SpaceX запускает прототипы первых спутников для глобального спутникового интернета. Орбиты искусственных спутников земли. вывод спутников на орбиту

На внешней стороне «Спутника» четыре штыревые антенны передавали на коротковолновой частоте выше и ниже нынешнего стандарта (27 МГц). Станции слежения на Земле поймали радиосигнал и подтвердили, что крошечный спутник пережил запуск и успешно вышел на курс вокруг нашей планеты. Месяцем позже Советский Союз запустил на орбиту «Спутник-2». Внутри капсулы была собака Лайка.

В декабре 1957 года, отчаянно пытаясь идти в ногу со своими противниками по холодной войне, американские ученые попытались вывести спутник на орбиту вместе с планетой Vanguard. К сожалению, ракета разбилась и сгорела еще на стадии взлета. Вскоре после этого, 31 января 1958 года, США повторили успех СССР, приняв план Вернера фон Брауна, который заключался в выводе спутника Explorer-1 с ракетой U.S. Redstone. Explorer-1 нес инструменты для обнаружения космических лучей и обнаружил в ходе эксперимента Джеймса Ван Аллена из Университета Айовы, что космических лучей гораздо меньше, чем ожидалось. Это привело к открытию двух тороидальных зон (в конечном счете названных в честь Ван Аллена), наполненных заряженными частицами, захваченными магнитным полем Земли.

Воодушевленные этими успехами, некоторые компании начали разрабатывать и запускать спутники в 60-х годах. Одной из них была Hughes Aircraft вместе со звездным инженером Гарольдом Розеном. Розен возглавил команду, которая воплотила идею Кларка - спутник связи, размещенный на орбите Земли таким образом, что мог отражать радиоволны из одного места в другое. В 1961 году NASA заключило контракт с Hughes, чтобы построить серию спутников Syncom (синхронная связь). В июле 1963 года Розен и его коллеги увидели, как Syncom-2 взлетел в космос и вышел на грубую геосинхронную орбиту. Президент Кеннеди использовал новую систему, чтобы поговорить с премьер-министром Нигерии в Африке. Вскоре взлетел и Syncom-3, который на самом деле мог транслировать телевизионный сигнал.

Эпоха спутников началась.

Какая разница между спутником и космическим мусором?

Технически, спутник это любой объект, который вращается вокруг планеты или меньшего небесного тела. Астрономы классифицируют луны как природные спутники, и на протяжении многих лет они составили список из сотен таких объектов, обращающихся вокруг планет и карликовых планет нашей Солнечной системы. К примеру, насчитали 67 лун Юпитера. И до сих пор .

Техногенные объекты, вроде «Спутника» и Explorer, также можно классифицировать как спутники, поскольку они, как и луны, вращаются вокруг планеты. К сожалению, человеческая активность привела к тому, что на орбите Земли оказалось огромное количество мусора. Все эти куски и обломки ведут себя как и крупные ракеты - вращаются вокруг планеты на высокой скорости по круговому или эллиптическому пути. В строгом толковании определения можно каждый такой объект определить как спутник. Но астрономы, как правило, считают спутниками те объекты, которые выполняют полезную функцию. Обломки металла и другой хлам попадают в категорию орбитального мусора.

Орбитальный мусор поступает из многих источников:

  • Взрыв ракеты, который производит больше всего хлама.
  • Астронавт расслабил руку - если астронавт ремонтирует что-то в космосе и упускает гаечный ключ, тот потерян навсегда. Ключ выходит на орбиту и летит со скоростью около 10 км/с. Если он попадет в человека или в спутник, результаты могут быть катастрофическими. Крупные объекты, вроде МКС, представляют собой большую мишень для космического мусора.
  • Выброшенные предметы. Части пусковых контейнеров, шапки объективов камер и так далее.

NASA вывело специальный спутник под названием LDEF для изучения долгосрочных эффектов от столкновения с космическим мусором. За шесть лет инструменты спутника зарегистрировали около 20 000 столкновений, некоторые из которых были вызваны микрометеоритами, а другие орбитальным мусором. Ученые NASA продолжают анализировать данные LDEF. А вот в Японии уже гигантскую сеть для отлова космического мусора.

Что внутри обычного спутника?

Спутники бывают разных форм и размеров и выполняют множество различных функций, однако все, в принципе, похожи. Все они имеют металлический или композитный каркас и тело, которое англоязычные инженеры называют bus, а русские - космической платформой. Космическая платформа собирает все вместе и обеспечивает достаточно мер, чтобы инструменты пережили запуск.

У всех спутников есть источник питания (обычно солнечные батареи) и аккумуляторы. Массивы солнечных батарей позволяют заряжать аккумуляторы. Новейшие спутники включают и топливные элементы. Энергия спутников очень дорога и крайне ограничена. Ядерные элементы питания обычно используются для отправки космических зондов к другим планетам.

У всех спутников есть бортовой компьютер для контроля и мониторинга различных систем. У всех есть радио и антенна. Как минимум, у большинства спутников есть радиопередатчик и радиоприемник, поэтому экипаж наземной команды может запросить информацию о состоянии спутника и наблюдать за ним. Многие спутники позволяют массу различных вещей: от изменения орбиты до перепрограммирования компьютерной системы.

Как и следовало ожидать, собрать все эти системы воедино - непростая задача. Она занимает годы. Все начинается с определения цели миссии. Определение ее параметров позволяет инженерам собрать нужные инструменты и установить их в правильном порядке. Как только спецификация утверждена (и бюджет), начинается сборка спутника. Она происходит в чистой комнате, в стерильной среде, что позволяет поддерживать нужную температуру и влажность и защищать спутник во время разработки и сборки.

Искусственные спутники, как правило, производятся на заказ. Некоторые компании разработали модульные спутники, то есть конструкции, сборка которых позволяет устанавливать дополнительные элементы согласно спецификации. К примеру, у спутников Boeing 601 было два базовых модуля - шасси для перевозки двигательной подсистемы, электроника и батареи; и набор сотовых полок для хранения оборудования. Эта модульность позволяет инженерам собирать спутники не с нуля, а с заготовки.

Как спутники запускаются на орбиту?

