Статические члены и модификатор static. Что такое static

Статика - это глобальное состояние. Статический метод или статическая переменная абсолютно ничем не отличаются от глобальной переменной, потому что, ни статика ни глобальная переменная не были переданны в качестве аргументов нигде и никак, а значит поступают из глобального пространства.

Чем статика может быть опасна?
Представь, что ты пишешь утилиту для загрузки изображений. И вот наступил момент, когда нужно указывать параметры обрезки для превьюшек. Со статикой это может выглядеть так:

Public function upload() { $width = Config::read("width"); $height = Config::read("height"); // .. Do upload.. }
(На заметку CakePHP кишит такими подходами)
Проблемы такого подхода?

1. Нужно знать и быть точно уверенным, что статичный класс Config, был где-то там далеко инициализирован. А вдруг он не был инициализированным?

2. А что если ты решишь сменить источник конфига? Например читать, это все не из класса `Config` а откуда-нибудь из REST? Придется все переписывать, затем опять тестировать. Эта проблема известна как сильная связка .

3. Попробуй написать юнит тест для такого, без хаков и изращенных костылей. Ведь для того чтобы протестировать этот метод, нам нужно где-то там в глобальном пространстве инициализировать `Config`, затем убедится что он работает.

4. Скрытые зависимости.

Например инициализуруя класс, в случае статики:

$uploader = new Uploader(); $uploader->upload(...);

Ты и твои пользователи не видят какие у класса зависимости и от работы чего вообще он зависит. Проблема заметна особо, когда ты пишешь библиотеку или компонет.

Но тогда почему такие популярные фреймворки как Yii или Laravel полностью покрыты статикой?

Для того чтобы понять какие последствия несет статика, попробуй воспользоватся хоть одним компонентом Yii фреймворка отдельно. Например, если тебе нужна только CAPTCHA ты не сможешь её вытащить оттуда не переписав почти весь компонент, потому что везде внутри присутвует глобальное состояние, в виде `Yii::$app->`. То есть чтобы воспользоватся только капчей, придется подключать весь фреймворк и все его внутренние механизмы, когда это абсолютно не нужно.

Что касается Laravel, то статики там меньше, поскольку некоторые компоненты, вроде Eloquent могут использоватся по отдельности. Статика в ларе, она существует как обёртка, но не как реализация, во многих местах в отличии от Yii.

Вообще посмотри, как задачи решаются в Zend / Symfony
Там почти везде все зависимости передаются в качестве аргументов, что есть хорошо, слабо связано, и тестируемо.

Переменное число параметров метода

Иногда число аргументов, которые будут переданы методу, неизвестно до периода выполнения. Например, вам нужен класс, который чертит на графике линию, заданную последовательностями х- и у-координат. Этот класс должен содержать методом, принимающим единственный аргумент - объект типа Point, представляющий значения обеих координат х и у. Этот метод должен сохранять каждый объект типа Point в связанном списке или в элементах массива, пока вызывающая программа не даст команду на вывод всей последовательности точек. Однако такое решение может быть не очень эффективным потому, что оно требует наличия в классе связанного списка. Но ведь можно было бы использовать единственный метод - DrawLine, которому этот список может и не потребоваться. Эту проблему эффективно решает метод с переменным количеством аргументов.

Такому методу можно задать переменное число аргументов через ключевое слово params в видемассива. Рассмотрим пример класса Chart, написанного на C#, позволяющего пользователю одним вызовом получить и вывести произвольное число объектов Point:

using System;

class Point //Класс точки

public Point(int x, int y) { this.x = x; this.у = у; }

public int x; public int y;

class Chart //Класс рисовальщика

public void DrawLine(Graphics g, params Point p)

Console.WriteLine("\пЭтот метод позволяет нарисовать линию " +

"по следующим точкам:");

for (int i = 0; i < p.GetLength(0); i++)

{ Console.WriteLine("{0), {1}". p[i].x, p[i].y); }

class ChartApp

public static void Main()

Point p1 = new Point(5,10);

Point p2 = new Point(5, 15);

Point p3 = new Point(5, 20);

Chart chart = new Chart();

chart.DrawLine(p1, p2, p3);

Метод DrawLine сообщает компилятору C#, что он может принимать переменное число объектов типа Point. Затем в период выполнения метод использует простой цикл for для прохода по всем объектам Point и вывода всех точек.

