Архитектура и принцип работы микропроцессора. Развитие традиционных CISC. Современная электронная цифровая вычислительная техника широко применяется в народном хозяйстве. В настоящее время создано четыре поколения ЭВМ с улучшающимися технико-экономическим

1.6.1 Основные понятия

Развитие технологии обеспечивает возможность создания на кристалле все больше­го количества активных компонентов - транзисторов, которые могут быть использованы для реализации новых архитектурных и структурных решений, обеспечивающих повы­шение производительности и расширение функциональных возможностей микропроцес­соров

Микропроцессорная техника включает технические и программные средства, используемые для построения различных микропроцессорных систем, устройств и пер­сональных микроЭВМ.

Микропроцессор (МП) программно-управляе­мое устройство, осуществляющее процесс цифровой обработки информации и управле­ния им и построенное, как правило, на одной БИС.

Микропроцессорная система (МПС) представляет собой функционально закончен­ное изделие, состоящее из одного или нескольких устройств, главным образом, микро­процессорных: микропроцессора и/или микроконтроллера.

Термин «микроконтроллер» (МК) вытеснил из употребления ранее использовавший­ся термин «однокристальная микроЭВМ». Первый же патент на однокристальную мик­ро-ЭВМ был выдан в 1971 году М. Кочрену и Г. Буну. Именно они предложили на одном кристалле разместить не только микропроцессор, но и память, устройства ввода-выво­да. С появлением однокристальных микроЭВМ связывают начало эры компьютерной автоматизации в области управления. По-видимому, это обстоятельство и определило термин «микроконтроллер» (control - управление).

Однако впоследствии расширение сферы использования МК повлекло за собой разви­тие их архитектуры за счет размещения на кристалле устройств (модулей), отражающих своими функциональными возможностями специфику решаемых задач. Такие дополнитель­ные устройства стали называться периферийными. Поэтому неслучайно в последнее время введен еще один термин - «интегрированный процессор» (ИП) , который определяет новый класс функционально-емких однокристальных устройств с другим составом модулей. По количеству и составу периферийных устройств ИП уступают МК и занимают промежуточное положение между МП и МК. По этой же причине появились не только семейства МК, которые объединяют родственные МК (с одинаковой системой команд, разрядностью), но и стали выделяться подвиды МК: коммуникационные, для управления и т. д.

Микроконтроллер (МК) – однокристальная ЭВМ или управляющий микропроцессор.

МП в настоящее время преимущественно используются для производства персональ­ных ЭВМ, а МК и ИП являются основой создания различных встраиваемых систем, теле­коммуникационного и портативного оборудования и т. д.

Архитектурой процессора называется комплекс его аппаратных и программныхсредств, предоставляемых пользователю. В это общее понятие входит набор программ­но-доступных регистров и исполнительных (операционных) устройств, система основ­ных команд и способов адресации, объем и структура адресуемой памяти и т.д.

Архитектура тесно связана соструктурой , которая предусматривает наличие компонентов для реализации функций процессора.

1.6.2 Варианты архитектур микропроцессоров

В зависимости от набора выполняемых команд и способов адресации

    CISC ( Complex Instruction Set Computer ) – архитектура реализована во многих типах микропроцессоров, выполняющих большой набор разноформатных команд с исполь­зованием многочисленных способов адресации.

Например, микропроцессоры семейства Pentium. Они выполняют более 200 команд разной степени сложности, которые имеют размер от 1 до 15 байт и обеспечивают более 10 различных способов адресации).

Большое многообразие выполняемых команд и способов адресации позволяет программисту реализовать наиболее эффективные алгоритмы решения различных задач. Однако при этом существенноусложняется структура микропроцессора, особенно его устройства управления, что приводит к увеличению размеров и стоимости кристалла, снижению производительности. В то же время многие команды и способы адресации используются достаточно редко. Поэтому, начиная с 1980-х годов, интенсивное развитие получила архитектура процессоров с сокращенным набором команд ( RISC -процессоры).

    RISC ( Reduced Instruction Set Computer ) – архитектура отличается использованием ог­раниченного набора команд фиксированного формата и сокращенного числа способов адресации. В результате существенно упрощается структура микропроцессора, сокращают­ся его размеры и стоимость, значительно повышается производительность.

Современные RISC-процессоры обычно реализуют около 100 команд, имеющих фиксированный формат длиной 4 байта. Также значительно сокращается число используемых способов адресации. Обычно в RISC-процессорах все команды обработки данных выполняются только с регистровой или не­посредственной адресацией. При этом для сокращения количества обращений к памяти RISC-процессоры имеют увеличенный объем внутреннего регистрового запоминающего устройства – от 32 до нескольких сотен регистров, тогда как в CISC-процессорах число регистров общего назначения обычно со­ставляет 8-16.Обращение к памяти в RISC-процессорах используется только в операциях загрузки дан­ных в РЭУ или пересылки результатов из РЭУ в память. При этом используется небольшое число наиболее простых способов адресации: косвенно-регистровая, индексная и некото­рые другие.

Достоинства RISC-архитектуры привели к тому, что во многих современ­ных CISC-процессорах используется RISC-ядро, выполняющее обработку данных. При этом поступающие сложные и разноформатные команды предварительно преобразуют­ся в последовательность простых RISC-операций, быстро выполняемых этим процес­сорным ядром.

Таким образом работают, например, последние модели микропроцессо­ров Pentium и К7, которые по внешним показателям относятся к CISC-процессорам. Ис­пользование RISC-архитектуры является характерной чертой многих современных мик­ропроцессоров.

    VLIW ( Very Large Instruction Word ) – особенностью архитектуры является использование очень длинных команд(до 128 бит и более), отдельные поля которых содержат коды, обеспечивающие выполне­ние различных операций. Таким образом, одна команда вызывает выполнение сразу не­скольких операций параллельно в различных операционных устройствах, входящих в струк­туру микропроцессора.

Архитектура появилась относительно недавно - в 1990-х годах.

В зависимостиот используемого варианта реализации памяти и организации выборки команд и данных в современных микропроцессорах реализуются следующие варианты архитектур:

    Принстонская архитектура , которая часто называется архитектурой Фон-Неймана, характеризуется использованием общей оперативной памяти для хранения программ и данных. Для обращения к этой памяти используется общая системная шина, по которой в процессор поступают и команды, и данные.

Достоинства архитектуры:

а) Наличие общей памяти позволяет оперативно перераспре­делять ее объем для хранения отдельных массивов команд, данных в зависимости от решаемых задач. Этим обеспечивается возможность эф­фективного использования имеющегося объема оперативной памяти в каждом конкрет­ном случае применения микропроцессора;

б) использование общей шины для передачи ко­манд и данных значительно упрощает отладку, тестирование и текущий контроль функци­онирования системы, повышает ее надежность.

Основным недостатком архитектуры является необходи­мость последовательной выборки команд и обрабатываемых данных по общей системной шине. При этом общая шина становится «узким местом» (bottleneck - «бутылочное гор­ло»), которое ограничивает производительность цифровой системы.

    Гарвардская архитектура характеризуется физическим разделением памяти команд (программ) и памяти данных. Каждая память соединяется с процессором отдель­ной шиной, что позволяет одновременно с чтением-записью данных при выполнении теку­щей команды производить выборку и декодирование следующей команды.

Достоинством архитектуры является более высокая производительность, чем при использовании Принстонской архитектуры, благодаря разделению потоков команд и данных и совмещению операций их выборки.

Недостатки архитектуры связаны с необходимостью проведения большего числа шин, а также с фиксированным объемом памяти, выделенной для команд и данных, назначение которой не может оперативно перераспределяться в соответствии с требовани­ями решаемой задачи.

Поэтому приходится использовать память большего объема, коэф­фициент использования которой при решении разнообразных задач оказывается более низ­ким, чем в системах с Принстонской архитектурой. Однако развитие микроэлектронной тех­нологии позволило в значительной степени преодолеть указанные недостатки.

Гар вардская архитектура широко применяется во внутренней структуре современных высоко­производительных микропроцессоров, где используется отдельная кэш-память для хране­ния команд и данных. В то же время во внешней структуре большинства микропроцессор­ных систем реализуются принципыПринстонской архитектуры .

        Типовая структура микропроцессорной системы

Большинство микропроцессорных систем имеет магистрально-модульную структуру, в которой отдельные устройства (модули), входящие в состав системы, обмениваются информацией по общей системной шине–магистрали (рисунок 1.7).

Основным модулем системы является микропроцессор, в состав которого входят

    устрой­ ство управления (УУ) ,

    операционное устройство ,

    регистровое запоминающее уст­ ройство (РЗУ) –внутренняя память, реализованная в виде набора регистров.

Опера тивное запоминающее устройство (ОЗУ) служит для хранения выполняемой программы (или ее фрагментов) и данных, подлежащих обработке. В простейших микропроцессор­ных системах объем ОЗУ составляет десятки и сотни байт, а современных персональ­ных компьютерах, серверах и рабочих станциях он достигает сотен Мбайт и более. Так как обращение к ОЗУ по системной шине требует значительных затрат времени,в большинстве современных высокопроизводительных микропроцессоров дополнитель­но вводитсябыстродействующая промежуточная память (кэш-память) ограниченного объема (от нескольких Кбайт до сотен Кбайт).