Сегодня все спутники выводятся на орбиту на ракете. Многие перевозят их в грузовом отделе.

В большинстве запусков спутников запуск ракеты происходит прямо вверх, это позволяет быстрее провести ее через толстый слой атмосферы и минимизировать расход топлива. После того, как ракета взлетает, механизм управления ракеты использует инерциальную систему наведения для расчета необходимых корректировок сопла ракеты, чтобы обеспечить нужный наклон.

После того как ракета выходит в разреженный воздух, на высоту около 193 километров, система навигации выпускает небольшие ракетки, чего достаточно для переворота ракеты в горизонтальное положение. После этого выпускается спутник. Небольшие ракеты выпускаются снова и обеспечивают разницу в расстоянии между ракетой и спутником.

Орбитальная скорость и высота

Ракета должна набрать скорость в 40 320 километров в час, чтобы полностью сбежать от земной гравитации и улететь в космос. Космическая скорость куда больше, чем нужно спутнику на орбите. Они не избегают земной гравитации, а находятся в состоянии баланса. Орбитальная скорость - это скорость, необходимая для поддержания баланса между гравитационным притяжением и инерциальным движением спутника. Это примерно 27 359 километров в час на высоте 242 километра. Без гравитации инерция унесла бы спутник в космос. Даже с гравитацией, если спутник будет двигаться слишком быстро, его унесет в космос. Если спутник будет двигаться слишком медленно, гравитация притянет его обратно к Земле.

Орбитальная скорость спутника зависит от его высоты над Землей. Чем ближе к Земле, тем быстрее скорость. На высоте в 200 километров орбитальная скорость составляет 27 400 километров в час. Для поддержания орбиты на высоте 35 786 километров спутник должен обращаться со скорость 11 300 километров в час. Эта орбитальная скорость позволяет спутнику делать один облет в 24 часа. Поскольку Земля также вращается 24 часа, спутник на высоте в 35 786 километров находится в фиксированной позиции относительно поверхности Земли. Эта позиция называется геостационарной. Геостационарная орбита идеально подходит для метеорологических спутников и спутников связи.

В целом, чем выше орбита, тем дольше спутник может оставаться на ней. На низкой высоте спутник находится в земной атмосфере, которая создает сопротивление. На большой высоте нет практически никакого сопротивления, и спутник, как луна, может находиться на орбите веками.

Типы спутников

На земле все спутники выглядят похоже - блестящие коробки или цилиндры, украшенные крыльями из солнечных панелей. Но в космосе эти неуклюжие машины ведут себя совершенно по-разному в зависимости от траектории полета, высоты и ориентации. В результате, классификация спутников превращается в сложное дело. Один из подходов - определение орбиты аппарата относительно планеты (обычно Земли). Напомним, что существует две основных орбиты: круговая и эллиптическая. Некоторые спутники начинают по эллипсу, а потом выходят на круговую орбиту. Другие движутся по эллиптическому пути, известному как орбита «Молния». Эти объекты, как правило, кружат с севера на юг через полюсы Земли и завершают полный облет за 12 часов.

Полярно-орбитальные спутники также проходят через полюсы с каждым оборотом, хотя их орбиты менее эллиптические. Полярные орбиты остаются фиксированными в космосе, в то время как вращается Земля. В результате, большая часть Земли проходит под спутником на полярной орбите. Поскольку полярные орбиты дают прекрасный охват планеты, они используются для картографирования и фотографии. Синоптики также полагаются на глобальную сеть полярных спутников, которые облетают наш шар за 12 часов.

Можно также классифицировать спутники по их высоте над земной поверхностью. Исходя из этой схемы, есть три категории:

  • Низкая околоземная орбита (НОО) - НОО-спутники занимают область пространства от 180 до 2000 километров над Землей. Спутники, которые движутся близко к поверхности Земли, идеально подходят для проведения наблюдений, в военных целях и для сбора информации о погоде.
  • Средняя околоземная орбита (СОО) - эти спутники летают от 2000 до 36 000 км над Землей. На этой высоте хорошо работают навигационные спутники GPS. Примерная орбитальная скорость - 13 900 км/ч.
  • Геостационарная (геосинхронная) орбита - геостационарные спутники двигаются вокруг Земли на высоте, превышающей 36 000 км и на той же скорости вращения, что и планета. Поэтому спутники на этой орбите всегда позиционируются к одному и тому же месту на Земле. Многие геостационарные спутники летают по экватору, что породило множество «пробок» в этом регионе космоса. Несколько сотен телевизионных, коммуникационных и погодных спутников используют геостационарную орбиту.

И наконец, можно подумать о спутниках в том смысле, где они «ищут». Большинство объектов, отправленных в космос за последние несколько десятилетий, смотрят на Землю. У этих спутников есть камеры и оборудование, которое способно видеть наш мир в разных длинах волн света, что позволяет насладиться захватывающим зрелищем в ультрафиолетовых и инфракрасных тонах нашей планеты. Меньше спутников обращают свой взгляд к пространству, где наблюдают за звездами, планетами и галактиками, а также сканируют объекты вроде астероидов и комет, которые могут столкнуться с Землей.

Известные спутники

До недавнего времени спутники оставались экзотическими и сверхсекретными приборами, которые использовались в основном в военных целях для навигации и шпионажа. Теперь они стали неотъемлемой частью нашей повседневной жизни. Благодаря им, мы узнаем прогноз погоды (хотя синоптики ой как часто ошибаются). Мы смотрим телевизоры и работаем с Интернетом также благодаря спутникам. GPS в наших автомобилях и смартфонах позволяет добраться до нужного места. Стоит ли говорить о неоценимом вкладе телескопа «Хаббл» и работы космонавтов на МКС?

Однако есть настоящие герои орбиты. Давайте с ними познакомимся.