Статическим называется метод, который существует в классе как в таковом, а не в отдельных его экземплярах. Как и в случае других статических членов, главное преимущество статических методов в том, что они расположены вне конкретных экземпляров класса, не засоряя глобальное пространство приложения. При этом они и не нарушают принципов ООП, поскольку ассоциированы с определенным классом.

Определить метод как статический позволяет ключевое слово static. Затем для вызова метода пользователь применяет синтаксис вида Класс. Метод. Этот синтаксис необходим, даже если у пользователя есть ссылка на экземпляр класса.


Статические (static ) методы, или методы класса, можно вызывать, не создавая экземпляр объекта. Именно таким образом используется метод Main .

public class Sample

public static int a;

public int b;

public static void DoubleA(){ a *= 2; }

public void SetB(){ b = a; }

public class Application

public static void Main()

Sample sc1 = new Sample(), sc2 = new Sample();

Sample.a = 1;

sc1.SetB();

Sample.a = 2;

sc2.SetB();

Console.WriteLine("sc1.b = {0}, sc2.b = {1}", sc1.b, sc2.b);

Последним моментом, касающимся статических методов, является правило, определяющее, к каким членам класса можно обращаться из статического метода. Как вы можно догадаться, статический метод может обращаться к любому статическому члену в пределах класса, но не может обращаться к члену экземпляра.

Модификатор static (статичный) применяется переменным, методам и даже к странным фрагментам кода, которые не являются частью метода. Статичные фрагменты кода принадлежат не объекту класса, но ко всему классу.

Рассмотрим пример простого класса с одной статичной переменной:

1. class Ecstatic{
2. static int x = 0;
3. Ecstatic() { x++; }
4. }

Переменная x объявлена статичной. Это означает, что не важно, сколько объектов класса Ecstatic существует в данный момент - x всего лишь одна. При загрузке класса Ecstatic выделяется 4 байта под переменную x . И её инициализация происходит (см. строку №2) тоже в момент загрузки класса. И каждый раз, когда создаётся объект класса Ecstatic , x инкрементируется. Этот приём позволяет знать точное количество созданных объектов класса Ecstatic .

Получить доступ к статичным переменным можно двумя способами:

  • Через любой объект класса: обьект.переменная .
  • Через сам класс: класс.переменная .

Первый метод, однако, считается дурным тоном, так как очень сильно вводит в заблуждение. Давайте рассмотрим это на примере:



3. e1.x = 100;
4. e2.x = 200;
5. reallyImportantVariable = e1.x;

Если вы заранее не знаете, что x - статичная переменная, то можете подумать, что в 5-й строке переменной reallyImportantVariable присваивается 100. Но на самом деле ей присваивается 200, потому что e1.x и e2.x - это всё одна и та же переменная х .

Поэтому лучше доступаться к статичным переменным через имя класса. Вот фрагмент кода, эквивалентный предыдущему:

1. Ecstatic e1 = new Ecstatic();
2. Ecstatic e2 = new Ecstatic();
3. Ecstatic.x = 100; // Бессмысленное действие
4. Ecstatic.x = 200;
5. reallyImportantVariable = Ecstatic.x;

Теперь всё встаёт на свои места: строка 3 не несёт никакого смысла - это всего лишь лишняя операция, а в 5-й строке переменной reallyImportantVariable присваивается сразу 200.


Статичные методы не могут использовать нестатичные элементы (переменные и методы) своиего класса, но могут использовать другие статичные элементы. Статичные методы не принадлежат ни одному объекту класса. Поэтому они могут вообще вызваться до того, как класс инстанциирован.

