Системная шина характеризуется. Системная шина - важнейший элемент компьютера. Доступ AGP к системной памяти

Основой системной платы являются различные шины, служащие для передачи сигналов компонентам системы. Шина (bus) представляет собой общий канал связи, используемый в компьютере и позволяющий соединить два и более системных компонента.

Существует определенная иерархия шин ПК, которая выражается в том, что каждая более медленная шина соединена с более быстрой. Современные компьютерные системы включают в себя три, четыре или более шин. Каждое системное устройство соединено с какой-либо шиной, причем определенные устройства (чаще всего это наборы микросхем) играют роль моста между шинами.

  • Шина процессора. Эта высокоскоростная шина является ядром набора микросхем и системной платы. Она используется в основном процессором для передачи данных между кэш-памятью или основной памятью и северным мостом набора микросхем. В системах на базе процессоров Pentium эта шина работает на частоте 66, 100, 133, 200, 266, 400, 533, 800 или 1066 МГц и имеет ширину 64 разряда (8 байт).
  • Шина AGP . Эта 32-разрядная шина работает на частоте 66 (AGP 1х), 133 (AGP 2х), 266 (AGP 4х) или 533 МГц (AGP 8x), обеспечивает пропускную способность до 2133 Мбайт/с и предназначается для подключения видеоадаптера. Она соединена с северным мостом или контроллером памяти (MCH) набора микросхем системной логики.
  • Шина PCI-Express. Третье поколение шины PCI . Шина PCI-Expres - это шина с дифференциальными сигналами, которые может передавать северный или южный мост. Быстродействие PCI-Express выражается в количестве линий. Каждая двунаправленная линия обеспечивает скорость передачи данных 2,5 или 5 Гбит/с в обоих направлениях (эффективное значение - 250 или 500 Мбайт/с). Разъем с поддержкой одной линии обозначается как PCI-Express x1. Видеоадаптеры PCI-Express обычно устанавливаются в разъем x16, который обеспечивает скорость передачи данных 4 или 8 Гбайт/с в каждом направлении.
  • Шина PCI-X. Это второе поколение шины PCI, которое обеспечивает более высокую скорость передачи данных, но при этом обратно совместимо с PCI. Данная шина преимущественно применяется в рабочих станциях и серверах. PCI-X поддерживает 64-разрядные разъемы, обратно совместимые с 64- и 32-разрядными адаптерами PCI. Шина PCI-X версии 1 работает с частотой 133 МГц, в то время как PCI-X 2.0 поддерживает частоту до 533 МГц. Обычно полоса пропускания PCI-X 2.0 разделяется между несколькими разъемами PCI-X и PCI. Хотя некоторые южные мосты поддерживают шину PCI-X, чаще всего для обеспечения ее поддержки требуется специальная микросхема.
  • Шина PCI. Эта 32-разрядная шина работает на частоте 33 МГц; она используется, начиная с систем на базе процессоров 486. В настоящее время существует реализация этой шины с частотой 66 МГц. Она находится под управлением контроллера PCI - компонента северного моста или контроллера MCH набора микросхем системной логики. На системной плате устанавливаются разъемы, обычно четыре или более, в которые можно подключать сетевые, SCSI- и видеоадаптеры, а также другое оборудование, поддерживающее этот интерфейс. Шины PCI-X и PCI-Express представляют собой более производительные реализации шины PCI; материнские платы и системы, поддерживающие эту шину, появились на рынке в середине 2004 года.
  • Шина ISA. Эта 16-разрядная шина, работающая на частоте 8 МГц, впервые стала использоваться в системах AT в 1984 году (в первоначальном варианте IBM PC она была 8-разрядной и работала на частоте 5 МГц). Эта шина имела широкое распространение, но из спецификации PC99 была исключена. Реализуется с помощью южного моста. Чаще всего к ней подключается микросхема Super I/O.

Некоторые современные системные платы содержат специальный разъем, получивший название Audio Modem Riser (AMR) или Communications and Networking Riser (CNR). Подобные специализированные разъемы предназначены для плат расширения, обеспечивающих выполнение сетевых и коммуникационных функций. Следует заметить, что эти разъемы не являются универсальным интерфейсом шины, поэтому лишь немногие из специализированных плат AMR или CNR присутствуют на открытом рынке. Как правило, такие платы прилагаются к какой-либо определенной системной плате. Их конструкция позволяет легко создавать как стандартные, так и расширенные системные платы, не резервируя на них место для установки дополнительных микросхем. Большинство системных плат, обеспечивающих стандартные сетевые функции и функции работы с модемом, созданы на основе шины PCI, так как разъемы AMR/CNR имеют узкоспециализированное назначение.