  1. Спутники Landsat фотографируют Землю с начала 1970-х годов, и по части наблюдений за поверхностью Земли они рекордсмены. Landsat-1, известный в свое время как ERTS (Earth Resources Technology Satellite) был запущен 23 июля 1972 года. Он нес два основных инструмента: камеру и многоспектральный сканер, созданный Hughes Aircraft Company и способный записывать данные в зеленом, красном и двух инфракрасных спектрах. Спутник делал настолько шикарные изображения и считался настолько успешным, что за ним последовала целая серия. NASA запустило последний Landsat-8 в феврале 2013 года. На этом аппарате полетели два наблюдающих за Землей датчика, Operational Land Imager и Thermal Infrared Sensor, собирающие многоспектральные изображения прибрежных регионов, полярных льдов, островов и континентов.
  2. Геостационарные эксплуатационные экологические спутники (GOES) кружат над Землей на геостационарной орбите, каждый отвечает за фиксированную часть земного шара. Это позволяет спутникам внимательно наблюдать за атмосферой и выявлять изменения погодных условий, которые могут привести к торнадо, ураганам, паводкам и грозовым штормам. Также спутники используются для оценки сумм осадков и накопления снегов, измерения степени снежного покрова и отслеживания передвижений морского и озерного льда. С 1974 года на орбиту было выведено 15 спутников GOES, но одновременно за погодой наблюдают только два спутника GOES «Запад» и GOES «Восток».
  3. Jason-1 и Jason-2 сыграли ключевую роль в долгосрочном анализе океанов Земли. NASA запустило Jason-1 в декабре 2001 года, чтобы заменить им спутник NASA/CNES Topex/Poseidon, который работал над Землей с 1992 года. На протяжении почти тринадцати лет Jason-1 измерял уровень моря, скорость ветра и высоту волн более 95 % свободных от льда земных океанов. NASA официально списало Jason-1 3 июля 2013 года. В 2008 году на орбиту вышел Jason-2. Он нес высокоточные инструменты, позволяющие измерять дистанцию от спутника до поверхности океана с точностью в несколько сантиметров. Эти данные, помимо ценности для океанологов, предоставляют обширный взгляд на поведение мировых климатических паттернов.

Сколько стоят спутники?

После «Спутника» и Explorer, спутники стали больше и сложнее. Возьмем, к примеру, TerreStar-1, коммерческий спутник, который должен был обеспечить передачу мобильных данных в Северной Америке для смартфонов и подобных устройств. Запущенный в 2009 году TerreStar-1 весил 6910 килограмм. И будучи полностью развернутым, он раскрывал 18-метровую антенну и массивные солнечные батареи с размахом крыльев в 32 метра.

Строительство такой сложной машины требует массы ресурсов, поэтому исторически только правительственные ведомства и корпорации с глубокими карманами могли войти в спутниковый бизнес. Большая часть стоимости спутника лежит в оборудовании - транспондерах, компьютерах и камерах. Обычный метеорологический спутник стоит около 290 миллионов долларов. Спутник-шпион обойдется на 100 миллионов долларов больше. Добавьте к этому стоимость содержания и ремонта спутников. Компании должны платить за пропускную полосу спутника так же, как владельцы телефонов платят за сотовую связь. Обходится иногда это более чем в 1,5 миллиона долларов в год.

Другим важным фактором является стоимость запуска. Запуск одного спутника в космос может обойтись от 10 до 400 миллионов долларов, в зависимости от аппарата. Ракета Pegasus XL может поднять 443 килограмма на низкую околоземную орбиту за 13,5 миллиона долларов. Запуск тяжелого спутника потребует большей подъемной силы. Ракета Ariane 5G может вывести на низкую орбиту 18 000-килограммовый спутник за 165 миллионов долларов.

Несмотря на затраты и риски, связанные с постройкой, запуском и эксплуатацией спутников, некоторые компании сумели построить целый бизнес на этом. К примеру, Boeing. В 2012 году компания доставила в космос около 10 спутников и получила заказы на более чем семь лет, что принесло ей почти 32 миллиарда долларов дохода.

Будущее спутников

Спустя почти пятьдесят лет после запуска «Спутника», спутники, как и бюджеты, растут и крепнут. США, к примеру, потратили почти 200 миллиардов долларов с начала военной спутниковой программы и теперь, несмотря на все это, обладает флотом стареющих аппаратов, ожидающих своей замены. Многие эксперты опасаются, что строительство и развертывание крупных спутников просто не может существовать на деньги налогоплательщиков. Решением, которое может перевернуть все с ног на голову, остаются частные компании, вроде SpaceX, и другие, которых явно не постигнет бюрократический застой, как NASA, NRO и NOAA.

Другое решение - сокращение размера и сложности спутников. Ученые Калтеха и Стэнфордского университета с 1999 года работают над новым типом спутника CubeSat, в основе которого лежат строительные блоки с гранью в 10 сантиметров. Каждый куб содержит готовые компоненты и может объединиться с другими кубиками, чтобы повысить эффективность и снизить нагрузку. Благодаря стандартизации дизайна и сокращению расходов на создание каждого спутника с нуля, один CubeSat может стоить всего 100 000 долларов.

В апреле 2013 года NASA решила проверить этот простой принцип и три CubeSat на базе коммерческих смартфонов. Цель состояла в том, чтобы вывести микроспутники на орбиту на короткое время и сделать несколько снимков на телефоны. Теперь агентство планирует развернуть обширную сеть таких спутников.

Будучи большими или маленькими, спутники будущего должны быть в состоянии эффективно сообщаться с наземными станциями. Исторически сложилось так, что NASA полагалось на радиочастотную связь, но РЧ достигла своего предела, поскольку возник спрос на большую мощность. Чтобы преодолеть это препятствие, ученые NASA разрабатывают систему двусторонней связи на основе лазеров вместо радиоволн. 18 октября 2013 года ученые впервые запустили лазерный луч для передачи данных с Луны на Землю (на расстоянии 384 633 километра) и получили рекордную скорость передачи в 622 мегабита в секунду.

Земля, как любое космическое тело, обладает собственным гравитационным полем и рядом расположенными орбитами, на которых могут находиться тела и объекты разной величины. Чаще всего под ними подразумеваются Луна и международная космическая станция. Первая ходит по своей собственной орбите, а МКС - по низкой околоземной. Существует несколько орбит, которые между собой отличаются удаленностью от Земли, относительным расположением относительно планеты и направлением вращения.

Орбиты искусственных спутников Земли

На сегодняшний день в ближайшем околоземном космическом пространстве находится множество объектов, которые являются результатами человеческой деятельности. В основном, это искусственные спутники, служащие для обеспечения связи, однако есть и немало космического мусора. Одним из самых известных искусственных спутников Земли является Международная космическая станция.

