов CISC, коими являются решения от Intel, могут выполнять сложные задачи с большой гибкостью. Иными словами, машины на базе RISC производят операции между регистрами, и обычно требуется, чтобы программа загружала переменные в регистр, перед выполнением операции. Процессоры CISC способны на выполнение операций несколькими способами:

  • между регистрами;
  • между регистром и местом памяти;
  • между ячейками памяти.

Но это лишь часть отличительных особенностей, перейдем к разбору других признаков.

Потребляемая мощность

В зависимости от типа устройства потребляемая мощность может иметь разную степень значимости. Для той системы, которая подключена к постоянному источнику питания (электросеть) ограничения потребления энергии попросту нет. Однако мобильные телефоны и прочие электронные гаджеты в полной мере зависят от управления питанием.

Еще одно различие архитектуры arm и x86 в том, что у первой энергопотребление меньше чем 5 Вт, включая многие сопутствующие пакеты: графические процессоры, периферийные устройства, память. Такая малая мощность обусловлена меньшей численностью транзисторов в совокупности с относительно низкими скоростями (если провести параллель с процессорами для настольных ПК). В то же время это нашло отпечаток на производительности - для выполнения сложных операций требуется больше времени.

Ядра Intel отличаются сложность структурой и в силу этого потребление энергии у них существенно выше. К примеру, процессор Intel I-7 с высокой производительностью потребляет около 130 Вт энергии, мобильные версии - 6-30 Вт.

Программное обеспечение

Проводить сравнение по этому параметру довольно трудно, поскольку оба бренда очень популярны в своих кругах. Устройства, которые основываются на процессорах arm-архитектуры, прекрасно работают с мобильными операционными системами (Android и прочее).

Машины под управлением процессоров от Intel способны работать с платформами наподобие Windows и Linux. К тому же оба семейства микропроцессоров дружат с приложениями, написанными на языке Java.

Разбирая различия архитектур, можно однозначно сказать одно - процессоры ARM главным образом управляют энергопотреблением мобильных устройств. Задача же настольных решений большего всего заключается в обеспечении высокой производительности.

Новые достижения

Компания ARM за счет ведения грамотной политики, полностью прибрала к рукам мобильный рынок. Но в дальнейшем она не собирается останавливаться на достигнутом. Не так давно была представлена новая разработка ядер: Cortex-A53, и Cortex-A57, в которых было проведено одно важное обновление - поддержка 64-битных вычислений.

Ядро A53 является прямым последователем ARM Cortex-A8, у которого хоть и была не очень высокая производительность, но энергопотребление на минимальном уровне. Как отмечают специалисты, у архитектуры энергопотребление снижено в 4 раза, а по производительности она не будет уступать ядру Cortex-A9. И это притом, что площадь ядра A53 на 40% меньше, чем у A9.

Ядро A57 придет на замену Cortex-A9 и Cortex-A15. При этом инженеры ARM заявляют о феноменальном приросте производительности - в три раза выше, чем у ядра A15. Иными словами микропроцессор A57 будет в 6 раз быстрее Cortex-A9, а его энергоэффективность будет в 5 раз лучше, чем у A15.

Если подытожить, то серия cortex, а именно более совершенная a53, отличается от своих предшественников более высокой производительностью на фоне не менее высокой энергоэффективности. Даже процессоры Cortex-A7, которые ставятся на большинство смартфонов, не выдерживают конкуренции!

Но что более ценно это то, что архитектура arm cortex a53 - это та составляющая, которая позволит избежать проблем, связанных с нехваткой памяти. К тому же и устройство будет медленнее разряжать батарею. Благодаря новинке эти проблемы теперь останутся в далеком прошлом.

Графические решения

Помимо разработки процессоров, компания ARM трудится над воплощением графических ускорителей серии Mali. И самый первый из них - это Mali 55. Этим ускорителем оснастили телефон LG Renoir. И да, это самый обычный мобильник. Только в нем GPU отвечала не за игры, а лишь отрисовывал интерфейс, ведь если судить по современным меркам, графический процессор отличается примитивными возможностями.

Но прогресс неумолимо летит вперед и поэтому, чтобы идти в ногу со временем, у компании ARM есть и более совершенные модели, которые актуальны для смартфонов средней ценовой категории. Речь идет о распространенных GPU Mali-400 MP и Mali-450 MP. Хоть у них и небольшая производительность и ограниченный набор API, это не мешает им находить применение в современных мобильных моделях. Яркий пример - телефон Zopo ZP998, в котором восьмиядерный чип MTK6592 работает в паре с графическим ускорителем Mali-450 MP4.

Конкурентоспособность

В настоящее время компании ARM пока еще никто не противостоит и главным образом это обусловлено тем, что в свое время было принято верное решение. Но когда-то давно еще в начале своего пути команда разработчиков трудилась над созданием процессоров для ПК и даже предприняла попытку конкурировать с таким гигантом как Intel. Но даже после того, как направление деятельности было сменено, компании приходилось тяжело.