Постоянное запоминающее устройство (ПЗУ) служит для хранения констант и стан­дартных (неизменяемых) программ. В ПЗУ обычно записываются программы начальной инициализации (загрузки) систем, тестовые и диагностические программы и другое слу­жебное программное обеспечение, которое не меняется в процессе эксплуатации сис­тем. В микропроцессорных системах, управляющих определенными объектами с использованием фиксированных или редко изменяемых программ, для их хранения также обыч­но используется ПЗУ (память ROM – Read-Only Memory) или репрограммируемое ПЗУ (па­мять EEPROM – Electrically Erased Programmable Read-Only Memory или флэш-память).

Интер фейсные устройства (ИУ) служат для подключения к шине остальных устройств, которые являются внешними по отношению к системе. ИУ реализуют определенные протоколы параллельного или после­довательного обмена. Внешними устройствами могут быть клавиатура, монитор, вне­шние запоминающие устройства (ВЗУ), использующие гибкие или жесткие магнитные диски, оптические диски (CD-ROM), магнитные ленты и другие виды носителей информации, дат­чики и преобразователи информации (аналого-цифровые или цифроаналоговые), разнооб­разные исполнительные устройства (индикаторы, принтеры, электродвигатели, реле и дру­гие).

Для реализации различных режимов работы к системе могут подключаться дополни­тельные устройства – контроллеры прерываний, прямого доступа к памяти и другие, реали­зующие необходимые специальные функции управления.

Данная структура соответствует архитектуре Фон-Неймана, предложенной этим ученым в 1940-х годах для реализации первых моделей цифровых ЭВМ.

УУ – устройство управления

ОУ – операционное устройство

РЗУ– регистровое запоминающее устройство

ОЗУ – оперативное запоминающее устройство

ПЗУ – постоянное запоминающее устройство

ИУ – интерфейсное устройство

Рисунок 1.7 – Типовая структура микропроцессорной системы

Системная шина содержит несколько десятков (в сложных системах более 100) про­водников, которые в соответствии с их функциональным назначением подразделяются на отдельные шины:

    шина адреса А , служит для передачи адреса, который формируется микропроцессором и позволяет выбрать необходимую ячейку памяти ОЗУ (ПЗУ) или требуемое ИУ при обращении к внешнему устройству;

    шина данных D , слу­жит для выборки команд, поступающих из ОЗУ или ПЗУ в УУ микропроцессора, и для пересылки обрабатываемых данных (операндов) между микропроцессором и ОЗУ или ИУ (внешним устройством);

    шина управления С , служит для передачи разнообразных управляющих сигналов, определяющих режимы работы памяти (запись или считывание), интерфейсных устройств (ввод или вывод информации) и микропроцессора (запуск, запросы внешних устройств на обслуживание, информация о текущем режиме работы) и другие сигналы.

Литература

1. Д. Гивоне, Р. Россер. Микропроцессоры и микрокомпьютеры. Вводный курс. Перевод с английского. – М.: Мир, 1983.

2. Д. Корфрон. Технические средства микропроцессорных систем. Практический курс. Перевод с английского. – М.: Мир, 1983.

3. С.Т. Хвощ, Н.Н. Варлинский, Е.А. Попов. Микропроцессоры и микроЭВМ в системах автоматического управления. Справочник. – Л.: Машиностроение, 1987.

4. Р. Токхайм. Микропроцессоры: курс и упражнения. Перевод с английского, под ред. В.Н. Грасевича – М.: Энергоатомиздат, 1988.


1. ЭВМ и микроЭВМ. Общие сведенья.

Поколения ЭВМ.

В 1949г. создана первая ЭВМ на лампах. В 1951 году была создана первая промышленная ЭВМ (Univac I). В этом же году появилась и в СССР Киев у Глушкова первая ЭВМ. Это были машины первого поколения.

Второе поколение – на транзисторах и полупроводниках (Проминь, Днепр, Минск).

В 1959г. изобрели интегральные схемы.

В 1965г. был создан первый миникомпьютер. (В СССР – М6000, М40-30, БЭСМ, машины ряда ЕС). Миникомпьютеры уже не были всецело предназначены для обработки данных и решения задач; их начали включать как составные части в системы, требовавшие быстрого принятия решений, - системы реального времени .

С появлением в 1971г. микропроцессоров началась эра программируемой логики.

Микропроцессор – это программируемое логическое устройство, изготовленное по БИС-технологии. В конструкцию микропроцессора заложена большая гибкость. Сам по себе он не может решить ту или иную конкретную задачу. Чтобы решить задачу, его нужно запрограммировать и соединить с другими устройствами. В их число входят память и устройства ввода/вывода.



В общем случае, некоторая совокупность соединенных друг с другом системных устройств, включающая микропроцессор, память и устройства ввода/вывода, нацеленная на выполнение некоторой четко определенной функции, называется микропроцессорной системой или микроЭВМ.


Типовая структура ЭВМ.

Типовая ЭВМ включает пять функциональных блоков: устройство ввода, память, арифметическое устройство, устройство управления и устройство вывода.

Рис. 1.1. Принцип организации ЭВМ

Аппаратура способна выполнять только ограниченный набор элементарных операций. Все остальные функциональные возможности ЭВМ достигаются программным путем .

Программа – это определенным образом организованная совокупность элементарных машинных операций, называемых командами , с помощью которых осуществляется обработка информации и данных.

Программа и данные сначала накапливаются в памяти, куда они поступают через устройство ввода. Затем отдельные команды программы одна за другой автоматически поступают в устройство управления, которое их расшифровывает и выполняет. Для выполнения операции обычно требуется, чтобы данные поступили в арифметическое устройство, содержащее все необходимые для их обработки электронные схемы. В процессе вычислений или после их завершения полученные результаты направляются в устройство вывода. Арифметическое устройство и устройство управления вместе обычно называются центральным процессорным устройством (ЦПУ) или центральнымпроцессором (ЦП). Центральный процессор, изготовленный в виде БИС, и есть микропроцессор .

Память

Запоминание и хранение больших объемов информации происходит в памяти, точнее в запоминающем устройстве . ЗУ подразделяются на подблоки, называемые регистрами , каждый из которых способен хранить одно машинное слово. Группа двоичных цифр, обрабатываемых одновременно, называется машинным словом , а число двоичных цифр, составляющих слово, называется длиной слова . Типичные микроЭВМ имеют длину слова 4, 8, 12, 16 двоичных разрядов. В силу особой распространенности слово длиной 8 бит имеет специальное название – байт .

Каждый регистр в ЗУ, или ячейка памяти имеет свой адрес. Адрес – это просто целое число, однозначно идентифицирующее ячейку. Слово, хранящееся в ячейке, называют содержимым этой ячейки.

Арифметическое устройство (АУ)

Обработка данных осуществляется главным образом в АУ. Эта обработка включает в себя как арифметические, так и логические операции – они очень элементарны (сложить два числа, вычесть, сравнить, сдвинуть одно по отношению к другому, инвертировать, логический умножить, исключить ИЛИ).

Главный регистр в АУ – аккумулятор .

Имеется в АУ несколько рабочих регистров для кратковременного хранения результатов вычисления.

АУ содержит также признаковые биты – флажки . Флажки содержат информацию, характеризующую состояние процессора и результаты сравнения чисел. Состояние флажков вместе с другой важной информацией о состоянии ЭВМ хранится в специальном регистре – слове состоянии программы (PSW – program status word).

Устройство управления (УУ)

УУ управляет работой ЭВМ. Оно автоматически, последовательно по одной, получает команды из памяти, декодирует каждую из них и генерирует необходимые для ее выполнения сигналы.

В УУ находится программный счетчик для указания адреса очередной команды. При получении в УУ команды содержимое счетчика автоматически увеличивается на 1.

Поступающие в УУ команды записываются в регистре команд . Каждая команда содержит код операции, данные или адрес . Код операции – это совокупность двоичных цифр, которые однозначно определяют операцию, выполняемую в процессе интерпретации команды. Адресная часть команды (если она присутствует) указывает на ячейки (например, в памяти), к которым нужно обратиться, выполняя команду.

Необходимо адрес ячейки различать с ее содержимым и не путать эти понятия.

Следующая функция УУ – это синхронизация работы отдельных блоков ЭВМ. Она осуществляется с помощью тактового генератора . Обработка команды занимает несколько периодов тактового генератора. В общем случае, команда в ЭВМ сначала выбирается из памяти, потом декодируется, а затем выполняется. Выборка, декодирование и выполнение распадаются на несколько временных интервалов. Каждый из этих интервалов, включающий один или несколько периодов тактового генератора, представляет собой так называемый машинный цикл . Совокупное время, требуемое для выборки, декодирования и выполнения команды, образует командный цикл , или цикл выполнения команды.

