Языки программирования виды. Виды и типы современных языков программирования. Требования к ОС

Классификация языков программирования по категориям связана с методами, которые используются при написании программ.

интернет-биржа студенческих работ">

Рисунок 1. Классификация языков программирования. Автор24 - интернет -биржа студенческих работ

Процедурные языки

Процедурные языки являются языками высокого уровня, в которых используется метод разбиения программ на отдельные связанные между собой модули – подпрограммы (процедуры и функции). Компоненты языка состоят из последовательности операторов, которые используют библиотечные процедуры и функции. Первым процедурным языком был Fortran, затем появился Cobol, Algol, Pascal, C, Ada.

Языки программирования низкого уровня

Замечание 1

Программирование на первых компьютерах происходило с помощью двоичных машинных кодов. Такое программирование довольно трудоемкое и тяжелое. Для упрощения процесса программирования разрабатывались языки программирования низкого уровня, которые позволяли задавать машинные команды в понятном для человека виде. Чтобы преобразовать их в двоичный код создавались специальные программы – трансляторы.

К языкам низкого уровня относится:

  • программирование в машинных кодах;
  • ассемблер;
  • макроассемблер.

Языки низкого уровня ориентировались на определенный тип процессора и учитывали его особенности, поэтому для того, чтобы перенести программу, написанную на ассемблере, на другую аппаратную платформу её нужно было почти полностью переписать. Различия присутствовали также и в синтаксисе программ под разные компиляторы.

Языками низкого уровня пользуются преимущественно для написания небольших системных программ, драйверов устройств, модулей стыков с нестандартным оборудованием, программирования специализированных микропроцессоров, когда немаловажным является компактность, быстродействие и возможность прямого доступа к аппаратным ресурсам.

Языки программирования высокого уровня

В языках высокого уровня особенности конкретных компьютерных архитектур не учитываются, поэтому написанные программы легко могут быть перенесены на другой компьютер. Зачастую достаточным является компиляция программы под определенную архитектурную и операционную систему. Разработка программ на языках высокого уровня значительно проще и ошибок намного меньше. К тому же время разработки программы значительно уменьшается, что является особенно важным фактором при работе над сложными программными проектами.

Недостаток некоторых языков высокого уровня состоит в большом размере программ по сравнению с программами на языках низкого уровня. В то же время текст программ на языке высокого уровня гораздо меньше, но в байтах код, написанный на ассемблере, будет более компактным. Поэтому языки высокого уровня преимущественно используют для создания программного обеспечения для компьютеров и вычислительных устройств с большим объемом памяти. Языки же низкого уровня используются для написания программ к устройств, для которых критичным является размер программы.

Языки высокого уровня делятся на универсальные и проблемно-ориентированные.

Наиболее распространенные универсальные языки C#, C++, Basic, Pascal (Delphi) используются для разработки Windows-приложений. Большой вклад в программирование на начальных этапах внесли языки Fortran, Cobol, Algol, C и др.

Языки программирования для разработки Интернет-приложений скорее относятся к универсальным языкам. К ним относятся современные версии C#, Basic, J#.

Замечание 2

Проблемно-ориентированными языками, которые используются на Интернет-серверах и клиентских Интернет-приложениях, являются PHP, Perl, JavaScript, VBScript.

Объектно-ориентированные языки

Объектно-ориентированные языки стали дальнейшим уровнем развития процедурных языков, основной концепцией которых есть совокупность программных объектов. Написание программы на языке представляется в виде последовательности создания экземпляров объектов и использование их методов. К ним относятся из первых языков Simula и SmallTalk, далее C++, Java.

Декларативные языки программирования

В декларативном программировании задается спецификация решения задачи , то есть дается описание того, что представляет собой проблема и какой ожидается результат. Программы, созданные с помощью декларативного языка, не содержат переменные и операторы присваивания. К декларативным языкам можно отнести SQL и HTML. К подвидам декларативного программирования относится функциональное и логическое программирование.

Функциональные языки программирования

Функциональные языки являются языками искусственного интеллекта. Программа, написанная на функциональном языке, состоит из последовательности функций и выражений, которые необходимо вычислить. Основной структурой данных является связный список. Функциональное программирование принципиально отличается от процедурного. Основными функциональными языками являются Lisp, Miranda, Haskel.

Логические языки программирования

Языки, ориентированные на решение задач без описания алгоритмов, языки искусственного интеллекта. Представителем логического программирования является Prolog, которым написано большинство экспертных систем.

Языки сценариев (скрипты)

Языки относятся к объектно-ориентированным языкам, используются для написания программ, которые исполняются в определенной программной среде. Тексты программ, написанные на языке сценариев, можно включать в тело Html-документа. Первыми скриптами были Perl и Python, которые изначально были разработаны для операционной системы Unix, а уже в дальнейшем появились версии языков для операционных систем Windows и Macintosh. Для написания программ на языке сценариев необходимо знание процедур и функций системных библиотек.

Языки, ориентированные на данные

Языки ориентированы на работу с одним определенным типом данных. Например, APL работает с матрицами и векторами, Snobol обрабатывает строки, SETL выполняет операции над множествами.

Особое развитие получили языки для работы с базами данных:

  • PL/SQL,
  • FoxPro.