А когда всемирно известный компьютерный бренд Microsoft заключил договор с Intel, у остальных производителей просто не было шансов - операционная система Windows отказывалась работать с процессорами ARM. Как тут не удержаться от использования эмуляторов gcam на архитектуру arm?! Что касательно компании Intel, то наблюдая волну успеха ARM Limited, тоже попыталась создать процессор, который бы составил достойную конкуренцию. Для этого широкой публике был предоставлен чип Intel Atom. Но заняло это намного больший промежуток времени, чем у ARM Limited. И в производство чип ушел лишь в 2011 году, но драгоценное время было уже потеряно.

По сути, Intel Atom - это CISC-процессор с архитектурой x86. Специалистам удалось добиться более низкого энергопотребления, чем в ARM решениях. Тем не менее весь тот софт, который выходит под мобильные платформы, плохо адаптирован к архитектуре x86.

В конечном итоге компания признала полную повальность принятого решения и в дальнейшем отказалась от производства процессоров под мобильные устройства. Единственный крупный производитель чипов Intel Atom - это компания ASUS. В то же время эти процессоры не канули в лету, ими в массовом порядке оснащали нетбуки, неттопы и прочие портативные устройства.

Однако существует вероятность, что ситуация изменится и любимая всеми операционная система Windows станет поддерживать микропроцессоры ARM. К тому же шаги в этом направлении делаются, может и правда появятся что-то наподобие эмуляторов gcam на ARM-архитектуру для мобильных решений?! Кто знает, время покажет и все расставит по местам.

В истории развития компании ARM есть один интересный момент (в самом начале статьи именно он имелся ввиду). Когда-то в основе ARM Limited находилась компания Apple и вероятно, что вся технология ARM принадлежала бы именно ей. Однако судьба распорядилась иначе - в 1998 году Apple находилась в кризисном положении, и руководство было вынуждено продать свою долю. В настоящее время она находится наравне с прочими производителями и остается для своих устройств iPhone и iPad закупать технологии у ARM Limited. Кто же мог знать, как все может обернуться?!

Современные процессоры ARM способны выполнять боле сложные операции. А в ближайшем будущем руководство компании нацелилось выйти на серверный рынок, в чем она, несомненно, заинтересована. К тому же в наше современное время, когда близится эпоха развития интернет вещей (IoT), в числе которых и «умные» бытовые приборы, можно прогнозировать еще большую востребованность чипов с ARM-архитектурой.

Так что у компании ARM Limited впереди далеко не беспросветное будущее! И вряд ли в ближайшее время найдется кто-нибудь, кто может потеснить такого, вне всякого сомнения, мобильного гиганта по разработке процессоров для смартфонов и прочих подобных электронных устройств.

В качестве заключения

Процессоры ARM довольно быстро захватили рынок мобильных устройств и все благодаря низкому энергопотреблению и пусть не очень высокой, но все же, хорошей производительности. В настоящее время положению дел у компании ARM можно только позавидовать. Многие производители пользуются ее технологиями, что ставит Advanced RISC Machines наравне с такими гигантами в области разработок процессоров как Intel и AMD. И это притом, что компания не имеет собственного производства.

Какое-то время конкурентом мобильного бренда была компания MIPS с одноименной архитектурой. Но в настоящее время есть пока единственный серьезный конкурент в лице корпорации Intel, правда ее руководство не считает, что arm-архитектура может представлять угрозу для ее рыночной доли.

Также, по мнению специалистов из Intel, процессоры ARM не способны обеспечить запуск настольных версий операционных систем. Однако такое заявление звучит немного нелогично, ведь владельцы ультрамобильных ПК не пользуются «тяжеловесным» программным обеспечением. В большинстве случаев нужен выход в сеть интернет, редактирование документов, прослушивание медиафайлов (музыка, кино) и прочие несложные задачи. А ARM решения прекрасно справляются с такими операциями.

В наше время существует две самые популярные архитектуры процессоров. Это x86, которая была разработана еще 80х годах и используется в персональных компьютерах и ARM - более современная, которая позволяет сделать процессоры меньше и экономнее. Она используется в большинстве мобильных устройств или планшетов.

Обе архитектуры имеют свои плюсы и минусы, а также сферы применения, но есть и общие черты. Многие специалисты говорят, что за ARM будущее, но у нее остаются некоторые недостатки, которых нет в x86. В нашей сегодняшней статье мы рассмотрим чем архитектура arm отличается от x86. Рассмотрим принципиальные отличия ARM или x86, а также попытаемся определить что лучше.