Устройство ввода/вывода (УВВ)

Через устройство ввода/вывода осуществляется контакт ЭВМ с внешним миром. Они являются буферами для преобразования информации с тех языков, уровней и тех скоростей, на которых работает ЭВМ, к тем, которые воспринимает человек или другая связанная с ЭВМ система. УВВ представляет собой периферийные устройства ЭВМ. Точки контакта между УВВ и ЭВМ называются портами ввода/вывода.


Архитектура микропроцессора.

МикроЭВМ

МикроЭВМ – это система с шинной организацией, состоящая из модулей или блоков, реализованных в виде БИС. Эти модули обрабатывают информацию, управляют потоком и интерпретацией команд, управляют работой шин, хранят информацию и осуществляют взаимодействие между микроЭВМ и ее окружением. Это взаимодействие осуществляют блоки, называемые портами ввода/вывода. Каждый такой порт является интерфейсом между микропроцессором и каким-либо внешним устройством (например, терминалом, внешней памятью, измерительным прибором и др.). Взаимодействие блоков осуществляется при помощи шин трех типов: адресных шин, шин данных и управляющих шин.


Рис. 2.1. Структура микроЭВМ с шинной организацией


Структура микропроцессора

Рис. 2.2. Гипотетический МП

В приведенном гипотетическом микропроцессоре:

· программный счетчик (счетчик команд), стек и регистр команд служат для обработки команд;

· АЛУ, триггер переноса, общие регистры, регистр адреса данных служат для обработки данных;

· остальные компоненты – дешифратор команд, БУС – управляют работой микропроцессора в целом.

Взаимодействие компонентов осуществляется по внутренним каналам передачи данных. Связь МП с другими блоками (ЗУ и устройства ввода/вывода) происходит по адресной шине, шине данных и шине управления.

Микропроцессор работает со словами, состоящими из 8 битов, называемых байтами.

Адресная шина МП однонаправленная, а шина данных двунаправленная. Управляющая шина состоит из 5 линий, ведущих к блоку управления и синхронизации и 8 выходящих из него линий. По этим линиям передаются управляющие и тактирующие сигналы между компонентами микропроцессора и между МП и другими блоками микроЭВМ.

Счетчик команд состоит из 16 битов и содержит адрес очередного байта команды, считываемого из памяти. Он автоматически увеличивается на единицу после чтения каждого байта. Одна из функций стека – сохранение адреса возврата из подпрограммы. В стеке могут также сохраняться данные из верхних трех общих регистров и триггера переноса.

В то время как слово данных всегда состоит из одного байта, команда может состоять из 1, 2 или 3 байтов. Первый байт любой команды поступает из памяти по шине данных на регистр команд . Этот первый байт подается на вход дешифратора команд, который определяет ее смысл. В частности, дешифратор определяет, является ли команда однобайтной или она состоит из большого числа байтов. В последнем случае дополнительные байты передаются по шине данных из памяти и принимаются или на регистр адреса данных, или на один из общих регистров.

Регистр адреса данных содержит адрес операнда для команд, обращающихся к памяти, адрес порта для команд ввода/вывода или адрес следующей команды для команд перехода.

Пятнадцать 8-битовых общих регистров содержат операнды для всех команд, работающих с данными. Для указания этих регистров используются 4-битовые коды от 0000 до 1110. Регистр 0000 называется аккумулятором (АК) и участвует во всех арифметических и логических операциях (в АК содержится один из операндов перед началом выполнения операции и в АК загружается результат после ее выполнения). Обычно обращение к общим регистрам осуществляется при помощи R-селектора или r-селектора . R-селектор позволяет обращаться к любому регистру, тогда как через r-селектор доступны только три первые регистры.

Важной возможностью МП является косвенная адресация. Задание несуществующего регистра общего назначения 1111используется как указание на то, что нужно обратиться к байту памяти по 16-разрядному адресу, который получается комбинированием содержимого двух фиксированных общих регистров. Старшие 8 разрядов адреса – из регистра 0001, а следующие 8 разрядов – из регистра 0010 (часто эти регистры называют H и L соответственно).

Все арифметические и логические операции выполняются в арифметико-логическом устройстве (АЛУ) . Входами АЛУ служат две 8-битовые шины. Одна из них идет от аккумулятора (регистр 0000), а другая – от R-селектора, который выбирает либо один из регистров общего назначения от 0000 до 1110, либо ячейку памяти, если задана косвенная адресация. Еще одна входная линия поступает в АЛУ от триггера переноса С, который участвует в некоторых арифметических и логических операциях. Результаты из АЛУ передаются в аккумулятор по выходной 8-битовой шине. Существуют еще две линии, идущие от АЛУ к блоку управления и синхронизации; они передают информацию о наличии или отсутствии двух особых условий: аккумулятор содержит нули (линия Z) и старший разряд аккумулятора равен 1 (линия N). Триггер переноса и обе линии состояния АЛУ Z и N называются флажками и используются в командах условного перехода.

Последний компонент МП – блок управления и синхронизации (БУС) . Он получает сигналы от дешифратора команд, который анализирует команду. В БУС из АЛУ и от триггера переноса поступают сигналы, по которым определяются условия для передач управления. Все остальные компоненты МП получают от БУС управляющие и синхронизирующие сигналы, необходимые для выполнения команды. С помощью 13 внешних линий реализуется интерфейс устройства управления с другими модулями микроЭВМ.

Введение

1.3 Обзор существующих типов архитектур микропроцессоров

2. Устройство управления

3. Особенности программного и микропрограммного управления

4. Режимы адресации

Заключение


Процесс взаимодействия человека с ЭВМ насчитывает уже более 40лет. До недавнего времени в этом процессе могли участвовать только специалисты - инженеры, математики - программисты, операторы. В последние годы произошли кардинальные изменения в области вычислительной техники. Благодаря разработке и внедрению микропроцессоров в структуру ЭВМ появились малогабаритные, удобные для пользователя персональные компьютеры. Ситуация изменилась, в роли пользователя может быть не только специалист по вычислительной технике, но и любой человек, будь то школьник или домохозяйка, врач или учитель, рабочий или инженер. Часто это явление называют феноменом персонального компьютера. В настоящее время мировой парк персональных компьютеров превышает 20 млн.

Почему возник этот феномен? Ответ на этот вопрос можно найти, если четко сформулировать, что такое персональный компьютер и каковы его основные признаки. Надо правильно воспринимать само определение " персональный", оно не означает принадлежность компьютера человеку на правах личной собственности. Определение "персональный" возникло потому, что человек получил возможность общаться с ЭВМ без посредничества профессионала-программиста, самостоятельно, персонально. При этом не обязательно знать специальный язык ЭВМ. Существующие в компьютере программные средства обеспечат благоприятную " дружественную" форму диалога пользователя и ЭВМ.

В настоящее время одними из самых популярных компьютеров стали модель IBM PC и ее модернизированный вариант IBM PC XT, который по архитектуре, программному обеспечению, внешнему оформлению считается базовой моделью персонального компьютера.

Основой персонального компьютера является системный блок. Он организует работу, обрабатывает информацию, производит расчеты, обеспечивает связь человека и ЭВМ. Пользователь не обязан досконально разбираться в том, как работает системный блок. Это удел специалистов. Но он должен знать, из каких функциональных блоков состоит компьютер. Мы не имеем четкого представления о принципе действия внутренних функциональных блоков окружающих нас предметов - холодильника, газовой плиты, стиральной машины, автомобиля, но должны знать, что заложено в основу работы этих устройств, каковы возможности составляющих их блоков.

1. Общая характеристика архитектуры процессора

1.1 Базовая структура микропроцессорной системы

Задача управления системой возлагается на центральный процессор (ЦП), который связан с памятью и системой ввода-вывода через каналы памяти и ввода-вывода соответственно. ЦП считывает из памяти команды, которые образуют программу и декодирует их. В соответствии с результатом декодирования команд он осуществляет выборку данных из памяти портов ввода, обрабатывает их и пересылает обратно в память или порты вывода. Существует также возможность ввода-вывода данных из памяти на внешние устройства и обратно, минуя ЦП. Этот механизм называется прямым доступом к памяти (ПДП).

С точки зрения пользователя при выборе микропроцессора целесообразно располагать некоторыми обобщенными комплексными характеристиками возможностей микропроцессора. Разработчик нуждается в уяснении и понимании лишь тех компонентов микропроцессора, которые явно отражаются в программах и должны быть учтены при разработке схем и программ функционирования системы. Такие характеристики определяются понятием архитектуры микропроцессора.

1.2 Понятие архитектуры микропроцессора

Архитектура типичной небольшой вычислительной системы на основе микроЭВМ показана на рис. 1. Такая микроЭВМ содержит все 5 основных блоков цифровой машины: устройство ввода информации, управляющее устройство (УУ), арифметико-логическое устройство (АЛУ) (входящие в состав микропроцессора), запоминающие устройства (ЗУ) и устройство вывода информации.

Рис. 1. Архитектура типового микропроцессора.

Микропроцессор координирует работу всех устройств цифровой системы с помощью шины управления (ШУ). Помимо ШУ имеется 16-разрядная адресная шина (ША), которая служит для выбора определенной ячейки памяти, порта ввода или порта вывода. По 8-разрядной информационной шине или шине данных (ШД) осуществляется двунаправленная пересылка данных к микропроцессору и от микропроцессора. Важно отметить, что МП может посылать информацию в память микроЭВМ или к одному из портов вывода, а также получать информацию из памяти или от одного из портов ввода.