ИСЗ движутся по трем основным орбитам: экваториальной (геостационарной), полярной и наклонной. Первая полностью лежит в плоскости окружности экватора, вторая строго ей перпендикулярна, а третья располагается между ними.

Геосинхронная орбита

Название этой траектории связано с тем, что тело, движущееся по ней, имеет скорость, равную звездному периоду вращения Земли. Геостационарная орбита - это частный случай геосинхронной орбиты, которая лежит в той же плоскости, что и земной экватор.

При наклонении не равном нулю и нулевом эксцентриситете спутник, при наблюдении с Земли, описывает в течение суток в небе восьмерку.

Первый спутник на геосинхронной орбите - американский Syncom-2, выведенный на нее в 1963 году. Сегодня в некоторых случаях размещение спутников на геосинхронной орбите происходит по причине того, что ракета-носитель не может вывести их на геостационарную.

Геостационарная орбита

Данная траектория имеет такое название по той причине, что, несмотря на постоянное движение, объект, на ней находящийся, остается статичным относительно земной поверхности. Место, в котором находится объект, называется точкой стояния.

Спутники, выведенные на такую орбиту, часто используются для передачи спутникового телевидения, потому что статичность позволяет единожды направить на него антенну и долгое время оставаться на связи.

Высота расположения спутников на геостационарной орбите равна 35 786 километрам. Поскольку все они находятся прямо над экватором, для обозначения позиции называют только меридиан, например, 180.0˚E Интелсат 18 или 172.0˚E Eutelsat 172A.

Приблизительный радиус орбиты равен ~42 164 км, длина - около 265 000 км, а орбитальная скорость - примерно 3, 07 км/с.

Высокая эллиптическая орбита

Высокой эллиптической орбитой называют такую траекторию, высота которой в перигее в несколько раз меньше, чем в апогее. Выведение спутников на такие орбиты имеет ряд важных преимущества. Например, одной такой системы может быть достаточно для обслуживания всей России или, соответственно, группы государств с равной суммарной площадью. Кроме того, системы ВЭО на высоких широтах более функциональные, чем геостационарные спутники. А еще вывод спутника на высокую эллиптическую орбиту обходится приблизительно в 1,8 раза дешевле.

Крупные примеры систем, работающих на ВЭО:

  • Космические обсерватории, запущенные NASA и ESA.
  • Спутниковое радио Sirius XM Radio.
  • Спутниковая связь Меридиан, -З и -ЗК, Молния-1Т.
  • Спутниковая система коррекции GPS.

Низкая околоземная орбита

Это одна из самых низких орбит, которая в зависимости от разных обстоятельств может иметь высоту 160-2000 км и период обращения, соответственно, 88-127 минут. Единственным случаем, когда НОО была преодолена пилотируемыми космическими аппаратами - это программа Апполон с высадкой американских астронавтов на луну.

Большая часть используемых сейчас или использованных когда-либо ранее искусственных земных спутников работали на низкой околоземной орбите. По этой же причине в этой зоне сейчас расположена основная доля космического мусора. Оптимальная орбитальная скорость для спутников, находящихся на НОО, в среднем, равна 7,8 км/с.

Примеры искусственных спутников на НОО:

  • Международная Космическая станция (400 км).
  • Телекоммуникационные спутники самых разных систем и сетей.
  • Разведывательные аппараты и спутники-зонды.

Обилие космического мусора на орбите - главная современная проблема всей космической индустрии. Сегодня ситуация такова, что вероятность столкновения различных объектов на НОО растет. А это, в свою очередь, ведет к разрушению и образованию на орбите еще большего числа фрагментов и деталей. Пессимистичные прогнозы говорят о том, что запущенный Принцип домино может полностью лишить человечество возможности осваивать космос.

Низкая опорная орбита

Низкой опорной принято называть ту орбиту аппарата, которая предусматривает изменение наклона, высоты или другие существенные изменения. Если же у аппарата нет двигателя и он не совершает маневры, его орбиту называют низкой околоземной.

Интересно, что российские и американские баллистики рассчитывают её высоту по разному, потому что первые основываются на эллиптической модели Земли, а вторые - на сферической. Из-за этого есть разница не только в высоте, но и в положении перигея и апогея.

Сложно представить как изменится наш мир приди в него дешевые космические запуски. Базы на других планетах и спутниках, космический туризм, орбитальные заводы и многое другое станет не просто реальностью, а обыденностью. Удешевление вывода грузов за пределы нашей колыбели это сейчас первоочередная цель всей космонавтики. Предлагаю вашему вниманию обзор самых популярных проектов по запуску грузов неракетными способами.

Космический лифт

Должно быть самый популярный и тиражируемый в СМИ способ. Космический лифт - это натянутый от поверхности Земли трос и уходящий от нее на 144.000 км в космос.
Основание представляет собой место на поверхности планеты, где прикреплен трос и начинается подъем груза. Оно может быть как подвижным (например быть размещенным на океанском судне), так и не подвижным. Преимущество подвижного основания вполне очевидно - есть возможность уходить от ураганов и бурь, которые могут повредить трос.

Трос представляет собой очень тонкую нить (относительно своей длины конечно же) из сверхпрочного материала, проведенную за геостационарную орбиту и удерживаемый в таком положении за счет центробежной силы. В настоящее время не представляется возможным создание подобного материала, однако согласно теории, подобным материалом могут стать углеродные нанотрубки. Увы, до их производства в промышленных масштабах еще очень далеко. Прочность космического троса должна быть порядка 65-120 гигапаскалей, в зависимости от высоты (для сравнения, прочность стали не превышает 1 ГПа).

Противовес служит для того, чтобы трос всегда находился в состоянии натяжения. Им может служить любой массивный объект, будь то астероид или космическая база (что более привлекательно). Противовес находится значительно выше геостационарной орбиты, следовательно при разрыве троса он вполне может улететь на околосолнечную орбиту. Поэтому если им будет служить космическая станция, то ее необходимо снабжать собственной двигательной установкой.