Каждое Java приложение содержит в себе статичный метод main() :

1. class SomeClass {
2. static int i = 48;
3. int j = 1;
4.
5. public static void main(String args) {
6. i += 100;
7. // j *= 5; Если раскомментировать, будет ошибка
8. }
9. }

Когда приложение запускается (то есть кто-то вызывает из коммандной строки java SomeClass ), не существует ни одного объекта класса SomeClass . Однако существует переменная i , которая инициализурется во 2-й строке и инкрементируется в 6-й строке. А если бы мы раскомметировали 7-ю строку, то вообще получили бы ошибку компиляции, потому что статичный метод не может использовать нестатичные переменные класса.

Модификатор static в Java напрямую связан с классом, если поле статично, значит оно принадлежит классу, если метод статичный, аналогично - он принадлежит классу. Исходя из этого, можно обращаться к статическому методу или полю используя имя класса. Например, если поле count статично в классе Counter , значит, вы можете обратиться к переменной запросом вида: Counter.count . Конечно, следует учитывать модификаторы доступа. Например, поля private доступны только внутри класса, в котором они объявлены. Поля protected доступны всем классам внутри пакета (package ), а также всем классам-наследникам вне пакета. Для более подробной информации ознакомьтесь со статьей “private vs protected vs public ”. Предположим, существует статический метод increment() в классе Counter , задачей которого является инкрементирование счётчика count . Для вызова данного метода можно использовать обращение вида Counter.increment() . Нет необходимости создавать экземпляр класса Counter для доступа к статическому полю или методу. Это фундаментальное отличие между статическими и НЕ статическими объектами (членами класса). Важное замечание. Не забывайте, что статические члены класса напрямую принадлежат классу, а не его экземпляру. То есть, значение статической переменной count будет одинаковое для всех объектов типа Counter . В этой статье мы рассмотрим основополагающие аспекты применения модификатора static в Java, а также некоторые особенности, которые помогут понять ключевые концепции программирования.

Что должен знать каждый программист о модификаторе Static в Java.

В этом разделе мы рассмотрим основные моменты использования статических методов, полей и классов. Начнём с переменных.

    Вы НЕ можете получить доступ к НЕ статическим членам класса, внутри статического контекста, как вариант, метода или блока. Результатом компиляции приведенного ниже кода будет ошибка:

    public class Counter { private int count; public static void main (String args ) { System. out. println (count) ; //compile time error } }

    Это одна из наиболее распространённых ошибок допускаемых программистами Java, особенно новичками. Так как метод main статичный, а переменная count нет, в этом случае метод println , внутри метода main выбросит “Compile time error”.

    В отличие от локальных переменных, статические поля и методы НЕ потокобезопасны (Thread-safe) в Java. На практике это одна из наиболее частых причин возникновения проблем связанных с безопасностью мультипоточного программирования. Учитывая что каждый экземпляр класса имеет одну и ту же копию статической переменной, то такая переменная нуждается в защите - «залочивании» классом. Поэтому при использовании статических переменных, убедитесь, что они должным образом синхронизированы (synchronized), во избежание проблем, например таких как «состояние гонки» (race condition).

    Статические методы имеют преимущество в применении, т.к. отсутствует необходимость каждый раз создавать новый объект для доступа к таким методам. Статический метод можно вызвать, используя тип класса, в котором эти методы описаны. Именно поэтому, подобные методы как нельзя лучше подходят в качестве методов-фабрик (factory), и методов-утилит (utility). Класс java.lang.Math - замечательный пример, в котором почти все методы статичны, по этой же причине классы-утилиты в Java финализированы (final).