Процессор - это основной компонент любого вычислительного устройства, будь то смартфон или компьютер. От его производительности зависит то, насколько быстро будет работать устройство и сколько оно сможет работать от батареи. Если говорить просто, то архитектура процессора - это набор инструкций, которые могут использоваться при составлении программ и реализованы на аппаратном уровне с помощью определенных сочетаний транзисторов процессора. Именно они позволяют программам взаимодействовать с аппаратным обеспечением и определяют каким образом будут передаваться данные в память и считываться оттуда.

На данный момент существуют два типа архитектур: CISC (Complex Instruction Set Computing) и RISC (Reduced Instruction Set Computing). Первая предполагает, что в процессоре будут реализованы инструкции на все случаи жизни, вторая, RISC - ставит перед разработчиками задачу создания процессора с набором минимально необходимых для работы команд. Инструкции RISC имеют меньший размер и более просты.

Архитектура x86

Архитектура процессора x86 была разработана в 1978 году и впервые появилась в процессорах компании Intel и относится к типу CISC. Ее название взято от модели первого процессора с этой архитектурой - Intel 8086. Со временем, за неимением лучшей альтернативы эту архитектуру начали поддерживать и другие производители процессоров, например, AMD. Сейчас она является стандартом для настольных компьютеров, ноутбуков, нетбуков, серверов и других подобных устройств. Но также иногда процессоры x86 применяются в планшетах, это довольно привычная практика.

Первый процессор Intel 8086 имел разрядность 16 бит, далее в 2000 годах вышел процессор 32 битной архитектуры, и еще позже появилась архитектура 64 бит. Мы подробно рассматривали в отдельной статье. За это время архитектура очень сильно развилась были добавлены новые наборы инструкций и расширения, которые позволяют очень сильно увеличить производительность работы процессора.

В x86 есть несколько существенных недостатков. Во-первых - это сложность команд, их запутанность, которая возникла из-за длинной истории развития. Во-вторых, такие процессоры потребляют слишком много энергии и из-за этого выделяют много теплоты. Инженеры x86 изначально пошли по пути получения максимальной производительности, а скорость требует ресурсов. Перед тем, как рассмотреть отличия arm x86, поговорим об архитектуре ARM.

Архитектура ARM

Эта архитектура была представлена чуть позже за x86 - в 1985 году. Она была разработана известной в Британии компанией Acorn, тогда эта архитектура называлась Arcon Risk Machine и принадлежала к типу RISC, но затем была выпущена ее улучшенная версия Advanted RISC Machine, которая сейчас и известна как ARM.

При разработке этой архитектуры инженеры ставили перед собой цель устранить все недостатки x86 и создать совершенно новую и максимально эффективную архитектуру. ARM чипы получили минимальное энергопотребление и низкую цену, но имели низкую производительность работы по сравнению с x86, поэтому изначально они не завоевали большой популярности на персональных компьютерах.

В отличие от x86, разработчики изначально пытались получить минимальные затраты на ресурсы, они имеют меньше инструкций процессора, меньше транзисторов, но и соответственно меньше всяких дополнительных возможностей. Но за последние годы производительность процессоров ARM улучшалась. Учитывая это, и низкое энергопотребление они начали очень широко применяться в мобильных устройствах, таких как планшеты и смартфоны.

Отличия ARM и x86

А теперь, когда мы рассмотрели историю развития этих архитектур и их принципиальные отличия, давайте сделаем подробное сравнение ARM и x86, по различным их характеристикам, чтобы определить что лучше и более точно понять в чем их разница.

Производство

Производство x86 vs arm отличается. Процессоры x86 производят только две компании Intel и AMD. Изначально эта была одна компания, но это совсем другая история. Право на выпуск таких процессоров есть только у этих компаний, а это значит, что и направлением развития инфраструктуры будут управлять только они.

ARM работает совсем по-другому. Компания, разрабатывающая ARM, не выпускает ничего. Они просто выдают разрешение на разработку процессоров этой архитектуры, а уже производители могут делать все, что им нужно, например, выпускать специфические чипы с нужными им модулями.

Количество инструкций

Это главные различия архитектуры arm и x86. Процессоры x86 развивались стремительно, как более мощные и производительные. Разработчики добавили большое количество инструкций процессора, причем здесь есть не просто базовый набор, а достаточно много команд, без которых можно было бы обойтись. Изначально это делалось чтобы уменьшить объем памяти занимаемый программами на диске. Также было разработано много вариантов защит и виртуализаций, оптимизаций и многое другое. Все это требует дополнительных транзисторов и энергии.

ARM более прост. Здесь намного меньше инструкций процессора, только те, которые нужны операционной системе и реально используются. Если сравнивать x86, то там используется только 30% от всех возможных инструкций. Их проще выучить, если вы решили писать программы вручную, а также для их реализации нужно меньше транзисторов.