Замечание 3

Широкими возможностями обработки документов текстового процессора Microsoft Word, электронных таблиц MS Excel, баз данных MS Access и даже программ подготовки слайдовых презентаций MS PowerPoint обладает встроенный язык системы MS Office – Visual Basic for Application (VBA).

Я не знаю, как обстоят дела в образовании сейчас, но 10-15 лет назад ни в школе, ни в университете никто всерьёз не объяснял, что программирование имеет свои типы, каждый из которых требует особого типа мышления. Не то чтобы это покалечило чьи-то судьбы, но изучение программных дисциплин могло бы проходить гораздо быстрее, если на стадии закладки фундамента мы представили многообразие языков и подходов, а не зомбически учили C++ в его консольных проявления.

Многие, сталкиваясь с необходимостью писать функциональный код, часто сожалеют, что процедурный образ мышления настолько глубоко засел в мозг, что перестроиться с него непросто. Поэтому лучше начинать путь в программисты не с выбора языка, а с выбора типа программирования.

Типы программирования

Условимся сразу: типов будет шесть. Это достаточно подробное деление. Обычно выделяют 3-4, но так как перед нами стоит задача выбора пути для новичков, оно вполне оправдано.

Процедурное программирование , оно же императивное.

Оно ставит задачу создания кода на языке, понятном используемой машине. Самый известный случай - машина Тьюринга, из известных языков программирования - С/C++, Ада, Паскаль, Go. Задачи здесь решаются планомерно: сначала объявляется объект, потом он определяется и затем выполняется с ним действие:

var
S: String;

S:= ‘Hello!’;

Декларативное программирование .

В процедурном случае вектор оптимизации языка направлен от машинного уровня к языку пользователя путем использования базовых принципов ООП, классов, методов и пр.. Здесь же во главе угла стоит непосредственно задача, а способ её исполнения второстепенен. Яркий пример - язык разметки HTML. Если вы хотите разместить кнопку, вам формально не надо создавать объект и присваивать ему атрибуты:

Функциональное программирование .

Как вы знаете из курса математики, результат выполнения любой функции можно представить в виде табличных данных, вопрос только в частоте дискретизации и диапазоне значений. То есть, сколько бы раз не была выполнена функция, каким бы не было её место в задаче, результат для одних и тех же значений останется один и тот же. В императивном программировании это выполняется далеко не всегда, ведь значения переменных могут изменяться в ходе программы, что сделает результат зависимым от конкретных условий.

Функциональное программирование лишено этого недостатка: здесь вы оперируете функциями - исходными, приращения и результативной, - но не конкретными значениями. Среди популярных представителей - Lisp, Clojure, Haskell. Функциональное программирование считается сложным и избыточным для большинства прикладных задач. Отсюда невысокий спрос на специалистов, но от этого же высокие зарплаты и действительно интересная работа.

Логическое программирование .

Как следует из названия, оно оперирует простой математической логикой. Яркие представители - Planner и Prolog. Достаточно ограниченный набор действий может быть реально полезен для создания простейшего искусственного интеллекта или разминки мозгов, но в реальной жизни логическое программирование самостоятельно используется редко.

Динамическое программирование .

Тот случай, когда для решения сложной комплексной задачи необходимо её разбить на несколько более простых, минимизировав количество циклов исполнения. В идеале каждая простая задача должна выполняться один раз, но на практике это бывает достаточно редко. Динамическое программирование - скорее концепция, применимая ко всем языкам, поэтому представителей у данного направления нет. Но особого образа мышления от вас это потребует точно так же.

Графическое программирование , оно же визуальное.

Оно предлагает разработчику работать с графическими изображениями, а не текстом. Выражаться это может по-разному - есть специальные языки, вроде Scratch или BluePrint, есть языки схем или диаграмм (LD или FBD), есть просто разделы программирования, связанные со взаимодействием с формами и графикой. В последнем случае это может быть любой язык, визуализация осуществляется средствами разработки (Borland Delphi/C++, Visual Studio, Adobe Dreamweaver и пр.). Такое графическое программирование в чистом виде встречается крайне редко, без понимания языка и структуры кода создать что-то серьезное невозможно.

Остальное

Программирование делят по множеству типов, и о некоторых новички даже не догадываются: синхронное/асинхронное/событийное, последовательное/параллельное, различное по решаемым задачам и задействованности ИИ и статистики.

Выбор стартовой парадигмы программирования не означает выбор только одного пути. Напротив, не привязываясь к конкретным языкам, профессиям и программным средам, начав со «своего» образа мышления, вы изначально настроите себя на правильное понимание сути. Успешным, счастливым и богатым айтишником становится не тот, кто попал в нужный поток, а тот, для кого любой поток - возможность реализовать свой потенциал.

Представьте себе постапокалиптическую картину мира без программистов. Драконы из «Игры престолов» превратятся в черно-белых Годзилл. Исчезнут чаты, мессенджеры и даже тетриса не будет. Мы нуждаемся в программистах. Они пишут коды для смартфонов, компьютеров и стиральных машин, заставляя технику работать. Но это далеко не все. У профессии много направлений и специализаций, каждая из которых имеет свои особенности и сложности, зарплата также зависит от того, чем занимается программист.

Web-разработчик

Самым востребованным на 2017 год видом профессии «программист» является веб-разработчик. К этой категории относятся специалисты по созданию сайтов.