Грузы на орбиту поднимаются специальным подъемником (а может быть даже не одним), и согласно расчетам ученых, путь из конца в конец должен занять около 7 суток. Не быстро конечно, но зато очень дешево. В конце концов это гораздо быстрее, чем запуск с помощью ракет, подготовка которых занимает долгие месяцы. Само собой проект такого масштаба должен быть международным, ведь ни одно государство не осилит его в одиночку. А это в свою очередь вызывает целый ряд проблем и вопросов. Во-первых, на какой территории размещать подобное сооружение? Ведь из-за его исполинских размеров, не избежать нарушения воздушного пространства нескольких государств. Во-вторых, космический лифт необходимо защитить от террористических актов и военных конфликтов.

Плюсы:
  • Относительная дешевизна доставки грузов на геостационарную орбиту
  • Значительная экономия средств при запуске межпланетных космических аппаратов
  • Возможность реализации недорогих космических экскурсий
  • В отличии от ракет, в атмосферу не выбрасывается никаких токсичных веществ
Минусы:
  • Сложность реализации
  • Высокие затраты на строительство
  • Необходимость решения многих юридических и правовых вопросов

Да и трос должен быть изготовлен из сверхпрочного материала, которого сейчас, увы, нет.

Самый подходящий и близкий к созданию материал - углеродные нанотрубки, но прогресс в их изготовлении оставляет желать лучшего. Кроме того это не самый быстрый способ попасть на орбиту.

Надувной лифт для отправки в космос

Канадская компания Thoth Technology решила пойти менее амбициозным путем. Высота башни, патент на которую был выдан в США 21 июля 2015 года, будет составлять 20 километров, а диаметр ― около 230 метров.

Башня будет оснащена одной или несколькими палубами, с которых можно будет запускать спутники с полезными нагрузками. Возможно, 20 километров звучит не так впечатляюще, как 36 тысяч километров , однако башня Thoth всё равно будет в 20 раз выше любой другой ныне стоящей на Земле рукотворной структуры. К тому же она будет достаточно высокой, чтобы сократить затраты на космические запуски примерно на треть.

Канадские инженеры предлагают изготовить башню из армированных надувных секций с внутренним лифтом.

Гигантская надувная башня не должна раскачиваться на ветру, но само строение будет слишком высоким для использования оттяжек. По этой причине специалисты предлагают использовать систему маховиков, которые обеспечат динамическую устойчивость и будут действовать в качестве компрессоров для конструкции. Маховики смогут регулировать давление и вращение, компенсировать любой изгиб башни и будут держать её в фиксированном состоянии всё время.

Патент также предполагает, что лифт будет двигаться не на тросах (двадцатикилометровый трос не смог бы выдержать свой собственный вес без деформации). Грузы будут доставлять наверх либо по пневмотрубе, благодаря нагнетаемому давлению, либо снаружи при помощи устройств, похожих на механических пауков.

Основным предназначением башни Thoth станет запуск космических аппаратов с верхней части башни. Она будет действовать как стартовая площадка и заменит первую ступень ракеты-носителя. Также её можно будет использовать для посадки и дозаправки.


Skyhook представляет собой вращающийся спутник, который находится на околоземной орбите, и двух достаточно длинных тросов, которые расходятся от него в противоположные стороны. Спутник должен вращаться в плоскости своей орбиты, таким образом чтобы тросы соприкасались с верхними границами атмосферы при каждом обороте.

Скорость вращения конструкции будет частично или полностью компенсировать орбитальную скорость. В целом Skyhook напоминает гигантское колесо обозрения с двумя спицами по бокам, которое катится вдоль поверхности земли с орбитальной скоростью. На трос Skyhook можно подвешивать грузы с гиперзвуковых самолётов или стратостатов. При этом вся конструкция Skyhook работает как гигантский маховик - накопитель вращательного момента и кинетический энергии.

Пусковая петля


Пусковая петля или петля Лофстрома - это проект системы кабельного транспорта, предназначенного для вывода грузов на околоземную орбиту. В основе проекта лежит кабель, который непрерывно движется с огромной скоростью (12-14 км/с) внутри вакуумной трубы. Для того чтобы шнур не соприкасался со стенками трубы, они разделены между собой магнитной подвеской.

Ускорительная секция космической петли (возвратный кабель не показан).

В целом это устройство является огромное сооружение длиной около 2000 км, а сама петля должна подниматься на высоту до 80 км и удерживаться на ней за счёт момента инерции вращающегося кабеля. Вращение кабеля по сути переносит вес всего сооружения на пару магнитных подшипников, которые его поддерживают, по одному на каждом конце. Плюс этой системы в том, что она может обеспечивать запуски космических туристов, обеспечивая относительно мягкий уровень перегрузки, равный 3g.

Преимущества

Ожидается, что пусковая петля обеспечит высокий темп запусков (несколько пусков за час, вне зависимости от погоды), и эта система практически не загрязняет окружающую среду. При ракетном запуске образуются загрязнения в виде нитратов из-за высокой температуры выхлопных газов, и в зависимости от вида топлива могут выделяться парниковые газы. Пусковая петля, как разновидность электрической силовой установки, является экологически чистой, она может работать от любого источника энергии: геотермального, ядерного, солнечного, ветрового или любого другого, даже непостоянного типа, так как система имеет огромный встроенный накопитель энергии.

В отличие от космического лифта, который должен проходить через радиационный пояс в течение нескольких дней, пассажиры пусковой петли могут быть запущены на низкую околоземную орбиту, которая ниже радиационного пояса, или же пройти через него за несколько часов. Эта ситуация аналогична той, с которой сталкиваются астронавты Аполлона, для которых дозы радиации в 200 раз ниже, чем может дать космический лифт.

В отличие от космического лифта, который подвержен риску столкновения с космическим мусором и метеоритами по всей его длине, пусковая петля располагается на высотах, где орбиты нестабильны из-за сопротивления воздуха. Космический мусор там долго не сохраняется, шанс столкновения его с установкой довольно мал. В то время как период существования космического лифта составляет порядка нескольких лет, повреждения или разрушения пусковой петли могут случиться сравнительно редко. Кроме того, пусковая петля сама по себе не является значительным источником космического мусора, даже в случае аварии. Все её возможные обломки будут иметь перигей, пересекающийся с атмосферой, либо их скорости будут ниже первой космической.