Потребление энергии

Из предыдущего пункта выплывает еще один вывод. Чем больше транзисторов на плате, тем больше ее площадь и потребление энергии, правильно и обратное.

Процессоры x86 потребляют намного больше энергии, чем ARM. Но на потребление энергии также влияет размер самого транзистора. Например, процессор Intel i7 потребляет 47 Ватт, а любой процессор ARM для смартфонов - не более 3 Ватт. Раньше выпускались платы с размером одного элемента 80 нм, затем Intel добилась уменьшения до 22 нм, а в этом году ученые получили возможность создать плату с размером элемента 1 нанометр. Это очень сильно уменьшит энергопотребление без потерь производительности.

За последние годы потребление энергии процессорами x86 очень сильно уменьшилось, например, новые процессоры Intel Haswell могут работать дольше от батареи. Сейчас разница arm vs x86 постепенно стирается.

Тепловыделение

Количество транзисторов влияет еще на один параметр - это выделение тепла. Современные устройства не могут преобразовывать всю энергию в эффективное действие, часть ее рассеивается в виде тепла. КПД плат одинаковый, а значит чем меньше транзисторов и чем меньше их размер - тем меньше тепла будет выделять процессор. Тут уже не возникает вопрос ARM или x86 будет выделять меньше теплоты.

Производительность процессоров

ARM изначально не были заточены для максимальной производительности, это область преуспевания x86. Отчасти этому причина меньше количество транзисторов. Но в последнее время производительность ARM процессоров растет, и они уже могут полноценно использоваться в ноутбуках или на серверах.

Выводы

В этой статье мы рассмотрели чем отличается ARM от x86. Отличия довольно серьезные. Но в последнее время грань между обоими архитектурами стирается. ARM процессоры становятся более производительными и быстрыми, а x86 благодаря уменьшению размера структурного элемента платы начинают потреблять меньше энергии и выделять меньше тепла. Уже можно встретить ARM процессор на серверах и в ноутбуках, а x86 на планшетах и в смартфонах.

А как вы относитесь к этим x86 и ARM? За какой технологией будущее по вашему мнению? Напишите в комментариях! Кстати, .

На завершение видео о развитии арихтектуры ARM:

Недавно сама постановка вопроса казалась немыслимой, но развитие технологий и причуды рынка привели к ситуации, когда возможна самая настоящая конкуренция.

Совсем недавно сама постановка вопроса казалась немыслимой: можно ли вообще сравнивать "телефонный" процессор с чипами, применяющимися в "персоналках", серверах и даже суперкомпьютерах? Между тем, развитие технологий и причуды рынка привели к ситуации, когда специалисты всерьёз обсуждают возможность даже не просто конкуренции между процессорами ARM и чипами x86, а яростной схватки между ними.

Прежде всего, определимся с понятиями и познакомимся с потенциальными соперниками.

Центральные процессоры x86 – это микропроцессоры, поддерживающие одноимённый набор инструкций и обладающие микроархитектурой, производной от IA-32, то есть Intel Architecture 32-бит. Чипы построены на основе архитектуры CISC (Complex Instruction Set Computing, то есть "с полным набором инструкций"), в которой каждая инструкция может выполнять сразу несколько низкоуровневых операций.

Исторически семейство x86 восходит к 16-разрядной модели Intel 8086, выпущенной в 1978 году. 32-битными эти процессоры стали лишь в 1985 году, когда был представлен первый "триста восемьдесят шестой". В 1989 году Intel выпустила первый скалярный (то есть выполняющий одну операцию за один такт) чип i486 (80486), в котором впервые появились встроенная кэш-память и блок вычислений с плавающей запятой FPU. Процессоры Pentium, представленные в 1993 году, стали первыми суперскалярными (то есть выполняющими несколько операций за такт) и суперконвейерными (в этих чипах было два конвейера).

Итак, современные x86-совместимые чипы – это суперскалярные суперконвейерные микропроцессоры, построенные на основе CISC-архитектуры.

ARM-процессоры – 32-битные чипы на базе архитектуры RISC (Reduced Instruction Set Computer), то есть с сокращённым набором команд. В основу этой архитектуры положена идея повышения быстродействия за счёт максимального упрощения инструкций и ограничения их длины.

История ARM-процессоров началась в том же 1978 году, когда была создана британская компания Acorn Computers. Под маркой Acorn выпускались несколько чрезвычайно популярных на местном рынке моделей персональных компьютеров на основе восьмибитных чипов MOS Tech 6502. Этот же ЦП, кстати, стоял в Apple I и II и Commodore PET.

Однако с появлением более совершенной модели 6510, которая в 1982 году стала устанавливаться в Commodore 64, линейка компьютеров Acorn, включая популярнейший образовательный BBC Micro, потеряла актуальность. Это подтолкнуло владельцев Acorn к созданию собственного процессора на базе архитектуры 6502, который позволил бы на равных конкурировать с машинами класса IBM PC.