Условно веб-мастера делятся на три группы:

  • разработчик Frontend;
  • Backend-программист;
  • Fullstack-девелопер.

Далеко не все знают, что такое клиентская и серверная часть. Поэтому работодатели зачастую путают специализации в веб-разработке. На биржах фриланса встречаются объявления, в которых наниматели от фронтенд-мастера требуют знания фулстак, при этом платят как за обыкновенную верстку.

Для не посвященных в мистерии кода это похожие виды направлений. Программисты занимаются, казалось бы, одним делом. Но инструменты, язык, обязанности и оклады у Frontend-мастера и серверного разработчика разные.

Кто такой фронтенд-разработчик?

Видимая часть интернет-ресурса, открывающаяся в браузере после ввода запроса, называется клиентской или фронтендом. Оформлением, цветовой гаммой, расположением заголовков занимается дизайнер. Художник рисует будущий макет и передает его верстальщику, который превращает его в HTML-шаблон. На этом этапе подключается веб-программист и добавляет интерфейсу динамики.

Фронтенд разработчики - это вид программистов, отвечающих за создание виджетов, кнопок, выпадающего меню, слайд-шоу. Все интерактивные элементы появляются на страницах благодаря им. Они пишут скрипты на JS, включают их через HTML-теги и следят за тем, чтобы каждая часть кода работала правильно.

Инструменты фронтенд-разработчика

Писать код на HTML, CSS и JavaScript не достаточно. Чтобы оставаться конкурентоспособным на рынке труда, Frontend-разработчик должен знать следующее:

  1. jQuery. Библиотека JavaScript с коллекцией плагинов и расширений. Вместо того чтобы писать код с нуля, jQuery позволяет добавлять и настраивать готовые элементы. Например, автозаполнение форм, слайд-панель, таймер, связанная анимация.
  2. Фреймворки Bootstrap, Foundation, Backbone, AngularJS и EmberJS. Это программные оболочки повышающие производительность ресурса. Предоставляют готовый дизайн и существенно облегчают жизнь разработчика.
  3. Препроцессоры SASS и LESS. Добавляют CSS функциональности, обрабатывает код, превращая его в отформатированный и кросс-браузерный CSS.
  4. Популярные CMS - адаптивная верстка и кросс-платформенность.

Обязанности и виды деятельности программиста включают отладку и тестирование клиентской части. Веб-инженер проверяет отдельные блоки исходного кода на ошибки. Тестирует интерфейс, узнает, насколько пользователям будет удобно взаимодействовать с приложением. Также фронтенд-специалист должен разбираться в азах серверного программирования, технологиях Node.js, помимо JS писать на PHP и SQL.

Зарплата и перспективы

Средний оклад мастера составляет 66 тысяч 410 рублей в месяц. В США эта сумма вырастает до 102 тысяч долларов в год. Высокие зарплаты, легкость языка разметки и написания скриптов привлекает начинающих кодеров к фронтенд-разработке. Освоив JS, большинство из них переходит к серверным языкам. Самые талантливые учат высокоуровневые C и Java, постепенно осваивают геймдев, создание приложений и другие виды информационной деятельности программиста.

Программист серверной части

Backend - это часть веб-приложения, находящаяся на сервере. Она не отображается в браузере, но отвечает за изменения содержимого, обеспечивает динамическую работу и хранит всю информацию сайта. Состоит из сервера, приложения и базы данных. Вид программистов, которые занимаются созданием и разработкой этой части веб-ресурса называются Backend-разработчиками.

Программист серверной части - это следующая эволюционная ступень после фронтенд-разработчика. Его задача заставить сервер, приложение и БД взаимодействовать. Пишет на серверных языках PHP, Ruby, Python, Java и.Net. В качестве инструментов для работы с данными использует MySQL, Oracle и SQL Server. В описаниях вакансии работодатели часто указывают дополнительные требования:

  • знание фреймворков PHP: Zend, Symfony и CakePHP;
  • опыт работы с программным обеспечением контроля версий SVN, CVS или Git;
  • навыки работы с операционными системами Linux, Unix, MacOS X и Windows Server.

Создание веб-приложения - это сложный многоуровневый процесс, в котором участвуют несколько специалистов. Поэтому бэкенд-разработка является командной работой. При написании кода, программист взаимодействует с дизайнерами, верстальщиками, менеджерами и заказчиками.

Разработчик Fullstack

Это вид работы программиста, включающий в себя все этапы создания веб-приложения. Fullstack developer -мастер на все руки, пишущий одновременно клиентскую и серверную часть. Первые упоминания о профессии появились в 2010 году после статьи сотрудника Facebook Карлоса Буэно. С этого момента компания нанимает работников исключительно уровня Fullstack.

Обязанности универсального веб-программиста:

  1. Серверное администрирование. Подключение через терминал к удаленным серверам без GUI. Управление пользовательскими группами, брандмауэрами, программами Apache и Nginx. Фулстак-программист должен все знать об облачном хостинге на платформах Heroku, Google Cloud, Azure, AWS и любых других.
  2. Создание бэкенда и базы данных. Специалист должен разбираться в базах данных MySQL, PostgreSQL, а также БД noSQL: MongoDB, Redis или Cassandra. Иметь представление о графовых СУБД, таких как Neo4j.
  3. Фронтенд-разработка и дизайн. Помимо стандартных обязанностей, верстки и подключения JS, Fullstack-мастер проектирует макет в редакторах Photoshop или Illustrator.