Постоянное запоминающее устройство (ПЗУ) в микроЭВМ содержит некоторую программу (на практике программу инициализации ЭВМ). Программы могут быть загружены в запоминающее устройство с произвольной выборкой (ЗУПВ) и из внешнего запоминающего устройства (ВЗУ). Это программы пользователя.

В качестве примера, иллюстрирующего работу микроЭВМ, рассмотрим процедуру, для реализации которой нужно выполнить следующую последовательность элементарных операций:

1. Нажать клавишу с буквой "А" на клавиатуре.

2. Поместить букву "А" в память микроЭВМ.

3. Вывести букву "А" на экран дисплея.

Это типичная процедура ввода-запоминания-вывода, рассмотрение которой дает возможность пояснить принципы использования некоторых устройств, входящих в микроЭВМ.

На рис. 2 приведена подробная диаграмма выполнения процедуры ввода-запоминания-вывода. Обратите внимание, что команды уже загружены в первые шесть ячеек памяти. Хранимая программа содержит следующую цепочку команд:

1. Ввести данные из порта ввода 1.

2. Запомнить данные в ячейке памяти 200.

3. Переслать данные в порт вывода 10.

В данной программе всего три команды, хотя на рис. 2 может показаться, что в памяти программ записано шесть команд. Это связано с тем, что команда обычно разбивается на части. Первая часть команды 1 в приведенной выше программе - команда ввода данных. Во второй части команды 1 указывается, откуда нужно ввести данные (из порта 1). Первая часть команды, предписывающая конкретное действие, называется кодом операции (КОП), а вторая часть - операндом. Код операции и операнд размещаются в отдельных ячейках памяти программ. На рис. 2 КОП хранится в ячейке 100, а код операнда - в ячейке 101 (порт 1); последний указывает откуда нужно взять информацию.

В МП на рис. 2 выделены еще два новых блока - регистры: аккумулятор и регистр команд.


Рис. 2. Диаграмма выполнения процедуры ввода-запоминания-вывода

Рассмотрим прохождение команд и данных внутри микроЭВМ с помощью занумерованных кружков на диаграмме. Напомним, что микропроцессор - это центральный узел, управляющий перемещением всех данных и выполнением операций.

Итак, при выполнении типичной процедуры ввода-запоминания-вывода в микроЭВМ происходит следующая последовательность действий:

1. МП выдает адрес 100 на шину адреса. По шине управления поступает сигнал, устанавливающий память программ (конкретную микросхему) в режим считывания.

2. ЗУ программ пересылает первую команду ("Ввести данные") по шине данных, и МП получает это закодированное сообщение. Команда помещается в регистр команд. МП декодирует (интерпретирует) полученную команду и определяет, что для команды нужен операнд.

3. МП выдает адрес 101 на ША; ШУ используется для перевода памяти программ в режим считывания.

4. Из памяти программ на ШД пересылается операнд "Из порта 1". Этот операнд находится в программной памяти в ячейке 101. Код операнда (содержащий адрес порта 1) передается по ШД к МП и направляется в регистр команд. МП теперь декодирует полную команду ("Ввести данные из порта 1").

5. МП, используя ША и ШУ, связывающие его с устройством ввода, открывает порт 1. Цифровой код буквы "А" передается в аккумулятор внутри МП и запоминается.Важно отметить, что при обработке каждой программной команды МП действует согласно микропроцедуре выборки-декодирования-исполнения.

6. МП обращается к ячейке 102 по ША. ШУ используется для перевода памяти программ в режим считывания.

7. Код команды "Запомнить данные" подается на ШД и пересылается в МП, где помещается в регистр команд.

8. МП дешифрирует эту команду и определяет, что для нее нужен операнд. МП обращается к ячейке памяти 103 и приводит в активное состояние вход считывания микросхем памяти программ.

9. Из памяти программ на ШД пересылается код сообщения "В ячейке памяти 200". МП воспринимает этот операнд и помещает его в регистр команд. Полная команда "Запомнить данные в ячейке памяти 200" выбрана из памяти программ и декодирована.

10. Теперь начинается процесс выполнения команды. МП пересылает адрес 200 на ША и активизирует вход записи, относящийся к памяти данных.

11. МП направляет хранящуюся в аккумуляторе информацию в память данных. Код буквы "А" передается по ШД и записывается в ячейку 200 этой памяти. Выполнена вторая команда. Процесс запоминания не разрушает содержимого аккумулятора. В нем по-прежнему находится код буквы "А".

12. МП обращается к ячейке памяти 104 для выбора очередной команды и переводит память программ в режим считывания.

13. Код команды вывода данных пересылается по ШД к МП, который помещает ее в регистр команд, дешифрирует и определяет, что нужен операнд.

14. МП выдает адрес 105 на ША и устанавливает память программ в режим считывания.

15. Из памяти программ по ШД к МП поступает код операнда "В порт 10", который далее помещается в регистр команд.

16. МП дешифрирует полную команду "Вывести данные в порт 10". С помощью ША и ШУ, связывающих его с устройством вывода, МП открывает порт 10, пересылает код буквы "А" (все еще находящийся в аккумуляторе) по ШД. Буква "А" выводится через порт 10 на экран дисплея.

В большинстве микропроцессорных систем (МПС) передача информации осуществляется способом, аналогичным рассмотренному выше. Наиболее существенные различия возможны в блоках ввода и вывода информации.

Подчеркнем еще раз, что именно микропроцессор является ядром системы и осуществляет управление всеми операциями. Его работа представляет последовательную реализацию микропроцедур выборки-дешифрации-исполнения. Однако фактическая последовательность операций в МПС определяется командами, записанными в памяти программ.

Таким образом, в МПС микропроцессор выполняет следующие функции:

Выборку команд программы из основной памяти;

Дешифрацию команд;

Выполнение арифметических, логических и других операций, закодированных в командах;

Управление пересылкой информации между регистрами и основной памятью, между устройствами ввода/вывода;

Отработку сигналов от устройств ввода/вывода, в том числе реализацию прерываний с этих устройств;

Управление и координацию работы основных узлов МП.


Существует несколько подходов к классификации микропроцессоров по типу архитектуры. Так, выделяют МП с CISC (Complete Instruction Set Computer) архитектурой, характеризуемой полным набором команд, и RISC (Reduce Instruction Set Computer) архитектурой, которая определяет систему с сокращенным набором команд одинакового формата, выполняемых за один такт МП.

Определяя в качестве основной характеристики МП разрядность, выделяют следующие типы МП архитектуры:

С фиксированной разрядностью и списком команд (однокристальные);

С наращиваемой разрядностью (секционные) и микропрограммным управлением.

Анализируя адресные пространства программ и данных, определяют МП с архитектурой фон Неймана (память программ и память данных находятся в едином пространстве и нет никаких признаков, указывающих на тип информации в ячейке памяти) и МП с архитектурой Гарвардской лаборатории (память программ и память данных разделены, имеют свои адресные пространства и способы доступа к ним).

Рассмотрим более подробно основные типы архитектурных решений, выделяя связь со способами адресации памяти.

1. Регистровая архитектура определяется наличием достаточно большого регистрового файла внутри МП. Команды получают возможность обратиться к операндам, расположенным в одной из двух запоминающих сред: оперативной памяти или регистрах. Размер регистра обычно фиксирован и совпадает с размером слова, физически реализованного в оперативной памяти. К любому регистру можно обратиться непосредственно, поскольку регистры представлены в виде массива запоминающих элементов - регистрового файла. Типичным является выполнение арифметических операций только в регистре, при этом команда содержит два операнда (оба операнда в регистре или один операнд в регистре, а второй в оперативной памяти).

К данному типу архитектуры относится микропроцессор фирмы Zilog. Процессор Z80 - детище фирмы Zilog помимо расширенной системы команд, одного номинала питания и способности исполнять программы, написанные для i8080, имел архитектурные "изюминки".

Рис. 3. Микропроцессор Z80 фирмы Zilog.

В дополнение к основному набору РОН, в кристалле был реализован второй комплект аналогичных регистров. Это значительно упрощало работу при вызове подпрограмм или процедур обслуживания прерываний, поскольку программист мог использовать для них альтернативный набор регистров, избегая сохранения в стеке содержимого РОНов для основной программы с помощью операций PUSH. Кроме того, в систему команд был включен ряд специальных инструкций, ориентированных на обработку отдельных битов, а для поддержки регенерации динамической памяти в схему процессора введены соответствующие аппаратные средства. Z80 применялся в машинах Sinclair ZX, Sinclair Spectrum, Tandy TRS80.

Предельный вариант - архитектура с адресацией посредством аккумуляторов (меньший набор команд).

МП фирмы Motorola имел ряд существенных преимуществ. Прежде всего, кристалл МС6800 требовал для работы одного номинала питания, а система команд оказалась весьма прозрачной для программиста. Архитектура МП также имела ряд особенностей.

Рис 4. Микропроцессор МС6800 фирмы Motorola.