Первая серийная модель ARM2, разработанная в рамках проекта Acorn RISC Machine, была выпущена в 1986 году и стала самым конструктивно простым и недорогим 32-битным процессором на тот момент: в нём отсутствовала не только кэш-память, что было нормой для чипов того времени, но и микропрограммы: в отличие от CISC-процессоров, микрокод исполнялся как и любой другой машинный код, путём преобразования в простые инструкции. Кристалл ARM2 состоял из 30000 транзисторов, и эта компактность конструкции осталась характерным признаком этого семейства: в ARM6 всего на 5000 транзисторов больше.

В отличие от Intel или AMD, ARM сама не занимается выпуском процессоров, предпочитая продавать лицензии другим. Среди компаний, располагающих такими лицензиями, есть те же Intel и AMD, а также VIA Technologies, IBM, NVIDIA, Nintendo, Texas Instruments, Freescale, Qualcomm и Samsung. Показательный факт: если AMD, вторая компания на рынке x86-процессоров, в 2009 году отметила выпуск своего 500-миллионного ЦП, то в одном только 2009 году на рынок было поставлено почти три миллиарда ARM-процессоров!

Современные ARM-процессоры – это суперскалярные суперконвейерные микросхемы, построенные на основе RISC-архитектуры.

Судя по этим двум определением, чуть ли не единственное формальное отличие семейств ARM и x86 – микроархитектуры RISC и CISC. Однако и это уже нельзя считать принципиальным отличием: начиная с модификации i486DX, x86-чипы стали больше напоминать RISC-процессоры. Начиная с этого поколения, микросхемы, сохраняя совместимость со всеми предыдущими наборами команд, демонстрируют максимальную производительность только с ограниченным набором простых инструкций, который подозрительно похож на набор RISC-команд. Поэтому сегодняшние x86 можно смело считать CISC-процессорами с RISC-ядрами: встроенный в микросхему аппаратный транслятор декодирует сложные CISC-инструкции в набор простых внутренних RISC-команд. Даже несмотря на то, что каждая CISC-инструкция может "раскладываться" на несколько RISC-команд, быстрота выполнения последних обеспечивает значительный прирост производительности. К тому же, не следует забывать о суперскалярности и суперконвейерности современных чипов.

Куда важнее другое отличие: львиная доля x86 – это универсальные процессоры, "обвешанные" множеством разнообразных блоков и модулей, которые призваны успешно справляться практически с любыми задачами – от веб-сёрфинга и обработки текстовых файлов до кодирования видео высокого разрешения и работы с трёхмерной графикой. У ARM-чипов, ориентированных на использование в смартфонах и прочих портативных устройствах, совершенно иные цели и возможности.

Тогда что же делить столь разным продуктам? Конечно, нелепо сравнивать четырёхъядерный Core i5 и "телефонный" Qualcomm MSM7201A, стоящий в коммуникаторах HTC Dream и Hero, но есть масштабы, где рынки ARM и i86 перекрываются уже сегодня. Это, с одной стороны, такие новейшие чипы ARM, как Cortex-A8 (архитектура ARMv7-A), а с другой – низковольтные x86-процессоры класса Intel Atom. На основе Cortex-A8 построен модный планшет Apple iPad, а Intel Atom работают в подавляющем большинстве нетбуков.

У этих чипов есть ещё одна важная общая особенность: оба этих процессора работают по принципу последовательного исполнения инструкций, в то время как большая часть x86 – процессоры с внеочередным выполнением команд. Эта схема призвана добиться максимальной производительности на ватт потребляемой энергии за счёт отказа от модулей, отвечающих за внеочередное выполнение инструкций.

Есть у Atom и несколько принципиальных отличий от Cortex-A8. Прежде всего, практически все микросхемы этого семейства поддерживают технологию параллельных вычислений Hyper-Threading, которая позволяет представить одно физическое ядро как два виртуальных. Это весьма существенное преимущество, заметно повышающее производительность, причём не только в относительно редких до сих пор многопоточных приложениях, но и при выполнении команд с интенсивным использованием систем ввода-вывода. К примеру, Atom с Hyper-Threading заметно быстрее загружает Windows, чем сравнимый с ним по возможностям одноядерный VIA Nano без поддержки такого режима.