Фулстак-разработчики - это специалисты уровня Senior Developer. За ними охотятся хедхантеры и у них самые высокие оклады. В США зарплата Fullstack Developer начинается от 70-80 тысяч долларов и от 25-30 тысяч долларов в странах Восточной Европы. На иностранных биржах фриланса, например Upwork, один час работы Fullstack-разработчика оценивается в 30$ и выше.

Специалист по созданию и разработке компьютерных игр

Разработка компьютерных игр - одна из самых быстроразвивающихся сфер ИТ-технологий. По данным аналитического агентства NewZoo объем рынка видеоигр с каждым годом увеличивается на 9%. Если в 2016 году он составил почти 100 миллиардов долларов, то к 2018 году эта сумма увеличится до 112.5 миллиардов. Поэтому «инженер видеоигр» - это перспективная и высокооплачиваемая должность.

Инженер, или Game-разработчик - общее название категории специалистов, задействованных в процессе создания игры. Главная задача - превратить идею в программный код и заставить все элементы взаимодействовать. 90% рабочего времени программисты пишут и отлаживают алгоритмы на языке C++, Visual Basic, Java и MEL.

Романтики в профессии мало. В основном, это рутинный и многочасовой труд за компьютером. График обычно ненормированный. Если дизайнеру приходит гениальная идея срочно что-то переделать, всю ночь корпит над кодом именно программист.

Какие бывают виды программистов игр?

Создание консольной, мобильной или компьютерной игры - это многоуровневый процесс. Начинается на стадии проектировки, заканчивается продвижением и коммерческой реализацией продукта. Также у игры много отдельных аспектов, включая интерфейс, аудио и видео эффекты, искусственный интеллект. Для каждого есть отдельный вид программистов:

  • Ведущий программист по звуку: пишет утилиты, чтобы аудио и видео эффекты сочетались.
  • Разработчик игрового движка.
  • Специалист UI или создатель графического интерфейса.
  • Инженер искусственного интеллекта для имитации логики и принятия персонажами решений, особенно в играх, где от игрока зависят действия противника.
  • Программист геймплея: стратегия игры, реализация механики и логики.
  • Инженер устройств ввода. Пишет код для джойстиков, клавиатуры, мышки и устройств, с помощью которых пользователь будет взаимодействовать с видеоигрой.
  • Программист коммуникационных сетей для многопользовательских игр.

За свой труд на благо игровой индустрии данный вид программистов получает зарплату от 60 тысяч рублей. Доход инди-разработчиков точно просчитать сложно. Есть случаи, когда успешные проекты приносили миллионы буквально за неделю. Например, игра-хит Punch Club, Angry Birds и всем известная «Майнкрафт». Существуют, конечно, провальные задумки наподобие Scroll Ninja, не оправдавших ожидания создателей.

Системный программист

Система, софт, или программное обеспечение - это набор инструкций для компьютера. К ним относятся утилиты, драйвера, команды для процессора, графической карты, монитора. Пишет их системный инженер на понятном для машины языке, или коде.

Разрабатывается программное обеспечение под различные операционные системы, включая серверные Unix и Windows Server, а также мобильные платформы. Код пишется на языках «Си», за редким исключением Assembler. Основная задача системного инженера заключается в установке, настройке, тестировании ОС и всех ее компонентов

Различные виды профессии «программист» требуют от специалиста определенных навыков, опыта работы и уровня владения компьютерными языками. Но труд именно системных инженеров является самым сложным. Для создания ПО нужны углубленные знания информатики, алгебры, математики и построения алгоритмов.

Системный программист необходим в любой сфере ИТ, включая автоматизацию процессов производства и мониторинг безопасности. В США за труд специалиста готовы платить от 87 до 104 тысяч долларов. В Англии 57 тысяч фунтов стерлингов, в России 90 тысяч рублей.

Инженер прикладного программного обеспечения

Данный вид программистов создает не системное, а прикладное ПО. Это программы, или приложения, которые взаимодействуют с пользователем непосредственно. Например, текстовые и графические редакторы, базы данных, аудио и видео плееры.

Работа прикладного инженера заключается в написании кода, его последующей компиляции, отладке и тестировании. Иногда специалист обновляет или вносит изменения в уже существующее ПО. Для программирования использует высокоуровневые языки Java, C#, C++, Python, PHP. Прикладные программисты редко трудятся в одиночку. В основном, они являются участниками стартапов, или входят в штат сотрудников компании, занимающейся разработкой компьютерного софта.

«Программист» - интересная и разнообразная профессия с множеством направлений и специализаций. Одни делают виджеты для сайтов и проектируют API, другие пишут код для серверов или корпят над графикой Disciples III. Каждый, кто любит программировать, может реализовать себя в веб-разработке, стать именитым создателем игр или писать программы для спутников НАСА.

1. Введение

Внедрение ЭВМ во все сферы человеческой деятельности требует от специалистов разного профиля овладения навыками использования вычислительной техники. Повышается уровень подготовки студентов вузов, которые уже с первых курсов приобщаются к использованию ЭВМ и простейших численных методов, не говоря уже о том, что при выполнении курсовых и дипломных проектов применение вычислительной техники становится нормой в подавляющем большинстве вузов.