Микропроцессор МС 6800 содержал два аккумулятора, и результат операции АЛУ мог быть помещен в любой из них. Но самым ценным качеством структуры МС 6800 было автоматическое сохранение в стеке содержимого всех регистров процессора при обработке прерываний (Z80 требовалось для этого несколько команд PUSH). Процедура восстановления РОН из стека тоже выполнялась аппаратно.

2. Стековая архитектура дает возможность создать поле памяти с упорядоченной последовательностью записи и выборки информации.

В общем случае команды неявно адресуются к элементу стека, расположенному на его вершине, или к двум верхним элементам стека.

3. Архитектура МП, ориентированная на оперативную память (типа "память-память"), обеспечивает высокую скорость работы и большую информационную емкость рабочих регистров и стека при их организации в оперативной памяти.

Архитектура этого типа не предполагает явного определения аккумулятора, регистров общего назначения или стека; все операнды команд адресуются к области основной памяти.

С точки зрения важности для пользователя-программиста под архитектурой в общем случае понимают совокупность следующих компонентов и характеристик:

Разрядности адресов и данных;

Состава, имен и назначения программно-доступных регистров;

Форматов и системы команд;

Режимов адресации памяти;

Способов машинного представления данных разного типа;

Структуры адресного пространства;

Способа адресации внешних устройств и средств выполнения операций ввода/вывода;

Классов прерываний, особенностей инициирования и обработки прерываний.

2. Устройство управления

Коды операции команд программы, воспринимаемые управляющей частью микропроцессора, расшифрованные и преобразованные в ней, дают информацию о том, какие операции надо выполнить, где в памяти расположены данные, куда надо направить результат и где расположена следующая за выполняемой команда.

Управляющее устройство имеет достаточно средств для того, чтобы после восприятия и интерпретации информации, получаемой в команде, обеспечить переключение (срабатывание) всех требуемых функциональных частей машины, а также для того, чтобы подвести к ним данные и воспринять полученные результаты. Именно срабатывание, т. е. изменение состояния двоичных логических элементов на противоположное, позволяет посредством коммутации вентилей выполнять элементарные логические и арифметические действия, а также передавать требуемые операнды в функциональные части микроЭВМ.

Устройство управления в строгой последовательности в рамках тактовых и цикловых временных интервалов работы микропроцессора (такт - минимальный рабочий интервал, в течение которого совершается одно элементарное действие; цикл - интервал времени, в течение которого выполняется одна машинная операция) осуществляет: выборку команды; интерпретацию ее с целью анализа формата, служебных признаков и вычисления адреса операнда (операндов); установление номенклатуры и временной последовательности всех функциональных управляющих сигналов; генерацию управляющих импульсов и передачу их на управляющие шины функциональных частей микроЭВМ и вентили между ними; анализ результата операции и изменение своего состояния так, чтобы определить месторасположение (адрес) следующей команды.


В микропроцессорах используют два метода выработки совокупности функциональных управляющих сигналов: программный и микропрограммный.

Выполнение операций в машине сводится к элементарным преобразованиям информации (передача информации между узлами в блоках, сдвиг информации в узлах, логические поразрядные операции, проверка условий и т.д.) в логических элементах, узлах и блоках под воздействием функциональных управляющих сигналов блоков (устройств) управления. Элементарные преобразования, неразложимые на более простые, выполняются в течение одного такта сигналов синхронизации и называются микрооперациями.

В аппаратных (схемных) устройствах управления каждой операции соответствует свой набор логических схем, вырабатывающих определенные функциональные сигналы для выполнения микроопераций в определенные моменты времени. При этом способе построения устройства управления реализация микроопераций достигается за счет однажды соединенных между собой логических схем, поэтому ЭВМ с аппаратным устройством управления называют ЭВМ с жесткой логикой управления. Это понятие относится к фиксации системы команд в структуре связей ЭВМ и означает практическую невозможность каких-либо изменений в системе команд ЭВМ после ее изготовления.

При микропрограммной реализации устройства управления в состав последнего вводится ЗУ, каждый разряд выходного кода которого определяет появление определенного функционального сигнала управления. Поэтому каждой микрооперации ставится в соответствие свой информационный код - микрокоманда. Набор микрокоманд и последовательность их реализации обеспечивают выполнение любой сложной операции. Набор микроопераций называют микропрограммами. Способ управления операциями путем последовательного считывания и интерпретации микрокоманд из ЗУ (наиболее часто в виде микропрограммного ЗУ используют быстродействующие программируемые логические матрицы), а также использования кодов микрокоманд для генерации функциональных управляющих сигналов называют микропрограммным, а микроЭВМ с таким способом управления - микропрограммными или с хранимой (гибкой) логикой управления.

К микропрограммам предъявляют требования функциональной полноты и минимальности. Первое требование необходимо для обеспечения возможности разработки микропрограмм любых машинных операций, а второе связано с желанием уменьшить объем используемого оборудования. Учет фактора быстродействия ведет к расширению микропрограмм, поскольку усложнение последних позволяет сократить время выполнения команд программы.

Преобразование информации выполняется в универсальном арифметико-логическом блоке микропроцессора. Он обычно строится на основе комбинационных логических схем.

Для ускорения выполнения определенных операций вводятся дополнительно специальные операционные узлы (например, циклические сдвигатели). Кроме того, в состав микропроцессорного комплекта (МПК) БИС вводятся специализированные оперативные блоки арифметических расширителей.

Операционные возможности микропроцессора можно расширить за счет увеличения числа регистров. Если в регистровом буфере закрепление функций регистров отсутствует, то их можно использовать как для хранения данных, так и для хранения адресов. Подобные регистры микропроцессора называются регистрами общего назначения (РОН). По мере развития технологии реально осуществлено изготовление в микропроцессоре 16, 32 и более регистров.

В целом же, принцип микропрограммного управления (ПМУ) включает следующие позиции:

1) любая операция, реализуемая устройством, является последовательностью элементарных действий - микроопераций;

2) для управления порядком следования микроопераций используются логические условия;

3) процесс выполнения операций в устройстве описывается в форме алгоритма, представляемого в терминах микроопераций и логических условий, называемого микропрограммой;

4) микропрограмма используется как форма представления функции устройства, на основе которой определяются структура и порядок функционирования устройства во времени.

ПМУ обеспечивает гибкость микропроцессорной системы и позволяет осуществлять проблемную ориентацию микро- и миниЭВМ.

4. Режимы адресации

Для взаимодействия с различными модулями в ЭВМ должны быть средства идентификации ячеек внешней памяти, ячеек внутренней памяти, регистров МП и регистров устройств ввода/вывода. Поэтому каждой из запоминающих ячеек присваивается адрес, т.е. однозначная комбинация бит. Количество бит определяет число идентифицируемых ячеек. Обычно ЭВМ имеет различные адресные пространства памяти и регистров МП, а иногда - отдельные адресные пространства регистров устройств ввода/вывода и внутренней памяти. Кроме того, память хранит как данные, так и команды. Поэтому для ЭВМ разработано множество способов обращения к памяти, называемых режимами адресации.

Режим адресации памяти - это процедура или схема преобразования адресной информации об операнде в его исполнительный адрес.

Все способы адресации памяти можно разделить на:

1) прямой, когда исполнительный адрес берется непосредственно из команды или вычисляется с использованием значения, указанного в команде, и содержимого какого-либо регистра (прямая адресация, регистровая, базовая, индексная и т.д.);

2) косвенный, который предполагает, что в команде содержится значение косвенного адреса, т.е. адреса ячейки памяти, в которой находится окончательный исполнительный адрес (косвенная адресация).

В каждой микроЭВМ реализованы только некоторые режимы адресации, использование которых, как правило, определяется архитектурой МП.

Заключение

Число персональных компьютеров как в мире, так и, в частности, в России стремительно растет; рынок ПК – самый перспективный и доходный среди остальных рынков вычислительной техники. В северной Америке и Западной Европе процент семей, имеющих ПК, приближается к 30. Без сомнения, в наши дни каждый должен изучить и понять компьютер не только теоретически, но, что наиболее важно, и практически.

Анализ новых решений построения структуры компьютера показывает, что процессор, память, устройства ввода - вывода составляют основу любого компьютера. Рассмотрим наиболее распространенную структурную схему, которая лежит в основе наиболее часто встречающихся моделей компьютеров, в частности персональных.

Современный компьютер можно представить в большинстве случаев упрощенной структурной схемой, где выделены центральная и периферийная части. К центральной части относятся процессор и внутренняя память, к периферийной части - устройства ввода-вывода и внешняя память. В основу упрощенной структурной схемы заложены принципы магистральности, модульности, микропрограммирумостью.

Не следует надеяться, что развитие вычислительной техники как-то кардинально изменит наше существование. Компьютер не более (но и не менее) чем один из мощных двигателей прогресса (как энергетика, металлургия, химия, машиностроение), который берет на свои "железные плечи" такую важную функцию, как рутину обработки информации. Эта рутина всегда и везде сопровождает самые высокие полеты человеческой мысли. Именно в этой рутине очень часто тонут дерзкие решения, недоступные компьютеру. Поэтому так важно " свалить" на компьютер рутинные операции, чтобы освободить человека для его истинного предназначения-творчества.