Практическое сравнение производительности Atom и Cortex-A8 провёл Вэн Смит, автор тестовых пакетов OpenSourceMark, miniBench и один из соавторов SiSoftware Sandra. Тестировались машины на базе процессоров Atom N450, Freescale i.MX515 (Cortex-A8), VIA Nano L3050 и, для сравнения, на основе мобильного Athlon XP-M на ядре Barton. Поскольку за точку отсчёта были приняты характеристики Cortex-A8 с тактовой частотой 800 МГц, рабочие частоты VIA Nano и Athon были снижены до того же значения, а Atom – до 1000 МГц (дальнейшее снижение оказалось невозможным). При этом у Cortex-A8 осталось несколько заведомо слабых мест: поддержка медленной 32-битной памяти DDR2-200 и более чем скромная встроенная графика с максимальным разрешением 1024 на 768 при шестнадцатибитной глубине цвета. Все тесты проводились на системах под управлением операционной системы Ubuntu 9.04 Linux.

Результаты тестирования оказались более чем любопытными: Cortex-A8 продемонстрировал вполне конкурентоспособную производительность в целочисленных вычислениях при значительно более низком энергопотреблении по сравнению с соперниками. Ожидаемо провальными оказались лишь тесты на пропускную способность памяти и на вычисления с плавающей запятой – традиционной "ахиллесовой пятой" ARM-чипов. В течение продолжительного времени в ARM-процессорах вообще отсутствовали модули FPU и хотя в Cortex-A8 есть два таких модуля (Neon 32-бит SP и VFP), их мощности явно недостаточно. Вычисления с плавающей запятой – это и трёхмерные игры, и научное моделирование, и некоторые виды обработки и кодирования видео и звука. Так что если производители процессоров ARM действительно нацелились на нишу нетбуков, неттопов и планшетников, им нужно существенно улучшить производительность FPU. С подробными результатами всех тестов можно ознакомиться здесь (http://www.brightsideofnews.com/news/2010/4/7/the-coming-war-arm-versus-x86.aspx).

Стоит ли нам ожидать схватки между столь разными и столь похожими семействами процессоров ARM и x86? Пока по производительности в массовых развлекательных приложениях "армы" существенно уступают даже "атомам". Однако перспективы внушают оптимизм: новейшая архитектура Cortex-A9 рассчитана на создание процессоров с одним-четырьмя ядрами и, как утверждают в ARM Limited, в них значительно улучшена производительность вычислений с плавающей запятой. Первые чипы на базе Cortex-A9 – NVIDIA Tegra 2 – это двухъядерные микросхемы с графическим ядром, поддерживающим видео формата Full HD 1080p и трёхмерную графику с программным интерфейсом OpenGL ES 2.0. Планшет или нетбук с такими характеристиками запросто поспорит с любым устройством на основе Atom. Добавим сюда исключительную экономичность, а значит, и длительное время автономной работы. Так что Apple iPad вполне может стать символом начала борьбы чипов ARM с x86-процессорами на их же собственном поле.

В этом материале пойдет речь о процессорной архитектуре . Полупроводниковые продукты на ее основе можно встретить в смартфонах, роутерах, планшетных ПК и прочих мобильных устройствах, где она до недавних пор занимала ведущие позиции в этом сегменте рынка. Сейчас же ее постепенно вытесняют более новые и свежие процессорные решения.

Краткая справка о компании ARM

История компании ARM началась в 1990 году, когда она была основана Робином Саксби. Основой же для ее создания стала новая микропроцессорная архитектура. Если до этого господствующие позиции на рынке ЦПУ занимала х86 или CISC , то после образования данной компании появилась достойная альтернатива в виде RISC. В первом случае выполнение программного кода сводилось к 4 этапам:

    Получение машинных инструкций.

    Выполнение преобразования микрокода.

    Получение микроинструкций.

    Поэтапное выполнение микроинструкций.

О сновная же идея архитектуры RIS С состояла в том, что обработку программного кода можно свести к 2 этапам:

    Получение RISC- инструкций.

    Обработка RISC- инструкций.

К ак в первом, так и во втором случае есть как плюсы, так и существенные недостатки. х86 успешно завоевала компьютерный рынок, а RISC ( в том числе и , представленная 2011 году) — рынок мобильных устройств.

История появления архитектуры Cortex A7. Ключевые особенности

В качестве основы для «Кортекс А7» выступала «Кортекс А8». Основная идея разработчиков в данном случае сводилась к тому, чтобы увеличить производительность и значительно улучшить энергоэффективность процессорного решения. Именно это в конечном итоге и получилось у инженеров компании ARM . Еще одной важной особенностью в данном случае стало то, что появилась возможность создавать ЦПУ с технологией big.LITTLE. То есть полупроводниковый кристалл мог включать 2 вычислительных модуля. Один из них был нацелен на решение наиболее простых задач с минимальным энергопотреблением и, как правило, в этой роли и выступали ядра «Кортекс А7». Второй же был предназначен для запуска наиболее сложного софта и базировался на вычислительных блоках «Кортекс А15» или «Кортекс А17». Официально «Кортекс А7» была представлена, как было отмечено ранее, в 2011 году. Ну а первый процессор ARM Cortex A7 увидел свет годом позже, то есть в 2012 году.