Пусковая петля ориентирована на перевозки людей, потому что в ней максимальное ускорение 3g является безопасным, подавляющее большинство людей способны его выдержать. Кроме того, она даёт гораздо более быстрый способ достижения космического пространства, чем космический лифт.

Пусковая петля будет работать тихо, в отличие от ракет она не будет оказывать никакого шумового воздействия.

Наконец, низкая стоимость вывода на орбиту полезной нагрузки делает её пригодной даже для колонизации космоса .

Трудности

Раскрученная петля будет запасать огромное количество энергии в виде импульса. Поскольку система магнитной подвески будет обладать большой избыточностью, сбой на небольшом участке не повлияет на работоспособность системы. Но если случится значительное разрушение конструкции, произойдёт выделение всей запасённой энергии (1.5 петаджоуля), которая эквивалентна взрыву атомной бомбы , мощностью 350 килотонн (правда, без излучения радиации). Хотя это огромное количество энергии, маловероятно, что произойдёт уничтожение всей конструкции из-за очень больших её размеров, а также потому что при обнаружении неисправности большая часть энергии будет направлена в специально предусмотренное место. Возможно, придётся принять меры для снижения кабеля с высоты 80 км с минимальным ущербом, например, предусмотреть парашюты. Поэтому для обеспечения безопасности и по астродинамическим причинам, пусковую петлю нужно будет устанавливать над океаном в районе экватора, вдали от населённых пунктов.

Опубликованный проект пусковой петли требует электронное управление магнитной левитацией для сведения к минимуму рассеиваемой мощности и стабилизации затуханий кабеля, вызванных другими причинами. Неустойчивость будет возникать в первую очередь в поворотных секциях, а также в кабеле.

Поворотные секции потенциально неустойчивы, поскольку движение ротора по направлению от магнитов приводит к уменьшению магнитного притяжения, тогда как движение в сторону магнитов создаёт повышение притяжения. В любом случае возникает неустойчивость. Эта проблема решается с помощью систем сервоуправления, которые управляют силой магнитов. Хотя надежность сервоприводов на высокой скорости вращения ротора является предметом исследования, для сдерживания ротора в случае сбоя системы будет потеряно очень много последовательных секций сервоприводов.

Секции кабеля также разделят эту потенциальную участь, хотя силы здесь намного меньше. Однако, существует ещё одна потенциальная нестабильность, заключающаяся в том, что кабель/оболочка/ротор может подвергнуться меандрированию (как цепь Лариата), причём, амплитуда колебаний этого процесса может нарастать без ограничений (резонанс). Лофстром считает, что этой неустойчивостью также можно управлять в режиме реального времени с помощью сервомеханизмов, хотя пока что никто этого не делал.

Для поддержания вакуума в системе на приемлемом уровне, понадобится множество равномерно распределённых по длине вакуумных насосов (т.е. и на высоте 80 километров тоже) постоянно работающих на откачку, для компенсации натекания.

Сложности представляет получение необходимой электрической мощности посреди океана.

Проблемы

  • Суборбитальные космические полёты начинаются с высоты примерно 100 км, при этом уже на высоте 30 км снижение плотности воздуха сводит на нет аэродинамические преимущества крыла и для дальнейшего увеличения высоты нужны ракетные технологии.
  • Затруднена масштабируемость - ракеты, которые выводят хотя бы 2 тонны на орбиту, весят 100-200 тонн, что близко к пределу грузоподъемности существующих самолётов: Ан-124 поднимает 120 тонн, Ан-225 - 247 тонн.
  • Проблемы структурной прочности полезной нагрузки и ракеты-носителя - спутники достаточно часто разрабатываются с требованием выдерживать только осевые перегрузки, и даже горизонтальная сборка (когда спутник лежит «на боку») для них недопустима.
  • Необходимость разработки мощных гиперзвуковых двигателей. Поскольку эффективный носитель - это быстрый носитель, обычные турбореактивные двигатели плохо подходят.

При существующем уровне развития технологий аэрокосмические системы могут стать эффективным средством доставки грузов на орбиту, но только если эти грузы будут небольшими (в районе пяти тонн), а носитель - гиперзвуковым.

StarTram, орбитальная пушка (пушка Гаусса), электромагнитная катапульта и ракетные салазки .

Все эти идеи схожи с идеей запуска объектов посредством выстрела из огромного орудия рассматривалась фантастами еще в XIX веке. Со временем концепция совершенствовалась, и сегодня до сих пор рассматривается теоретиками как возможный метод доставки на орбиту. Суть данного способа безракетного запуска заключается в том, чтобы посредством электромагнитного ускорения «выстрелить» аппарат, передав ему достаточную скорость, и при достижении орбиты он использовал минимум несомого топлива, получая возможность нести максимум груза.

StarTram предлагает ускорить беспилотный корабль с перегрузкой 30g через тоннель длиной 130км, на конце которого находится окно из плазмы, предотвращее попадание воздуха в тоннель. В идеале окно должно располагаться на горной вершине высотой 6000км, где запуск будет проводиться под углом 10 градусов со скорость 8,78 км/с. Так же можно получить бонус от вращения Земли в виде дополнительной скорости, если «стрелять» на восток, что компенсирует потери от прохождения атмосферы.

Сама конструкция будет походить на огромное артиллерийское оружие, длина ствола которого может достигать нескольких километров, либо располагаться вглубь поверхности по принципу ракетной шахты.

Теоретически, такая конструкция позволит разгонять снаряд до необходимой для вывода на стационарную орбиту первой космической скорости (около 8 км/с) однако достигаемые при таком ускорении перегрузки будут огромны, порядка 100g, а сопротивление воздуха в нижних слоях атмосферы потребует сверхпрочных жаростойких материалов для оболочки «снаряда», так что разумным будет использовать такой метод запуска исключительно для грузов.

Космическая пушка сама по себе не приспособлена к выводу грузов на стабильную орбиту вокруг Земли. Законы физики не дают достичь стабильной орбиты без коррекции полёта после запуска. Траектория запуска может быть параболической, гиперболической или эллиптической (при достижении первой космической скорости).