    Другим важным моментом является то, что вы НЕ можете переопределять (Override) статические методы. Если вы объявите такой же метод в классе-наследнике (subclass), т.е. метод с таким же именем и сигнатурой, вы лишь «спрячете» метод суперкласса (superclass) вместо переопределения. Это явление известно как сокрытие методов (hiding methods). Это означает, что при обращении к статическому методу, который объявлен как в родительском, так и в дочернем классе, во время компиляции всегда будет вызван метод исходя из типа переменной. В отличие от переопределения, такие методы не будут выполнены во время работы программы. Рассмотрим пример:

    class Vehicle { public static void kmToMiles (int km) { System. out. println ("Внутри родительского класса/статического метода" ) ; } } class Car extends Vehicle { public static void kmToMiles (int km) { System. out. println ("Внутри дочернего класса/статического метода " ) ; } } public class Demo { public static void main (String args ) { Vehicle v = new Car () ; v. kmToMiles (10 ) ; } }

    Вывод в консоль:

    Внутри родительского класса/статического метода

    Код наглядно демонстрирует: несмотря на то, что объект имеет тип Car , вызван статический метод из класса Vehicle , т.к. произошло обращение к методу во время компиляции. И заметьте, ошибки во время компиляции не возникло!

    Объявить статическим также можно и класс, за исключением классов верхнего уровня. Такие классы известны как «вложенные статические классы» (nested static class). Они бывают полезными для представления улучшенных связей. Яркий пример вложенного статического класса - HashMap.Entry , который предоставляет структуру данных внутри HashMap . Стоит заметить, также как и любой другой внутренний класс, вложенные классы находятся в отдельном файле.class. Таким образом, если вы объявили пять вложенных классов в вашем главном классе, у вас будет 6 файлов с расширением.class. Ещё одним примером использования является объявление собственного компаратора (Comparator), например компаратор по возрасту (AgeComparator) в классе сотрудники (Employee).

    Модификатор static также может быть объявлен в статичном блоке, более известным как «Статический блок инициализации» (Static initializer block), который будет выполнен во время загрузки класса. Если вы не объявите такой блок, то Java соберёт все статические поля в один список и выполнит его во время загрузки класса. Однако, статичный блок НЕ может пробросить перехваченные исключения, но может выбросить не перехваченные. В таком случае возникнет «Exception Initializer Error». На практике, любое исключение возникшее во время выполнения и инициализации статических полей, будет завёрнуто Java в эту ошибку. Это также самая частая причина ошибки «No Class Def Found Error», т.к. класс не находился в памяти во время обращения к нему.

    Полезно знать, что статические методы связываются во время компиляции, в отличие от связывания виртуальных или не статических методов, которые связываются во время исполнения на реальном объекте. Следовательно, статические методы не могут быть переопределены в Java, т.к. полиморфизм во время выполнения не распространяется на них. Это важное ограничение, которое необходимо учитывать, объявляя метод статическим. В этом есть смысл, только тогда, когда нет возможности или необходимости переопределения такого метода классами-наследниками. Методы-фабрики и методы-утилиты хорошие образцы применения модификатора static . Джошуа Блох выделил несколько преимуществ использования статичного метода-фабрики перед конструктором, в книге «Effective Java », которая является обязательной для прочтения каждым программистом данного языка.

    Важным свойством статического блока является инициализация. Статические поля или переменные инициализируются после загрузки класса в память. Порядок инициализации сверху вниз, в том же порядке, в каком они описаны в исходном файле Java класса. Поскольку статические поля инициализируются на потокобезопасный манер, это свойство также используется для реализации паттерна Singleton . Если вы не используется список Enum как Singleton , по тем или иным причинам, то для вас есть хорошая альтернатива. Но в таком случае необходимо учесть, что это не «ленивая» инициализация. Это означает, что статическое поле будет проинициализировано ещё ДО того как кто-нибудь об этом «попросит». Если объект ресурсоёмкий или редко используется, то инициализация его в статическом блоке сыграет не в вашу пользу.

    Во время сериализации, также как и transient переменные, статические поля не сериализуются. Действительно, если сохранить любые данные в статическом поле, то после десериализации новый объект будет содержать его первичное (по-умолчанию) значение, например, если статическим полем была переменная типа int , то её значение после десериализации будет равно нулю, если типа float – 0.0, если типа Object – null . Честно говоря, это один из наиболее часто задаваемых вопросов касательно сериализации на собеседованиях по Java. Не храните наиболее важные данные об объекте в статическом поле!