Технология производства

Изначально полупроводниковые продукты на основе А7 производились по технологическим нормам 65 нм. Сейчас эта технология безнадежно устарела. В дальнейшем были выпущены еще два поколения процессоров А7 по нормам допуска уже 40 нм и 32 нм. Но и они сейчас уже стали неактуальными. Наиболее свежие модели ЦПУ на основе этой архитектуры изготавливаются уже по нормам 28 нм, и именно их пока еще можно встретить в продаже. Дальнейший переход на более новые с новыми нормами допуска и устаревшей архитектурой ожидать вряд ли стоит. Чипы на базе А7 сейчас занимают наиболее бюджетный сегмент рынка мобильных устройств и их постепенно вытесняют уже гаджеты на основе А53, которая практически при той же энергоэффективности параметрах имеет более высокий уровень быстродействия.

Архитектура микропроцессорного ядра

1, 2, 4 или 8 ядер может входить в состав ЦПУ на базе ARM Cortex A7. Характеристики процессоров в последнем случае указывают на то, что в состав чипа входят, по существу, 2 кластера по 4 ядра. 2-3 года процессорные продукты начального уровня основывались на чипах с 1-им или 2-мя вычислительными модулями. Средний уровень занимали 4-ядерные решения. Ну а премиум-сегмент был за 8-ядерными чипами. Каждое микропроцессорное ядро на основе такой архитектуры включало следующие модули:

    Б лок обработки чисел с плавающей запятой (FPU).

    Кеш 1-го уровня.

    Блок NEON для оптимизации работы ЦПУ.

    Вычислительный модуль ARMv7.

Также были следующие общие компоненты для всех ядер в составе ЦПУ:

    Кеш L2.

    Блок управления ядрами CoreSight.

    Контроллер шины управления данными АМВА с разрядностью 128 бит.

Возможные частоты

Максимальное значение тактовой частоты для данной микропроцессорной архитектуры может изменяться от 600 МГц до 3 ГГц. Также необходимо отметить, что этот параметр, который указывает максимальное влияние на производительность вычислительной системы, изменяется. Причем на частоту оказывает влияние сразу три фактора:

    Уровень сложности решаемой задачи.

    Степень оптимизации программного обеспечения под многопоточность.

    Текущее значение температуры полупроводникового кристалла.

    В качестве примера рассмотрим алгоритм работы чипа МТ6582, который базируется на А7 и включает 4 вычислительных блока, частота которых изменяется от 600 МГц до 1,3 ГГц. В режиме простоя у этого процессорного устройства может находиться лишь только один блок вычислений, и он функционирует на минимально возможной частоте в 600 МГц. Аналогичная ситуация будет и в том случае, когда будет запущено простое приложение на мобильном гаджете. Но когда же в списке задач появиться ресурсоемкая игрушка с оптимизацией под многопоточность, то автоматически включатся в работу все 4 блока обработки программного кода на частоте 1,3 ГГц. По мере нагрева ЦПУ наиболее горячие ядра будут понижать значение частоты или даже отключаться. С одной стороны, такой подход обеспечивает энергоэффективнсть, а с другой — приемлемый уровень быстродействия чипа.

    Кеш-память

    Всего лишь 2 уровня кеша предусмотрено в ARM Cortex A7. Характеристики полупроводникового кристалла, в свою очередь, указывают на то, что первый уровень в обязательном порядке разделен на 2 равные половинки. Одна из них должна хранить данные, а другая — инструкции. Суммарный р азмер кеша на 1-ом уровне по спецификациям может быть равен 64 Кб. Как результат, получаем 32 Кб для данных и 32 Кб для кода. Кеш 2-го уровня в этом случае будет завис е ть от конкретной модели ЦПУ. Наименьший объем его может быть равен 0 Мб (то есть отсутствовать), а наибольший — 4 Мб.

    Контроллер оперативной памяти. Его особенности

    Встроенным контроллером оперативной памяти комплектуется любой процессор ARM Cortex A7. Характеристикитехнического плана указывают на то, что он ориентирован на работу в связке с ОЗУ стандарта LPDDR3. Рекомендованные частоты функционирования оперативной памяти в данном случае равны 1066 МГц или 1333 МГц. Максимальный же размер ОЗУ, который можно встретить на практике, для данной модели чипа равен 2 Гб.

    Интегрированная графика

    Как и положено, данные микропроцессорные устройства имеют интегрированную графическую подсистему. Компания-производитель ARM рекомендует использовать в сочетании с этим ЦПУ графическую карту собственной разработки Mali -400MP2 . Но ее производительности чаще всего недостаточно для того, чтобы раскрыть потенциал микропроцессорного устройства. Поэтому разработчики чипов применяют в сочетании с этим чипом более производительные адаптеры, например, Power VR6200.