Вычислительная техника используется сейчас не только в инженерных расчетах и экономических науках, но и таких традиционно нематематических специальностях, как медицина, лингвистика, психология. В связи с этим можно констатировать, что применение ЭВМ приобрело массовый характер. Возникла многочисленная категория специалистов - пользователей ЭВМ, которым необходимы знания по применению ЭВМ в своей отрасли - навыки работы с уже имеющимся программным обеспечением, а так же создания своего собственного ПО, приспособленного для решения конкретной задачи. И здесь на помощь пользователю приходят описания языков программирования.

2. Что такое язык программирования

Язык программирования - формальная знаковая система, предназначенная для описания алгоритмов в форме, которая удобна для исполнителя (например, компьютера). Язык программирования определяет набор лексических, синтаксических и семантических правил, используемых при составлении компьютерной программы. Он позволяет программисту точно определить то, на какие события будет реагировать компьютер, как будут храниться и передаваться данные, а также какие именно действия следует выполнять над этими при различных обстоятельствах.

Со времени создания первых программируемых машин человечество придумало уже более двух с половиной тысяч языков программирования. Каждый год их число пополняется новыми. Некоторыми языками умеет пользоваться только небольшое число их собственных разработчиков, другие становятся известны миллионам людей. Профессиональные программисты иногда применяют в своей работе более десятка разнообразных языков программирования.

Создатели языков по-разному толкуют понятие язык программирования . Среди общиx мест, признаваемых большинством разработчиков, находятся следующие:

· Функция: язык программирования предназначен для написания компьютерных программ, которые применяются для передачи компьютеру инструкций по выполнению того или иного вычислительного процесса и организации управления отдельными устройствами.

· Задача: язык программирования отличается от естественных языков тем, что предназначен для передачи команд и данных от человека компьютеру, в то время как естественные языки используются лишь для общения людей между собой. В принципе, можно обобщить определение "языков программирования" - это способ передачи команд, приказов, чёткого руководства к действию; тогда как человеческие языки служат также для обмена информацией.

· Исполнение: язык программирования может использовать специальные конструкции для определения и манипулирования структурами данных и управления процессом вычислений.

3. Этапы решения задачи на ЭВМ.

Наиболее эффективное применение ВТ нашла при проведении трудоемких расчетов в научных исследованиях и инженерных расчетах. При решении задачи на ЭВМ основная роль все-таки принадлежит человеку. Машина лишь выполняет его задания по разработанной программе. роль человека и машины легко уяснить, если процесс решения задачи разбить на перечисленные ниже этапы.

Постановка задачи. Этот этап заключается в содержательной (физической) постановке задачи и определении конечных решений.

Построение математической модели. Модель должна правильно (адекватно) описывать основные законы физического процесса. Построение или выбор математической модели из существующих требует глубокого понимания проблемы и знания соответствующих разделов математики.

Разработка ЧМ. Поскольку ЭВМ может выполнять лишь простейшие операции, она «не понимает» постановки задачи, даже в математической формулировке. Для ее решения должен быть найден численный метод, позволяющий свести задачу к некоторому вычислительному алгоритму. В каждом конкретном случае необходимо выбрать подходящее решение из уже разработанных стандартных.

Разработка алгоритма. Процесс решения задачи(вычислительный процесс) записывается в виде последовательности элементарных арифметических и логических операций, приводящей к конечному результату и называемой алгоритмом решения задачи.

Программирование. Алгоритм решения задачи записывается на понятном машине языке в виде точно определенной последовательности операций - программы. Процесс обычно производится с помощью некоторого промежуточного языка, а ее трансляция осуществляется самой машиной и ее системой.

Оладка программы. Составленная программа содержит разного рода ошибки, неточности, описки. Отладка включает контроль программы, диагностику (поиск и определение содержания) ошибок, и их устранение. Программа испытывается на решении контрольных (тестовых) задач для получения уверенности в достоверности результатов.

Проведение расчетов. На этом этапе готовятся исходные данные для расчетов и проводится расчет по отлаженной программе. при этом для уменьшения ручного труда по обработке результатов можно широко использовать удобные формы выдачи результатов в виде текстовой и графической информации, в понятном для человека виде.

Анализ результатов. Результаты расчетов тщательно анализируются, оформляется научно-техническая документация.

4. Для чего нужны языки программирования

Процесс работы компьютера заключается в выполнении программы, то есть набора вполне определённых команд во вполне определённом порядке. Машинный вид команды, состоящий из нулей и единиц, указывает, какое именно действие должен выполнить центральный процессор. Значит, чтобы задать компьютеру последовательность действий, которые он должен выполнить, нужно задать последовательность двоичных кодов соответствующих команд. Программы в машинных кодах состоят из тысячи команд. Писать такие программы – занятие сложное и утомительное. Программист должен помнить комбинацию нулей и единиц двоичного кода каждой программы, а также двоичные коды адресов данных, используемых при её выполнении. Гораздо проще написать программу на каком-нибудь языке, более близком к естественному человеческому языку, а работу по переводу этой программы в машинные коды поручить компьютеру. Так возникли языки, предназначенные специально для написания программ, - языки программирования.

Имеется много различных языков программирования. Вообще-то для решения большинства задач можно использовать любой из них. Опытные программисты знают, какой язык лучше использовать для решения каждой конкретной задачи, так как каждый из языков имеет свои возможности, ориентацию на определённые типы задач, свой способ описания понятий и объектов, используемых при решении задач.