    И напоследок, поговорим о static import . Данный модификатор имеет много общего со стандартным оператором import , но в отличие от него позволяет импортировать один или все статические члены класса. При импортировании статических методов, к ним можно обращаться как будто они определены в этом же классе, аналогично при импортировании полей, мы можем получить доступ без указания имени класса. Данная возможность появилась в Java версии 1.5, и при должном использовании улучшает читабельность кода. Наиболее часто данная конструкция встречается в тестах JUnit , т.к. почти все разработчики тестов используют static import для assert методов, например assertEquals() и для их перегруженных дубликатов. Если ничего не понятно – добро пожаловать за дополнительной информацией .

    На этом всё. Все вышеперечисленные пункты о модификаторе static в Java обязан знать каждый программист. В данной статье была рассмотрена базовая информация о статических переменных, полях, методах, блоках инициализации и импорте. В том числе некоторые важные свойства, знание которых является критичным при написании и понимании программ на Java. Я надеюсь, что каждый разработчик доведёт свои навыки использования статических концептов до совершенства, т.к. это очень важно для серьёзного программирования."

В объектно-ориентированном программировании метод - это именованный блок кода, который объявляется внутри класса и может быть использован многократно. Если вы знакомы с процедурным программированием (Pascal, Basic), вспомните, что такое функция - по принципу работы у неё и метода много общего.

Хорошо написанный метод решает одну практическую задачу: находит квадратный корень из числа (как штатный метод sqrt() в Java), преобразует число в строку (метод toString()), присваивает значения полям объекта и так далее.

Новый метод сначала объявляют и определяют, затем вызывают для нужного объекта или класса.

Штатные - встроенные - методы языка работают со служебными объектами. Например, метод print в Java выводит значения в консоль. Вызывают его так:

System . out. print("Привет, мир!" );

Обратите внимание на структуру: у класса System есть поле out - поток ввода/вывода. Поле - тоже объект, и у него есть метод print(), который мы вызываем.

Ещё есть метод println(), который при выводе значений автоматически переводит каретку на следующую строку. Это избавляет от необходимости ставить «\n» в месте переноса строки.

Чтобы Java-приложение могло работать, в его базовом классе обязательно нужно объявить метод main.

public static void main(String args) { // здесь основной код и вызовы других методов }

Как видите, в качестве параметра main принимает массив строк, в данном случае - параметров запуска.

Объявление и определение метода в Java

Методы могут возвращать или не возвращать значения, могут вызываться с указанием параметров или без. Тип возвращаемых данных указывают при объявлении метода - перед его именем.

В примере ниже метод должен найти большее из двух целых чисел, поэтому тип возвращаемого значения - int:

public static int maxFinder(int a, int b) { //заголовок метода //ниже - тело метода int max; if (a < b) max = b; else max = a; return max; }

В заголовке метода сначала идут модификаторы, определяющие, на каких условиях он доступен для вызова. Об этом чуть ниже. Вернёмся к заголовку: int - возвращаемый тип, maxFinder - имя метода, в скобках - параметры.

В теле метода заводим переменную max, куда потом запишем большее число. Далее сравниваем значения, фиксируем большее в max и возвращаем.

Обратите внимание, return может работать не только с одной переменной, но и с выражением. Если бы мы не сравнивали значения, а складывали, результат можно было бы вернуть без дополнительной внутренней переменной. В теле метода была бы всего одна строка:

return a+ b;

Когда метод не должен ничего возвращать, тип возвращаемого значения указывают как void. А если методу для работы не нужны входные параметры, скобки оставляют пустыми:

static void theWarning() { System . out. println("Мне ничего не надо, и вы от меня ничего не получите." ); }

Как вызвать метод в Java

Метод с модификатором public можно вызывать из любого класса, в том числе размещенного во внешнем файле. Если нужно, чтобы метод был доступен исключительно внутри своего класса, применяют модификатор private. Есть и более мягкий вариант ограничения доступа: методы с модификатором protected доступны подклассам своего класса и другим классам из того же пакета. Чем сложнее получить доступ к методу извне, тем безопаснее - ниже риск ошибок.