Последняя завершается на поверхности Земли в точке запуска (плюс-минус вращение планеты и сопротивление атмосферы). А это означает, что без корректировки баллистическая траектория будет всегда заканчиваться падением на планету в пределах первого витка, при условии, что запуск произведен с первой космической скоростью. При запуске со второй космической скоростью снаряд выходит на орбиту вокруг Солнца, которая пересекается с орбитой Земли, однако, эта орбита, из-за возмущений от других планет, может измениться и более не пересекаться с орбитой Земли. Поэтому запуск из космической пушки возможен только аппаратов оборудованных своими двигателями для корректировки, к тому же им необходима серьезная термозащита для прохождения атмосферы.

Но например на Луне, где нет атмосферы, пушечная схема может оказаться оптимальной.

Лазерные двигательные системы


Лазерные двигательные системы могут передавать импульс космического аппарата двумя различными способами. Первый способ заключается в использовании давления фотонов, передавая импульс по принципу солнечных и лазерных парусов. Второй способ использует лазер для нагревания рабочего вещества космического аппарата, как и в обычной ракеты.

Так, например, для выведения спутника весом 100 кг необходим лазер мощностью не менее 1 Мвт. В настоящее время установлено, что для вышеуказанных целей наиболее эффективно может быть использован газодинамический лазер. В этом случае лазерная технология значительным образом пересекается с технологией создания современных ракет, которая за 50 лет уже достаточно хорошо развита, что и позволяет ставить подобные задачи. Кроме того, лазер должен работать в импульсно-периодическом режиме с высокой частотой повторения коротких импульсов для исключения процесса экранирования поступающего лазерного излучения плазмой, возникающей при работе двигателя, а также в целях повышения эффективности его работы. По мнению отечественных и зарубежных специалистов, подобные лазерные реактивные двигатели смогут найти применение в составе дешевых одноступенчатых средств выведения нано- микро- и мини-спутников.

Космический фонтан

Эта концепция была впервые представлена совместными усилиями Роберта Л. Форварда, Марвина Мински, Джона Маккарти, Ханса Моравеца, Родерика Хайда, и Лоуэлла Вуда. Обширный объем информации о ней можно найти в книге Роберта Л. Форварда «Indistinguishable From Magic».

В отличие от оригинальной конструкции космического лифта, фонтан является чрезвычайно высокой башней, поскольку такая высокая башня не может поддержать свой вес с использованием традиционных материалов, планируется, что этот вес будет поддерживаться следующим образом: внутри башня будет полая, внутри этой полости находятся специальное гранулированное вещество. Это вещество, после передачи ему кинетической энергии, быстро движется вверх от нижней части башни и передает эту энергию в верхней её части, после чего под воздействием силы тяжести падает обратно, это будет удерживать башню от падения.

Космический фонтан использует непрерывный поток электромагнитно-ускоренных металлических гранул, чтобы доставить груз на запредельные высоты, используя те же основные физические принципы, которые обычный фонтан удерживает пластиковый мячик наверху вертикальной струи воды.

Небольшие металлические гранулы миллионами будут выпущены к станции «дефлектора» высоко над землей, которая будет использовать магнитное поле и ловить гранулы, пуская их по кривой электромагнитным ускорителем и возвращать их обратно на землю. Наземная станция, в свою очередь, будет использовать магнитный «совок», чтобы поймать шарики, пускать их по кривой обратно мощным электромагнитным ускорителем на станцию и все это ​​в одном непрерывном цикле. Давление, оказываемое на магнитные поля совка и изогнутого ускорителя непрерывным потоком гранул будет поддерживать в воздухе всю конструкцию.

Ключом к пониманию космического фонтана является то, что он использует непрерывный поток гранул постоянно оказывающий давление на станцию и поднимая ее. Вспомните аналогию с фонтаном, так оно и может держать мяч, подвешенный струей воды непрерывной рециркуляцией воды: вода, которая падает обратно в фонтан всасывается в водозаборах и подается обратно в водяную струю и так до бесконечности. То же самое с металлической «струей» космической фонтана.

Кроме того, важно понимать, что гранулы и станция никогда не будут иметь физический контакт. Магнитные поля совка и изогнутого ускорителя выступают в качестве своего рода буфера, предотвращая любые повреждения от гранул мчащихся к станции со скоростью 4 км/с. Тем не менее, гранулы оказывают давление на магнитные поля, проходя через них, и эта сила, в свою очередь передаются станции, держа ее в воздухе.

Используя эту технологию фонтан мог бы поднять полностью оборудованную космическую станцию весом ​​40 тонн или более на любую высоту, даже на высоту космического лифта (40000 км). Однако, чем больше высота, тем больше требуется энергии (об этом ниже). Для поддержания космического фонтана около 2000 км в высоту требуется постоянная энергия сравнимая с потреблением современного города.

Но одним из преимуществ фонтана заключается в том, что после того, как будет запущена система, энергия, необходимая для поддержания будет гораздо меньше, чем энергия для его запуска. Потеря импульса от силы тяжести, когда поток гранул взлетает будет точно уравновешивается усилением импульса силы тяжести, когда поток будет падать на наземную станцию и полный импульс системы никогда не изменяется. Энтропия же диктует, что некоторое количество энергии будет в конечном счете потеряна со временем, но это легко можно компенсировать вспомогательными электростанциями, вырабатывающими небольшую часть энергии, необходимой для первоначального запуска системы. Таким образом, даже если подача энергии прервется, то фонтан будет функционировать нормально еще некоторое время. Для подвесных станций высотой от 1000 км это может занять до нескольких часов.

Еще одно преимущество космического фонтана в том, что система может быть построены с нуля. Наземная станция и дефлектор станции с их ускорителями можно полностью построить на земле и станция будет находится на вершине наземной станции с выровненными ускорителями. Тогда сила потока гранул медленно, но в конечном итоге подняла бы станцию ​​сначала на несколько сантиметров, затем на несколько сотен метров и так километр за километром. Процесс может быть приостановлен ​​на любой высоте, от нескольких сантиметров до нескольких тысяч метров, на неопределенный срок, что позволяет выполнять калибровки, техническое обслуживание, новое строительство и т.д.