Всё множество языков программирования можно разделить на две группы: языки низкого уровня и языки высокого уровня.

К языкам низкого уровня относятся языки ассемблера (от англ. toassemble – собирать, компоновать). В языке ассемблера используются символьные обозначения команд, которые легко понятны и быстро запоминаются. Вместо последовательности двоичных кодов команд записываются их символьные обозначения, а вместо двоичных адресов данных, используемых при выполнении команды, - символьные имена этих данных, выбранные программистом. Иногда язык ассемблера называют мнемокодом или автокодом.

Большинство программистов пользуются для составления программ языками высокого уровня. Как и обычный человеческий язык, такой язык имеет свой алфавит – множество символов, используемых в языке. Из этих символов составляются так называемые ключевые слова языка. Каждое из ключевых слов выполняет свою функцию, так же как в привычном нам языке нам языке слова, составленные из букв алфавита данного языка, могут выполнять функции разных частей речи. Ключевые слова связываются друг с другом в предложения по определённым синтаксическим правилам языка. Каждое предложение определяет некоторую последовательность действий, которые должен выполнить компьютер.

Язык высокого уровня выполняет роль посредника между человеком и компьютером, позволяя человеку общаться с компьютером более привычным для человека способом. Часто такой язык помогает выбрать правильный метод решения задачи.

Перед тем как писать программу на языке высокого уровня, программист должен составить алгоритм решения задачи, то есть пошаговый план действий, который нужно выполнить для решения этой задачи. Поэтому языки, требующие предварительного составления алгоритма, часто называют алгоритмическими языками.

Учебник состоит из двух разделов: теоретического и практического. В теоретической части учебника изложены основы современной информатики как комплексной научно-технической дисциплины, включающей изучение структуры и общих свойств информации и информационных процессов, общих принципов построения вычислительных устройств, рассмотрены вопросы организации и функционирования информационно-вычислительных сетей, компьютерной безопасности, представлены ключевые понятия алгоритмизации и программирования, баз данных и СУБД. Для контроля полученных теоретических знаний предлагаются вопросы для самопроверки и тесты. Практическая часть освещает алгоритмы основных действий при работе с текстовым процессором Microsoft Word, табличным редактором Microsoft Excel, программой для создания презентаций Microsoft Power Point, программами-архиваторами и антивирусными программами. В качестве закрепления пройденного практического курса в конце каждого раздела предлагается выполнить самостоятельную работу.

Книга:

Разделы на этой странице:

8.2. Языки программирования

Виды программирований

Прогресс компьютерных технологий определил процесс появления новых разнообразных знаковых систем для записи алгоритмов – языков программирования. Смысл появления такого языка – оснащенный набор вычислительных формул дополнительной информации, что превращает данный набор в алгоритм.

Языки программирования – это искусственно созданные языки. От естественных они отличаются ограниченным числом «слов» и очень строгими правилами записи команд (операторов). Совокупность подобных требований образует синтаксис языка программирования, а смысл каждой команды и других конструкций языка – его семантику.

Языки программирования – это формальные языки общения человека с ЭВМ, предназначенные для описания совокупности инструкций, выполнение которых обеспечивает правильное решение требуемой задачи. Их основная роль заключается в планировании действий по обработке информации. Любой язык программирования основан на системе понятий, и уже с ее помощью человек может выражать свои соображения.

Связь между языком, на котором мы думаем/программируем, и задачами и решениями, которые мы можем представлять в своем воображении, очень близка. По этой причине ограничивать свойства языка только целями исключения ошибок программиста в лучшем случае опасно. Как и в случае с естественными языками, есть огромная польза быть по крайней мере двуязычным. Язык предоставляет программисту набор концептуальных инструментов, если они не отвечают задаче, то их просто игнорируют. Например, серьезные ограничения концепции указателя заставляют программиста применять вектора и целую арифметику, чтобы реализовать структуры, указатели и т. п. Хорошее проектирование и отсутствие ошибок не может гарантироваться чисто за счет языковых средств.

Может показаться удивительным, но конкретный компьютер способен работать с программами, написанными на его родном машинном языке. Существует почти столько же разных машинных языков, сколько и компьютеров, но все они суть разновидности одной идеи – простые операции производятся со скоростью молнии на двоичных числах.

Машиннозависимые языки программирования

Машиннозависимые языки – это языки, наборы операторов и изобразительные средства которых существенно зависят от особенностей ЭВМ (внутреннего языка, структуры памяти и т. д.). Эти языки называются языками программирования низкого уровня. Они ориентированы на конкретный тип процессора и учитывают его особенности. Операторы такого языка близки к машинному коду и ориентированы на конкретные команды процессора, то есть данный язык является машинно зависимым. Языком низкого уровня является язык Ассемблер. С его помощью создаются очень эффективные и компактные программы, так как разработчик получает доступ ко всем возможностям процессора. Подобные языки применяются для написания небольших системных приложений, драйверов устройств, библиотек. В тех случаях, когда объем ОЗУ и ПЗУ мал (в районе нескольких килобайт) альтернативы ассемблеру нет. Именно эти языки программирования позволяют получать самый короткий и самый быстродействующий код программы.