Будущее микропроцессорной техники связано сегодня с двумя новыми направлениями - нанотехнологиями и квантовыми вычислительными системами. Эти пока еще главным образом теоретические исследования касаются использования в качестве компонентов логических схем молекул и даже субатомных частиц: основой для вычислений должны служить не электрические цепи, как сейчас, а положение отдельных атомов или направление вращения электронов. Если "микроскопические" компьютеры будут созданы, то они обойдут современные машины по многим параметрам.

Список используемой литературы

1. Балашов Е.П., Григорьев В.Л., Петров Г.А. Микро- и миниЭВМ. – СПб.: Энергоатомиздат, 2004.

2. Еремин Е.А. Популярные лекции об устройстве компьютера. – СПб.: БХВ-Петербург, 2003.

3. Ибрагим К.Ф. Устройство и настройка ПК / Пер. с англ. – М.: Бином, 2004..

4. Косарев В.П., Сурков Е.М., Бакова И.В. Технические средства систем управления. - М.: Изд-во "Финансы и статистика", 2006.

5. Леонтьев В.П. Новейшая энциклопедия персонального компьютера 2003. – М.: ОЛМА-ПРЕСС, 2004.

6. Столлингс У. Структурная организация и архитектура компьютерных систем. – М.: Вильямс, 2002.

7. Уинн Л. Рош. Библия по модернизации персонального компьютера. – М.: Тивали-Стиль, 2005.

8. Фигурнов В.Э. IBM PC для пользователя, 6-е издание, переработанное и дополненное. – M.: ИНФРА-М, 1996.

Аннотация: Цель лекции: знакомство с архитектурой микропроцессоров, отличительными чертами микропроцессоров различных типов архитектуры, этапами развития архитектуры универсальных микропроцессоров, а также с основными чертами архитектуры IA-32.

Основные понятия и характеристики архитектуры микропроцессоров

Микропроцессор (МП) - это программно-управляемое устройство, которое предназначено для обработки цифровой информации и управления процессом этой обработки и выполнено в виде одной или нескольких больших интегральных схем (БИС).

Понятие большая интегральная схема в настоящее время четко не определено. Ранее считалось, что к этому классу следует относить микросхемы, содержащие более 1000 элементов на кристалле. И действительно, в эти параметры укладывались первые микропроцессоры. Например, 4-разрядная процессорная секция микропроцессорного комплекта К584, выпускавшегося в конце 1970-х годов, содержала около 1500 элементов. Сейчас, когда микропроцессоры содержат десятки миллионов транзисторов и их количество непрерывно увеличивается, под БИС будем понимать функционально сложную интегральную схему .

Микропроцессорная система (МПС) представляет собой функционально законченное изделие, состоящее из одного или нескольких устройств, основу которой составляет микропроцессор.

Микропроцессор характеризуется большим количеством параметров и свойств, так как он является, с одной стороны, функционально сложным вычислительным устройством, а с другой - электронным прибором, изделием электронной промышленности. Как средство вычислительной техники он характеризуется прежде всего своей архитектурой , то есть совокупностью программно-аппаратных свойств, предоставляемых пользователю. Сюда относятся система команд, типы и форматы обрабатываемых данных, режимы адресации, количество и распределение регистров, принципы взаимодействия с оперативной памятью и внешними устройствами (характеристики системы прерываний, прямой доступ к памяти и т. д.). По своей архитектуре микропроцессоры разделяются на несколько типов (рис. 1.1).

Универсальные микропроцессоры предназначены для решения задач цифровой обработки различного типа информации от инженерных расчетов до работы с базами данных, не связанных жесткими ограничениями на время выполнения задания. Этот класс микропроцессоров наиболее широко известен. К нему относятся такие известные микропроцессоры, как МП ряда Pentium фирмы Intel и МП семейства Athlon фирмы AMD .


Рис. 1.1.

Характеристики универсальных микропроцессоров :

  • разрядность: определяется максимальной разрядностью целочисленных данных, обрабатываемых за 1 такт, то есть фактически разрядностью арифметико-логического устройства ( АЛУ );
  • виды и форматы обрабатываемых данных;
  • система команд, режимы адресации операндов;
  • емкость прямоадресуемой оперативной памяти: определяется разрядностью шины адреса ;
  • частота внешней синхронизации. Для частоты синхронизации обычно указывается ее максимально возможное значение, при котором гарантируется работоспособность схемы. Для функционально сложных схем, к которым относятся и микропроцессоры, иногда указывают также минимально возможную частоту синхронизации. Уменьшение частоты ниже этого предела может привести к отказу схемы. В то же время в тех применениях МП, где не требуется высокое быстродействие, снижение частоты синхронизации - одно из направлений энергосбережения. В ряде современных микропроцессоров при уменьшении частоты он переходит в < спящий режим >, при котором сохраняет свое состояние. Частота синхронизации в рамках одной архитектуры позволяет сравнить производительность микропроцессоров. Но разные архитектурные решения влияют на производительность гораздо больше, чем частота;
  • производительность: определяется с помощью специальных тестов, при этом совокупность тестов подбирается таким образом, чтобы они по возможности покрывали различные характеристики микроархитектуры процессоров, влияющие на производительность.

Универсальные микропроцессоры принято разделять на CISC - и RISC-микропроцессоры . CISC-микропроцессоры (Completed Instruction Set Computing - вычисления с полной системой команд) имеют в своем составе весь классический набор команд с широко развитыми режимами адресации операндов. Именно к этому классу относятся, например, микро процессоры типа Pentium . В то же время RISC-микропроцессоры ( reduced instruction set computing - вычисления с сокращенной системой команд) используют, как следует из определения, уменьшенное количество команд и режимов адресации. Здесь прежде всего следует выделить такие микропроцессоры, как Alpha 21x64, Power PC. Количество команд в системе команд - наиболее очевидное, но на сегодняшний день не самое главное различие в этих направлениях развития универсальных микропроцессоров. Другие различия мы будем рассматривать по мере изучения особенностей их архитектуры.

Однокристальные микроконтроллеры (ОМК или просто МК) предназначены для использования в системах промышленной и бытовой автоматики. Они представляют собой большие интегральные схемы, которые включают в себя все устройства, необходимые для реализации цифровой системы управления минимальной конфигурации: процессор (как правило, целочисленный), ЗУ команд, ЗУ данных, генератор тактовых сигналов, программируемые устройства для связи с внешней средой ( контроллер прерывания , таймеры-счетчики, разнообразные порты ввода/вывода), иногда аналого-цифровые и цифро-аналоговые преобразователи и т. д. В некоторых источниках этот класс микропроцессоров называется однокристальными микро-ЭВМ (ОМЭВМ).

В настоящее время две трети всех производимых микропроцессорных БИС в мире составляют МП этого класса, причем почти две трети из них имеет разрядность, не превышающую 16 бит. К классу однокристальных микроконтроллеров прежде всего относятся микропроцессоры серии MCS -51 фирмы Intel и аналогичные микропроцессоры других производителей, архитектура которых де-факто стала стандартом.

Отличительные особенности архитектуры однокристальных микроконтроллеров :

  • физическое и логическое разделение памяти команд и памяти данных (гарвардская архитектура), в то время как в классической неймановской архитектуре программы и данные находятся в общем запоминающем устройстве и имеют одинаковый механизм доступа;
  • упрощенная и ориентированная на задачи управления система команд: в МК, как правило, отсутствуют средства обработки данных с плавающей точкой, но в то же время в систему команд входят команды, ориентированные на эффективную работу с датчиками и исполнительными устройствами, например, команды обработки битовой информации;
  • простейшие режимы адресации операндов.

Основные характеристики микроконтроллеров (в качестве примера численные значения представлены для MK-51):

  1. Разрядность (8 бит).
  2. Емкость внутренней памяти команд и памяти данных, возможности и пределы их расширения:
    • внутренняя память команд - 4 Кбайт (в среднем команда имеет длину 2 байта, таким образом, во внутренней памяти может быть размещена программа длиной около 2000 команд); возможность наращивания за счет подключения внешней памяти до 64 Кбайт;
    • память данных на кристалле 128 байт (можно подключить внешнюю память общей емкостью до 64 Кбайт).
  3. Тактовая частота :
    • внешняя частота 12 МГц;
    • частота машинного цикла 1 МГц.
  4. Возможности взаимодействия с внешними устройствами: количество и назначение портов ввода-вывода , характеристики системы прерывания, программная поддержка взаимодействия с внешними устройствами.

Наличие и характеристики встроенных аналого-цифровых преобразователей ( АЦП ) и цифро-аналоговых преобразователей ( ЦАП ) для упрощения согласования с датчиками и исполнительными устройствами системы управления.

Секционированные микропроцессоры (другие названия: микропрограммируемые и разрядно-модульные) - это микропроцессоры, предназначенные для построения специализированных процессоров. Они представляют собой микропроцессорные секции относительно небольшой (от 2 до 16) разрядности с пользовательским доступом к микропрограммному уровню управления и средствами для объединения нескольких секций.