    Программные особенности

    Три вида операционных систем нацелено на процессоры ARM:

      Android от поискового гиганта Google.

      iOS от APPLE.

      Windows Mobile от «Майкрософт».

    Все остальное системное программное обеспечение пока не получило большого распространения. Наибольшую долю на рынке такого софта, как не сложно догадаться, занимает именно Android. Эта система имеет простой и понятный интерфейс и устройства на ее основе начального уровня являются очень и очень доступными. До версии 4.4 включительно она была 32-битной, а с 5.0 стала поддерживать 64-разрядные вычисления. Эта ОС успешно функционирует на любом семействе ЦПУ архитектуры RISC , в том числе и ARM Cortex A7. Инженерное меню — это еще одна важная особенность данного системного софта. С ее помощью можно существенно перенастроить возможности ОС. Доступ же к этому меню можно получить с помощью кода, который для каждой модели ЦПУ индивидуален.

    Еще она важная особенность этой ОС — установка всех возможных обновлений автоматически. Поэтому даже новые возможности могут появиться на чипах семейства ARM Cortex A7. Прошивка их может добавить. Вторая система нацелена на мобильные гаджеты компании APPLE. Такие устройства в основном занимают премиум — сегмент и имеют соответствующие уровни быстродействия и стоимость. Последняя ОС в лице Windows Mobile пока не получила большого распространения. Устройства на ее основе есть в любом сегменте мобильны гаджетов, но вот малое количество прикладного софта в данном случае является сдерживающим фактором для ее распространения.

    Модели процессоров

    Наиболее доступными и наименее производительными в этом случае являются 1-ядерные чипы. Наибольшее распространение среди них получил МТ6571 от компании МедиаТек. На ступеньку выше находятся двухъядерные ЦПУ ARM Cortex A7 Dual Core. В качестве примера можно привести МТ6572 от все того же самого производителя. Еще больший уровень быстродействия обеспечивали Quad Core ARM Cortex A7. Наиболее популярным чипом из этого семейства является МТ6582, который сейчас даже можно встретить в мобильных гаджетах начального уровня. Ну а наибольший уровень быстродействия обеспечивали 8-ядерные центральные процессоры, к которым принадлежал МТ6595.

    Дальнейшие перспективы развития

    Пока еще можно встретить на прилавках магазинов мобильные устройства в основе которых лежит полупроводниковое процессорное устройство на базе 4X ARM Cortex A7. Это и МТ6580, МТ6582 и «Снапдрагон 200». Все эти чипы включают 4 вычислительных блока и имеют отменный уровень энергоэффективности. Также стоимость в этом случае очень и очень скромная. Но все же лучшие времена это микропроцессорной архитектуры уже позади. Пик продаж продукции на ее основе припал на 2013-2014 года, когда на рынке мобильных гаджетов у нее практически не было альтернативы. Причем в этом случае речь идет как о бюджетных устройствах с 1 или 2 вычислительными модулями, так и с флагманскими гаджетами с 8-ядерным ЦПУ. На текущий момент ее постепенно с рынка вытесняет «Кортекс А53», которая по существу является модифицированной 64-битной версией А7. При этом основные преимущества своей предшественницы она сохранила целиком и полностью, и будущее уж точно за ней.

    Мнение экспертов и пользователей. Реальные отзывы о чипах на базе данной архитектуры. Сильные и слабые стороны

    Безусловно, знаковым событием для мира мобильных устройств стало появление архитектуры микропроцессорных устройств ARM Cortex A7. Наилучшим доказательством этого стало то, что устройства на ее базе уже успешно продаются более 5 лет. Конечно, сейчас уже возможностей ЦПУ на основе А7 уже недостаточно даже для решения задач среднего уровня, но вот наиболее простой программный код на таких чипах и по сей день успешно функционирует. В перечень такого софта входит воспроизведение видео, прослушивание аудиозаписей, чтение книг, веб-серфинг и даже наиболее простые игрушки в этом случае запустятся без особых проблем. Именно на этом и акцентируют внимание на ведущих тематических порталах, посвященных мобильным гаджетам и девайсам как ведущие специалисты такого плана, так и обычные пользователи. Ключевой минус А7 — это отсутствие поддержки 64-битных вычислений. Ну а к основным плюсам ее можно отнести идеальное сочетание энергоэффективности и производительности.

    Итоги

    Безусловно, Cortex A7 — это целая эпоха в мире мобильных устройств. Именно с ее появлением мобильные устройства стали доступными и достаточно производительными. И один тот факт, что она уже более 5 лет успешно продается, лишнее тому подтверждение. Но если вначале гаджеты на ее базе занимали средний и премиум сегменты рынка, то сейчас за ними остался лишь бюджетный класс. Эта архитектура устарела и постепенно уходит в прошлое.




Top