Машиннонезависимые языки программирования

Машиннонезависимые языки – это средство описания алгоритмов решения задач и информации, подлежащей обработке. Они удобны в использовании для широкого круга пользователей и не требуют от них знания особенностей организации функционирования ЭВМ и вычислительной системы.

Подобные языки получили название высокоуровневых языков программирования. Программы, составляемые на таких языках, представляют собой последовательности операторов, структурированные согласно правилам рассматривания языка (задачи, сегменты, блоки и т. д.). Операторы языка описывают действия, которые должна выполнять система после трансляции программы на машинный язык.

Командные последовательности (процедуры, подпрограммы), часто используемые в машинных программах, представлены в высокоуровневых языках отдельными операторами. Программист получил возможность не расписывать в деталях вычислительный процесс на уровне машинных команд, а сосредоточиться на основных особенностях алгоритма.

Языки программирования высокого уровня значительно ближе и понятнее человеку. В них не учитываются особенности конкретных компьютерных архитектур, то есть данные языки являются машиннонезависимыми. Это позволяет использовать однажды записанную на таком языке программу на различных ЭВМ.

Можно писать программы непосредственно на машинном языке, хотя это и сложно. На заре компьютеризации (в начале 1950-х гг.) машинный язык был единственным языком, большего человек к тому времени не придумал. Для спасения программистов от сурового машинного языка программирования были созданы языки высокого уровня (т. е. немашинные языки), которые стали своеобразным связующим мостом между человеком и машинным языком компьютера. Языки высокого уровня работают через трансляционные программы, которые вводят «исходный код» (гибрид английских слов и математических выражений, который считывает машина) и в конечном итоге заставляют компьютер выполнять соответствующие команды, которые даются на машинном языке.

К языкам программирования высокого уровня можно отнести следующие: Fortran, Cobol, Algol, Pascal, Basic, C, C++, Java, HTML, Perl и другие.

С помощью языка программирования создается не готовая программа, а только ее текст, описывающий ранее разработанный алгоритм. Чтобы получить работающую программу, надо либо автоматически перевести этот текст в машинный код и затем использовать отдельно от исходного текста, либо сразу выполнять команды языка, указанные в тексте программы. Для этого используются программы-трансляторы.

Существует два основных вида трансляторов (рис. 8.4): интерпретаторы, которые сканируют и проверяют исходный код в один шаг, и компиляторы, сканирующие исходный код для производства текста программы на машинном языке, которая затем выполняется отдельно.


Рисунок 8.4. Виды трансляторов

При использовании компиляторов весь исходный текст программы преобразуется в машинные коды, и именно эти коды записываются в память микропроцессора. При использовании интерпретатора в память микропроцессора записывается исходный текст программы, а трансляция производится при считывании очередного оператора. Естественно, что быстродействие интерпретаторов намного ниже по сравнению с компиляторами, т. к. при использовании оператора в цикле он транслируется многократно. Однако при программировании на языке высокого уровня объем кода, который нужно хранить во внутренней памяти, может быть значительно меньше по сравнению с исполняемым кодом. Еще одним преимуществом применения интерпретаторов является легкая переносимость программ с одного процессора на другой.

Одно, часто упоминаемое преимущество интерпретаторной реализации состоит в том, что она допускает «непосредственный режим». Непосредственный режим позволяет вам задавать компьютеру задачу и возвращает вам ответ, как только вы нажмете клавишу ENTER. Кроме того, интерпретаторы имеют специальные атрибуты, которые упрощают отладку. Можно, например, прервать обработку интерпретаторной программы, отобразить содержимое определенных переменных, бегло просмотреть программу, а затем продолжить исполнение. Однако интерпретаторные языки имеют недостатки. Необходимо, например, иметь копию интерпретатора в памяти все время, тогда как многие возможности интерпретатора, а следовательно, и его возможности могут не быть необходимыми для исполнения конкретной программы. При исполнении программных операторов интерпретатор должен сначала сканировать каждый оператор с целью прочтения его содержимого (что этот человек просит меня сделать?), а затем выполнить запрошенную операцию. Операторы в циклах сканируются излишне много.

Компилятор – это транслятор текста на машинный язык, который считывает исходный текст. Он оценивает его в соответствии с синтаксической конструкцией языка и переводит на машинный язык. Другими словами, компилятор не исполняет программы, он их строит. Интерпретаторы невозможно отделить от программ, которые ими прогоняются, компиляторы делают свое дело и уходят со сцены. При работе с компилирующим языком, таким, как Турбо-Бейсик, вы придете к необходимости мыслить о ваших программах в признаках двух главных фаз их жизни: периода компилирования и периода прогона. Большинство программ будут прогоняться в четыре – десять раз быстрее их интерпретаторных эквивалентов. Если вы поработаете над улучшением, то сможете достичь 100-кратного повышения быстродействия. Оборотная сторона монеты состоит в том, что программы, расходующие большую часть времени на возню с файлами на дисках или ожидание ввода, не смогут продемонстрировать какое-то впечатляющее увеличение скорости.

Процесс создания программы называется программированием.

Выделяют несколько разновидностей программирования.

Алгоритмическое или модульное

Основная идея алгоритмического программирования – разбиение программы на последовательность модулей, каждый из которых выполняет одно или несколько действий. Единственное требование к модулю – чтобы его выполнение всегда начиналось с первой команды и всегда заканчивалось на самой последней (то есть чтобы нельзя было попасть на команды модуля извне и передать управление из модуля на другие команды в обход заключительной).