Такая организация позволяет спроектировать процессор необходимой разрядности и со специализированной системой команд. Из-за своей малой разрядности микропроцессорные секции могут быть построены с использованием быстродействующих технологий. Совокупность всех этих факторов обеспечивает возможность создания процессора, наилучшим образом ориентированного на заданный класс алгоритмов как по системе команд и режимам адресации, так и по форматам данных.

Одним из первых комплектов секционированных микропроцессоров были МП БИС семейства Intel 3000. В нашей стране они выпускались в составе серии К589 и 585. Процессорные элементы этой серии представляли собой двухразрядный микропроцессор. Наиболее распространенным комплектом секционированных микропроцессоров является Am2900, основу которого составляют 4-разрядные секции. В нашей стране аналог этого комплекта выпускался в составе серии К1804. В состав комплекта входили следующие БИС:

  • разрядное секционное АЛУ ;
  • блок ускоренного переноса;
  • разрядное секционное АЛУ с аппаратной поддержкой умножения;
  • тип схем микропрограммного управления;
  • контроллер состояния и сдвига;
  • контроллер приоритетных прерываний .

Основным недостатком микропроцессорных систем на базе секционированных микропроцессорных БИС явилась сложность проектирования, отладки и программирования систем на их основе. Использование специализированной системы команд приводило к несовместимости разрабатываемого ПО для различных микропроцессоров. Возможность создания оптимального по многим параметрам специализированного процессора требовала труда квалифицированных разработчиков на протяжении длительного времени. Однако бурное развитие электронных технологий привело к тому, что за время проектирования специализированного процессора разрабатывался универсальный микропроцессор, возможности которого перекрывали гипотетический выигрыш от проектирования специализированного устройства. Это привело к тому, что в настоящее время данный класс микропроцессорных БИС практически не используется.

Процессоры цифровой обработки сигналов , или цифровые сигнальные процессоры , представляют собой бурно развивающийся класс микропроцессоров, предназначенных для решения задач цифровой обработки сигналов - обработки звуковых сигналов, изображений, распознавания образов и т. д. Они включают в себя многие черты однокристальных микро-контроллеров: гарвардскую архитектуру, встроенную память команд и данных, развитые возможности работы с внешними устройствами. В то же время в них присутствуют черты и универсальных МП, особенно с RISC -архитектурой: конвейерная организация работы, программные и аппаратные средства для выполнения операций с плавающей запятой , аппаратная поддержка сложных специализированных вычислений, особенно умножения.

Как электронное изделие микропроцессор характеризуется рядом параметров, наиболее важными из которых являются следующие:

  1. Требования к синхронизации: максимальная частота, стабильность.
  2. Количество и номиналы источников питания, требования к их стабильности. В настоящее время существует тенденция к уменьшению напряжения питания, что сокращает тепловыделение схемы и ведет к повышению частоты ее работы. Если первые микропроцессоры работали при напряжении питания+-15В, то сейчас отдельные схемы используют источники менее 1 В.
  3. Мощность рассеяния - это мощность потерь в выходном каскаде схемы, превращающаяся в тепло и нагревающая выходные транзисторы. Иначе говоря, она характеризует показатель тепловыделения БИС, что во многом определяет требования к конструктивному оформлению микропроцессорной системы . Эта характеристика особенно важна для встраиваемых МПС.
  4. Уровни сигналов логического нуля и логической единицы, которые связаны с номиналами источников питания.
  5. Тип корпуса - позволяет оценить пригодность схемы для работы в тех или иных условиях, а также возможность использования новой БИС в качестве замены существующей на плате.
  6. Температура окружающей среды, при которой может работать схема. Здесь выделяют два диапазона:
    • коммерческий (0 0 С … +70 0 С);
    • расширенный (-40 0 С … +85 0 С).
  7. Помехоустойчивость - определяет способность схемы выполнять свои функции при наличии помех. Помехоустойчивость оценивается интенсивностью помех, при которых нарушение функций устройства еще не превышает допустимых пределов. Чем сильнее помеха, при которой устройство остается работоспособным, тем выше его помехоустойчивость.
  8. Нагрузочная способность , или коэффициент разветвления по выходу, определяется числом схем этой же серии, входы которых могут быть присоединены к выходу данной схемы без нарушения ее работоспособности. Чем выше нагрузочная способность, тем шире логические возможности схемы и тем меньше таких микросхем необходимо для построения сложного вычислительного устройства. Однако с увеличением этого коэффициента ухудшаются помехоустойчивость и быстродействие.
  9. Надежность - это способность схемы сохранять свой уровень качества функционирования при установленных условиях за установленный период времени. Обычно характеризуется интенсивностью отказов (час-1) или средним временем наработки на отказ (час). В настоящее время этот параметр для больших инте- гральных схем обычно не указывается изготовителем. О надежности МП БИС можно судить по косвенным показателям, например, по приводимой разработчиками средств вычислительной техники надежности изделия в целом.
  10. Характеристики технологического процесса . Основной показатель здесь - разрешающая способность процесса. В настоящее время она составляет 32 нм, то есть около 30 тыс. линий на 1 мм. Более совершенный технологический процесс позволяет создать микропроцессор, обладающий большими функциональными возможностями.


Рис. 1.2.

Затраты на изготовление устройств, использующих микропроцессорные БИС, представлены на рис. 1.2 . Здесь:

  1. затраты на изготовление БИС (чем больше степень интеграции элементов на кристалле, тем дороже обходится производство схемы);
  2. затраты на сборку и наладку микропроцессорной системы (с увеличением функциональных возможностей МП потребуется меньше схем для создания МПС);
  3. общая стоимость микропроцессорной системы , которая складывается из затрат (1) и (2). Она имеет некоторое оптимальное значение для данного уровня развития технологии;
  4. переход на новую технологию (оптимальным будет уже другое количество элементов на кристалле, а общая стоимость изделия снижается).

В 1965 году Гордон Мур сформулировал гипотезу, известную в настоящее время как <закон Мура>, согласно которой каждые 1,5-2 года число транзисторов в расчете на одну интегральную схему будет удваиваться. Это обеспечивается непрерывным совершенствованием технологических процессов производства микросхем.

Наиболее развитая в технологическом отношении фирма Intel в жизненном цикле полупроводниковых технологий, создаваемых и применяемых в корпорации, выделяет шесть стадий.

Самая ранняя стадия проходит за пределами Intel - в университетских лабораториях и независимых исследовательских центрах, где ведутся поиски новых физических принципов и методов, которые могут стать основой научно-технологического задела на годы вперед. Корпорация финансирует эти исследования.

На второй стадии исследователи Intel выбирают наиболее перспективные направления развития новых технологий. При этом обычно рассматривается 2-3 варианта решения.

Главная задача третьей стадии - полная черновая проработка новой технологии и демонстрация ее осуществимости.

После этого начинается четвертая стадия, главная цель которой - обеспечить достижение заданных значений таких ключевых технических и экономических показателей, как выход годных изделий, надежность, стоимость и некоторые другие. Завершение этапа подтверждается выпуском первой промышленной партии новых изделий.

Пятая стадия - промышленное освоение новой технологии. Эта проблема не менее сложна, чем разработка самой технологии, поскольку необычайно трудно в точности воспроизвести в условиях реального производства то, что было получено в лаборатории. Обычно именно здесь возникают задержки со сроками выпуска новых изделий, с достижением запланированного объема поставок и себестоимости продукции.

Последняя, шестая стадия жизненного цикла технологии (перед отказом от ее применения) - зрелость. Зрелая технология, подвергаясь определенному совершенствованию с целью повышения производительности оборудования и снижения себестоимости продукции, обеспечивает основные объемы производства. По мере внедрения новых, более совершенных технологий <старые> производства ликвидируются.

Но не сразу: сначала они переводятся на выпуск микросхем с меньшим быстродействием или с меньшим числом транзисторов , например, периферийных БИС.

Введение

1. Общая характеристика архитектуры процессора

1.1 Базовая структура микропроцессорной системы

1.3 Обзор существующих типов архитектур микропроцессоров

2. Устройство управления

3. Особенности программного и микропрограммного управления

4. Режимы адресации

Заключение

Список используемой литературы


Введение

Процесс взаимодействия человека с ЭВМ насчитывает уже более 40лет. До недавнего времени в этом процессе могли участвовать только специалисты - инженеры, математики - программисты, операторы. В последние годы произошли кардинальные изменения в области вычислительной техники. Благодаря разработке и внедрению микропроцессоров в структуру ЭВМ появились малогабаритные, удобные для пользователя персональные компьютеры. Ситуация изменилась, в роли пользователя может быть не только специалист по вычислительной технике, но и любой человек, будь то школьник или домохозяйка, врач или учитель, рабочий или инженер. Часто это явление называют феноменом персонального компьютера. В настоящее время мировой парк персональных компьютеров превышает 20 млн.