Источник энергии для поддержания фонтана также может быть использован для поддержки боковых структур, таких как лифты или стены вдоль его длины. Электромагнитные ускорители/замедлители могут быть построены по вертикали вдоль «ручья» гранул, так фонтан может медленно строится, опираясь на силу гранул. Поскольку секции стен (и любая внутренняя структура) сами могут поддерживать себя в воздухе внутренним потоком проходящим через них, они не будут испытывать перегрузки, как было бы у обычных зданий в сотни или тысячи километров в высоту.

Таким образом космические фонтаны могут быть использованы для создания по-настоящему гигантских зданий и башен. И, в отличие от космического лифта, космический фонтан не требует никаких чрезвычайно дорогих или несуществующих в настоящее время материалов для постройки. Современные сплавы и композиционные материалы вполне подойдут для его постройки.

Наиболее очевидное применение для такого супер-высокой структуры, конечно, будет в качестве безракетного космического запуска. На наружных стенах могут быть установлены электромагнитные ускорители «выстреливающие» грузы на орбиту. Фонтан около 40 км высотой будет достаточно для запуска пассажиров на орбиту с менее чем 3g ускорения, а высотой в 100 км или выше может просто бросить груз непосредственно на орбиту без превышения даже 1g.

Башня фонтана также может быть использована в качестве огромного размера аркологии, исследовательского учреждения, промышленного центра и т.п. Фонтан 100 километров высотой и 100 метров в ширину будет иметь около 7,85 кубических километров объема. Дизайнеры и архитекторы могут использовать это пространство для чего угодно. Но ведь возможны и более широкие и вместительные башни.

Преимущества по сравнению с космическим лифтом

  • Космический фонтан может быть построен с применением уже имеющихся на сегодняшний момент технологий. Он не требует экзотических материалов (таких как нанотрубки), в отличие от космического лифта.
  • Космический фонтан может быть построен от Земли, а не с ГСО как в случае с космическим лифтом.
  • Космический фонтан может быть построен в любой точке на земле, а не только на экваторе.
  • Космический фонтан может быть построен на небесных телах с очень маленькой скоростью вращения, например: Луна, Венера.
  • Космический фонтан не так сильно подвержен риску попадания в него космического мусора, из-за того, что его размер меньше, чем у космического лифта.

Недостатки по сравнению с космическим лифтом

Его основной недостаток это то, что он является активной структурой и поэтому требует постоянной энергии.

Таким образом, мы видим, что сегодня любой из представленных методов является недостижимым, что обусловлено экономической несостоятельностью, отсутствием необходимых технологий и материалов. Впрочем, необходимость добычи новых ресурсов, освоения планет и спутников рано или поздно заставит рассмотреть представленные выше методы не как измышления фантастов и теоретиков, а как реальную и необходимую альтернативу существующему сегодня ракетному запуску.

В космос отправятся два тестовых спутника для раздачи интернета Microsat 2a и 2b. SpaceX планирует вывести на орбиту сеть из тысяч таких спутников.

В субботу, 17 февраля, SpaceX проведет очередной запуск Falcon 9. Согласно плану, многоразовая ракета доставит на орбиту испанский спутник Paz для радиолокационного наблюдения. Также в космос отправятся два тестовых спутника для раздачи интернета Microsat 2a и 2b. SpaceX планирует вывести на орбиту сеть из тысяч таких спутников. К 2027 году они должны обеспечить полное покрытие интернетом всей поверхности Земли.

SpaceX совершит четвертый в этом году космический запуск 17 февраля. Многоразовая ракета Falcon 9 стартует с Военно-воздушной базы Ванденберг в Калифорнии. Компания уже провела прожиг двигателей ракеты и приступила к подготовке полезной нагрузки.

Как передает NASA Spaceflight.com, ракета доставит на солнечно-синхронную орбиту испанский спутник радиолокационного наблюдения Paz массой 1350 кг, а также два демо-спутника Microsat 2a и 2b массой 400 кг. Демо-спутники станут первым компонентом разветвленного «созвездия» спутников Starlink.

Согласно бизнес-плану, с 2019 по 2024 годы SpaceX выведет на орбиту 4425 спутников для раздачи интернета. Ранее представители компании рассказывали, что «созвездия» расположатся на низкой околоземной орбите на высоте 1110-1350 км - ниже, чем традиционные геостационарные спутники. Благодаря этому задержка при передаче сигнала составит всего 25-35 миллисекунд. При этом у большинства спутниковых провайдеров этот показатель составляет 600 миллисекунд.

Falcon 9 выведет испанский спутник Paz на высоту 514 км, а Microsat 2a и 2b расположатся еще выше. С их помощью компания протестирует систему радиосвязи в Ku-диапазоне в связке с наземными станциями. Точки связи SpaceX будут базироваться в Вашингтоне, Калифорнии и Техасе. Также компания оборудует приемными терминалами фургоны, которые установят в разных городах по всей Америке. О системе Starlink пока известно немногое. Представители SpaceX ранее сообщали, что спутники будут работать по принципу ячеистой сети и смогут перенаправлять сигнал в районы с максимальной загрузкой.

Всего SpaceX обещает обеспечить интернетом миллиарды людей, в том числе жителей удаленных и сельских регионов. Система Starlink будет передавать сигнал напрямую на станции и терминалы в домах пользователей, для их работы потребуется минимум инфраструктуры. Это позволит провести интернет в регионы, где раньше доступ к сети отсутствовал. При этом скорость соединения даже в самых удаленных точках будет доходить до 1 Гбит/с

Спутниковый бизнес должен стать главным источников прибыли для SpaceX. Согласно внутренним документам компании, к 2025 году это направление принесет SpaceX доход в размере $30 млрд и операционную прибыль $15-20 млрд. Для сравнения - крупнейшая телекоммуникационная компания Comcast, предоставляющая услуги высокоскоростного интернета, в 2015 году заработала только $12 млрд.

Часть прибыли SpaceX планирует потратить на космическую программуполетов на Марс. Еще в 2015 году, когда Илон Маск впервые представил проект Starlink, он отметил, что заработанные на спутниках средства пойдут на «строительство города на Марсе».

Тэги: космос, SpaceX




Top