Статический метод в Java принадлежит классу, а не объектам (и экземплярам) класса. Поэтому его вызывают без создания экземпляра.

Для простоты мы сделали методы публичными и статическими и разместили их в главном классе программы.

Вызывают методы двумя способами - в зависимости от того, возвращают они что-то или нет. Если да, подставляем значение, куда нам нужно:

public static void main(String args) { System . out. print(maxFinder(3 ,8 )); }

Мы вызвали maxFinder и сразу вывели результат его работы на экран. Для примера числа заданы вручную, как неименованные константы, но в реальных приложениях обычно сравнивают значения переменных.

После вызова метод управляет программой до окончания своей работы: пока в его теле не сработает оператор возврата или прерывания, либо пока не будут выполнены все находящиеся в нём инструкции.

Вызовем theWarning, который ничего не возвращает:

public static void main(String args) { theWarning(); System . out. print(“theWarning завершил свою работу. Идём дальшe. ”); }

Этот метод обходится без помощников - делает, что должен, и передаёт управление последующему коду.

Вызов метода из другого класса

А если бы maxFinder находился в отдельном классе и был не статическим? Тогда для его вызова пришлось бы сначала создать объект класса, в котором он находится. Допустим, метод находится в классе SampleClass. Вызываем:

public void main(String args) { SampleClass sc= new SampleClass (); System . out. print(sc. maxFinder(5 ,8 )); }

Статический метод вызывают через точку от имени класса - вот так:

System . out. print(SomeClass . maxFinder(5 ,8 ));

Перегрузка методов в Java

Что, если нам нужно сравнивать не только целые числа, но и числа с плавающей точкой? Реализовать это поможет перегрузка метода. Копипастим метод maxFinder в тот же класс, заменяем типы всех задействованных значений на double:

public static double maxFinder(double a, double b) { double max; //остальную часть тела метода оставляем без изменений }

Имя метода не меняем! Это и есть перегрузка: компилятор сам выберет, какую из версий метода использовать - в зависимости от того, значения какого типа сравниваем.

Ключевое слово this в методах Java

Ключевое слово this позволяет ссылаться на экземпляры класса: их переменные, методы и конструкторы. Используют this только внутри метода или конструктора экземпляра. Например, вот так можно связать входные параметры метода с одноименными параметрами конкретного экземпляра класса:

class UserData { int id, age, phone; void setProfileData (int id , int age , int phone ) { this . id= id; this . age= age; this . phone= phone; } }

Ещё пример - вызов одного конструктора из другого:

class ProfileData { int id; ProfileData () { this (100 ); } ProfileData (int id ) { this . id = id; } }

Это называется «явный вызов конструктора».

Абстрактные методы в Джаве

Абстрактным называют метод, который объявлен без реализации - он не имеет ни тела, ни даже фигурных скобок. Перед именем такого метода ставят модификатор abstract:

abstract void methodName();

Зачем он такой нужен? В качестве шаблона для других методов из других классов. Вот есть у нас абстрактный класс «Строение», а в нём - абстрактный метод «возвести». Реализовывать эти абстракции нужно через несколько неабстрактных классов-наследников и их методы. Пример: класс «Хижина» - метод «стройХижину», класс «Мост» - метод «стройМост» и др.

package ru.your.classes ; abstract class Construction { abstract void build_it (String msg1 ); abstract void sell_it (String msg2 ); } public class Hut extends Construction { // неабстрактный класс @Override // переопределяем метод void build_it (String msg1 ) { System . out. println("Хижина построена!" ); } @Override void sell_it (String msg2 ) { System . out. println("Хижина продана." ); } } public abstract class Bridge extends Construction { @Override void build_it (String msg1 ) { System . out. println("Мост построен!" ); } // Допустим, продавать объекты класса Bridge не предполагается. // Тогда sell_it можем не переопределять. // Но обязательно создадим абстрактный дочерний метод: abstract void sell_it (String msg2 ); }

Поскольку конкретной реализации у абстрактного класса нет, экземпляры его создавать нельзя. Он - шаблон, который задаёт структуру для других классов и содержит объявления методов.




Top