Почему возник этот феномен? Ответ на этот вопрос можно найти, если четко сформулировать, что такое персональный компьютер и каковы его основные признаки. Надо правильно воспринимать само определение " персональный", оно не означает принадлежность компьютера человеку на правах личной собственности. Определение "персональный" возникло потому, что человек получил возможность общаться с ЭВМ без посредничества профессионала-программиста, самостоятельно, персонально. При этом не обязательно знать специальный язык ЭВМ. Существующие в компьютере программные средства обеспечат благоприятную " дружественную" форму диалога пользователя и ЭВМ.

В настоящее время одними из самых популярных компьютеров стали модель IBM PC и ее модернизированный вариант IBM PC XT, который по архитектуре, программному обеспечению, внешнему оформлению считается базовой моделью персонального компьютера.

Основой персонального компьютера является системный блок. Он организует работу, обрабатывает информацию, производит расчеты, обеспечивает связь человека и ЭВМ. Пользователь не обязан досконально разбираться в том, как работает системный блок. Это удел специалистов. Но он должен знать, из каких функциональных блоков состоит компьютер. Мы не имеем четкого представления о принципе действия внутренних функциональных блоков окружающих нас предметов - холодильника, газовой плиты, стиральной машины, автомобиля, но должны знать, что заложено в основу работы этих устройств, каковы возможности составляющих их блоков.


1. Общая характеристика архитектуры процессора 1.1 Базовая структура микропроцессорной системы

Задача управления системой возлагается на центральный процессор (ЦП), который связан с памятью и системой ввода-вывода через каналы памяти и ввода-вывода соответственно. ЦП считывает из памяти команды, которые образуют программу и декодирует их. В соответствии с результатом декодирования команд он осуществляет выборку данных из памяти портов ввода, обрабатывает их и пересылает обратно в память или порты вывода. Существует также возможность ввода-вывода данных из памяти на внешние устройства и обратно, минуя ЦП. Этот механизм называется прямым доступом к памяти (ПДП).

С точки зрения пользователя при выборе микропроцессора целесообразно располагать некоторыми обобщенными комплексными характеристиками возможностей микропроцессора. Разработчик нуждается в уяснении и понимании лишь тех компонентов микропроцессора, которые явно отражаются в программах и должны быть учтены при разработке схем и программ функционирования системы. Такие характеристики определяются понятием архитектуры микропроцессора.

1.2 Понятие архитектуры микропроцессора

Архитектура типичной небольшой вычислительной системы на основе микроЭВМ показана на рис. 1. Такая микроЭВМ содержит все 5 основных блоков цифровой машины: устройство ввода информации, управляющее устройство (УУ), арифметико-логическое устройство (АЛУ) (входящие в состав микропроцессора), запоминающие устройства (ЗУ) и устройство вывода информации.

Рис. 1. Архитектура типового микропроцессора.

Микропроцессор координирует работу всех устройств цифровой системы с помощью шины управления (ШУ). Помимо ШУ имеется 16-разрядная адресная шина (ША), которая служит для выбора определенной ячейки памяти, порта ввода или порта вывода. По 8-разрядной информационной шине или шине данных (ШД) осуществляется двунаправленная пересылка данных к микропроцессору и от микропроцессора. Важно отметить, что МП может посылать информацию в память микроЭВМ или к одному из портов вывода, а также получать информацию из памяти или от одного из портов ввода.

Постоянное запоминающее устройство (ПЗУ) в микроЭВМ содержит некоторую программу (на практике программу инициализации ЭВМ). Программы могут быть загружены в запоминающее устройство с произвольной выборкой (ЗУПВ) и из внешнего запоминающего устройства (ВЗУ). Это программы пользователя.

В качестве примера, иллюстрирующего работу микроЭВМ, рассмотрим процедуру, для реализации которой нужно выполнить следующую последовательность элементарных операций:

1. Нажать клавишу с буквой "А" на клавиатуре.

2. Поместить букву "А" в память микроЭВМ.

3. Вывести букву "А" на экран дисплея.

Это типичная процедура ввода-запоминания-вывода, рассмотрение которой дает возможность пояснить принципы использования некоторых устройств, входящих в микроЭВМ.

На рис. 2 приведена подробная диаграмма выполнения процедуры ввода-запоминания-вывода. Обратите внимание, что команды уже загружены в первые шесть ячеек памяти. Хранимая программа содержит следующую цепочку команд:

1. Ввести данные из порта ввода 1.

2. Запомнить данные в ячейке памяти 200.

3. Переслать данные в порт вывода 10.

В данной программе всего три команды, хотя на рис. 2 может показаться, что в памяти программ записано шесть команд. Это связано с тем, что команда обычно разбивается на части. Первая часть команды 1 в приведенной выше программе - команда ввода данных. Во второй части команды 1 указывается, откуда нужно ввести данные (из порта 1). Первая часть команды, предписывающая конкретное действие, называется кодом операции (КОП), а вторая часть - операндом. Код операции и операнд размещаются в отдельных ячейках памяти программ. На рис. 2 КОП хранится в ячейке 100, а код операнда - в ячейке 101 (порт 1); последний указывает откуда нужно взять информацию.

В МП на рис. 2 выделены еще два новых блока - регистры: аккумулятор и регистр команд.


Рис. 2. Диаграмма выполнения процедуры ввода-запоминания-вывода

Рассмотрим прохождение команд и данных внутри микроЭВМ с помощью занумерованных кружков на диаграмме. Напомним, что микропроцессор - это центральный узел, управляющий перемещением всех данных и выполнением операций.

Итак, при выполнении типичной процедуры ввода-запоминания-вывода в микроЭВМ происходит следующая последовательность действий:

1. МП выдает адрес 100 на шину адреса. По шине управления поступает сигнал, устанавливающий память программ (конкретную микросхему) в режим считывания.

2. ЗУ программ пересылает первую команду ("Ввести данные") по шине данных, и МП получает это закодированное сообщение. Команда помещается в регистр команд. МП декодирует (интерпретирует) полученную команду и определяет, что для команды нужен операнд.

3. МП выдает адрес 101 на ША; ШУ используется для перевода памяти программ в режим считывания.

4. Из памяти программ на ШД пересылается операнд "Из порта 1". Этот операнд находится в программной памяти в ячейке 101. Код операнда (содержащий адрес порта 1) передается по ШД к МП и направляется в регистр команд. МП теперь декодирует полную команду ("Ввести данные из порта 1").

5. МП, используя ША и ШУ, связывающие его с устройством ввода, открывает порт 1. Цифровой код буквы "А" передается в аккумулятор внутри МП и запоминается.Важно отметить, что при обработке каждой программной команды МП действует согласно микропроцедуре выборки-декодирования-исполнения.

6. МП обращается к ячейке 102 по ША. ШУ используется для перевода памяти программ в режим считывания.

7. Код команды "Запомнить данные" подается на ШД и пересылается в МП, где помещается в регистр команд.

8. МП дешифрирует эту команду и определяет, что для нее нужен операнд. МП обращается к ячейке памяти 103 и приводит в активное состояние вход считывания микросхем памяти программ.

9. Из памяти программ на ШД пересылается код сообщения "В ячейке памяти 200". МП воспринимает этот операнд и помещает его в регистр команд. Полная команда "Запомнить данные в ячейке памяти 200" выбрана из памяти программ и декодирована.

10. Теперь начинается процесс выполнения команды. МП пересылает адрес 200 на ША и активизирует вход записи, относящийся к памяти данных.

11. МП направляет хранящуюся в аккумуляторе информацию в память данных. Код буквы "А" передается по ШД и записывается в ячейку 200 этой памяти. Выполнена вторая команда. Процесс запоминания не разрушает содержимого аккумулятора. В нем по-прежнему находится код буквы "А".

12. МП обращается к ячейке памяти 104 для выбора очередной команды и переводит память программ в режим считывания.

13. Код команды вывода данных пересылается по ШД к МП, который помещает ее в регистр команд, дешифрирует и определяет, что нужен операнд.

14. МП выдает адрес 105 на ША и устанавливает память программ в режим считывания.

15. Из памяти программ по ШД к МП поступает код операнда "В порт 10", который далее помещается в регистр команд.

16. МП дешифрирует полную команду "Вывести данные в порт 10". С помощью ША и ШУ, связывающих его с устройством вывода, МП открывает порт 10, пересылает код буквы "А" (все еще находящийся в аккумуляторе) по ШД. Буква "А" выводится через порт 10 на экран дисплея.

В большинстве микропроцессорных систем (МПС) передача информации осуществляется способом, аналогичным рассмотренному выше. Наиболее существенные различия возможны в блоках ввода и вывода информации.

Подчеркнем еще раз, что именно микропроцессор является ядром системы и осуществляет управление всеми операциями. Его работа представляет последовательную реализацию микропроцедур выборки-дешифрации-исполнения. Однако фактическая последовательность операций в МПС определяется командами, записанными в памяти программ.

Таким образом, в МПС микропроцессор выполняет следующие функции:

Выборку команд программы из основной памяти;

Дешифрацию команд;

Выполнение арифметических, логических и других операций, закодированных в командах;

Управление пересылкой информации между регистрами и основной памятью, между устройствами ввода/вывода;

Отработку сигналов от устройств ввода/вывода, в том числе реализацию прерываний с этих устройств;

Управление и координацию работы основных узлов МП.




Top