Алгоритм на выбранном языке программирования записывается с помощью команд описания данных, вычисления значений и управления последовательностью выполнения программы.

Текст программы представляет собой линейную последовательность операторов присваивания, цикла и условных операторов. Таким способом можно решать не очень сложные задачи и составлять программы, содержащие несколько сот строк кода. После этого понятность исходного текста резко падает из-за того, что общая структура алгоритма теряется за конкретными операторами языка, выполняющими слишком детальные, элементарные действия. Возникают многочисленные вложенные условные операторы и операторы циклов, логика становится совсем запутанной, при попытке исправить один ошибочный оператор вносится несколько новых ошибок, связанных с особенностями работы этого оператора, результаты выполнения которого нередко учитываются в самых разных местах программы.

Структурное программирование

При создании средних по размеру приложений (несколько тысяч строк исходного кода) используется структурное программирование, идея которого заключается в том, что структура программы должна отражать структуру решаемой задачи, чтобы алгоритм решения был ясно виден из исходного текста. Для этого надо иметь средства для создания программы не только с помощью трех простых операторов, но и с помощью средств, более точно отражающих конкретную структуру алгоритма. С этой целью в программирование введено понятие подпрограммы – набора операторов, выполняющих нужное действие и не зависящих от других частей исходного кода. Программа разбивается на множество мелких подпрограмм (занимающих до 50 операторов – критический порог для быстрого понимания цели подпрограммы), каждая из которых выполняет одно из действий, предусмотренных исходным заданием. Комбинируя эти подпрограммы, удается формировать итоговый алгоритм уже не из простых операторов, а из законченных блоков кода, имеющих определенную смысловую нагрузку, причем обращаться к таким блокам можно по названиям. Получается, что подпрограммы – это новые операторы или операции языка, определяемые программистом.

Возможность применения подпрограмм относит язык программирования к классу процедурных языков.

Наличие подпрограмм позволяет вести проектирование и разработку приложения сверху вниз – такой подход называется нисходящим проектированием. Сначала выде ляется несколько подпрограмм, решающих самые глобальные задачи (например, инициализация данных, главная часть и завершение), потом каждый из этих модулей детализируется на более низком уровне, разбиваясь, в свою очередь, на небольшое число других подпрограмм, и так происходит до тех пор, пока вся задача не окажется реализованной.

Такой подход удобен тем, что позволяет человеку постоянно мыслить на предметном уровне, не опускаясь до конкретных операторов и переменных. Кроме того, появляется возможность некоторые не реализовывать сразу подпрограммы, а временно откладывать, пока не будут закончены другие части. Например, если имеется необходимость вычисления сложной математической функции, то выделяется отдельная подпрограмма такого вычисления, но реализуется она временно одним оператором, который просто присваивает заранее выбранное значение. Когда все приложение будет написано и отлажено, тогда можно приступить к реализации этой функции.

Немаловажно, что небольшие подпрограммы значительно проще отлаживать, что существенно повышает общую надежность всей программы.

Очень важная характеристика подпрограмм – это возможность их повторного использования. С интегрированными системами программирования поставляются большие библиотеки стандартных подпрограмм, которые позволяют значительно повысить производительность труда за счет использования чужой работы по созданию часто применяемых подпрограмм.

Подпрограммы бывают двух видов – процедуры и функции. Отличаются они тем, что процедура просто выполняет группу операторов, а функция вдобавок вычисляет некоторое значение и передает его обратно в главную программу (возвращает значение). Это значение имеет определенный тип (говорят, что функция имеет такой-то тип).

Подпрограммы решают три важные задачи:

Избавляют от необходимости многократно повторять в тексте программы аналогичные фрагменты;

Улучшают структуру программы, облегчая ее понимание;

Повышают устойчивость к ошибкам программирования и непредвидимым последствиям при модификациях программы.

Объектно-ориентированное программирование

В середине 80-х годов в программировании возникло новое направление, основанное на понятии объекта. До того времени основные ограничения на возможность создания больших систем накладывала разобщенность в программе данных и методов их обработки.

Реальные объекты окружающего мира обладают тремя базовыми характеристиками: они имеют набор свойств, способны разными методами изменять эти свойства и реагировать на события, возникающие как в окружающем мире, так и внутри самого объекта. Именно в таком виде в языках программирования и реализовано понятие объекта как совокупности свойств (структур данных, характерных для этого объекта), методов их обработки (подпрограмм изменения свойств) и событий, на которые данный объект может реагировать и которые приводят, как правило, к изменению свойств объекта.

Появление возможности создания объектов в программах качественно повлияло на производительность труда программистов. Максимальный объем приложений, которые стали доступны для создания группой программистов из 10 человек, за несколько лет увеличился до миллионов строк кода, при этом одновременно удалось добиться высокой надежности программ и, что немаловажно, повторно использовать ранее созданные объекты в других задачах.

Объекты могут иметь идентичную структуру и отличаться только значениями свойств. В таких случаях в программе создается новый тип, основанный на единой структуре объекта. Он называется классом, а каждый конкретный объект, имеющий структуру этого класса, называется экземпляром класса.

Объектно-ориентированный язык программирования характеризуется тремя основными свойствами:

1. Инкапсуляция – объединение данных с методами в одном классе;




Top