В современных системных платах существуют также скрытые шины, которые никак не проявляются в виде гнезд или разъемов. Имеются в виду шины, предназначенные для соединения компонентов наборов микросхем, например hub-интерфейса и шины LPC. Hub-интерфейс представляет собой четырехтактную (4x) 8-разрядную шину с рабочей частотой 66 МГц, которая используется для обмена данными между компонентами MCH и ICH набора микросхем (hub-архитектура). Пропускная способность hub-интерфейса достигает 266 Мбайт/с, что позволяет использовать его для соединения компонентов набора микросхем в недорогих конструкциях. Некоторые современные наборы микросхем для рабочих станций и серверов, а также последняя серия 9xx от Intel для настольных компьютеров используют более быстродействующие версии этого hub-интерфейса. Сторонние производители наборов микросхем системной логики также реализуют свои конструкции высокоскоростных шин, соединяющих отдельные компоненты набора между собой.

Для подобных целей предназначена и шина LPC, которая представляет собой 4-разрядную шину с максимальной пропускной способностью 16,67 Мбайт/с и применяется в качестве более экономичного по сравнению с шиной ISA варианта. Обычно шина LPC используется для соединения Super I/O или компонентов ROM BIOS системной платы с основным набором микросхем. Шина LPC имеет примерно равную рабочую частоту, но использует значительно меньше контактов. Она позволяет полностью отказаться от использования шины ISA в системных платах.

Набор микросхем системной логики можно сравнить с дирижером, который руководит оркестром системных компонентов системы, позволяя каждому из них подключиться к собственной шине.

  • Шины ISA, EISA, VL-Bus и MCA в современных конструкциях системных плат не используются. Мбайт/с. Мегабайт в секунду.
  • ISA. Industry Standard Architecture (архитектура промышленного стандарта), известная также как 8-разрядная PC/XT или 16разрядная AT-Bus.
  • LPC. Шина Low Pin Count (шина с малым количествомконтактов).
  • VL-Bus. VESA (Video Electronics Standards Association) Local Bus (расширение ISA).
  • MCA. MicroChannel Architecture (микроканальная архитектура) (системы IBM PS/2).
  • PC-Card. 16-разрядный интерфейс PCMCIA (Personal Computer Memory Card International Association). CardBus. 32-разрядная шина PC-Card.
  • Hub Interface. Шина набора микросхем Intel серии 8xx.
  • PCI. Peripheral Component Interconnect (шина взаимодействия периферийных компонентов).
  • AGP. Accelerated Graphics Port (ускоренный графический порт).
  • RS-232. Стандартный последовательный порт, 115,2 Кбайт/с.
  • RS-232 HS. Высокоскоростной последовательный порт, 230,4 Кбайт/с.
  • IEEE-1284 Parallel. Стандартный двунаправленный параллельный порт.
  • IEEE-1284 EPP/ECP. Enhanced Parallel Port/Extended Capabilities Port (параллельный порт с расширенными возможностями).
  • USB . Universal Serial Bus (универсальная последовательная шина).
  • IEEE-1394. Шина FireWire, называемая также i.Link.
  • ATA PIO. AT Attachment (известный также как IDE) Programmed I/O (шина ATA с программируемым вводом-выводом).
  • ATA-UDMA. AT Attachment Ultra DMA (режим Ultra-DMA шины ATA).
  • SCSI. Small Computer System Interface (интерфейс малых компьютерных систем).
  • FPM. Fast Page Mode (быстрый постраничный режим).
  • EDO. Extended Data Out (расширенный ввод-вывод).
  • SDRAM. Synchronous Dynamic RAM (синхнонное динамическое ОЗУ).
  • RDRAM. Rambus Dynamic RAM (динамическое ОЗУ технологии Rambus).
  • RDRAM Dual. Двухканальная RDRAM (одновременное функционирование).
  • DDR-SDRAM. Double-Data Rate SDRAM (SDRAM с удвоенной скоростью).
  • CPU FSB. Шина процессора (или Front-Side Bus).
  • Hub-интерфейс. Шина набора микросхем Intel 8xx.
  • HyperTransport. Шина набора микросхем AMD.
  • V-link. Шина набора микросхем VIA Technologies.
  • MuTIOL. Шина набора микросхем SiS.
  • DDR2. Новое поколение памяти стандарта DDR.

Для повышения эффективности во многих шинах в течение одного такта выполняется несколько циклов передачи данных. Это означает, что скорость передачи данных выше, чем это может показаться на первый взгляд. Существует достаточно простой способ повысить быстродействие шины с помощью обратно совместимых компонентов.

Здравствуйте, уважаемые читатели блога сайт. Очень часто на просторах интернета можно встретить много всякой компьютерной терминологии, в частности - такое понятие, как "Системная шина". Но мало кто знает, что именно означает этот компьютерный термин. Думаю, сегодняшняя статья поможет внести ясность.

Системная шина (магистраль) включает в себя шину данных, адреса и управления. По каждой их них передается своя информация: по шине данных - данные, адреса - соответственно, адрес (устройств и ячеек памяти), управления - управляющие сигналы для устройств. Но мы сейчас не будем углубляться в дебри теории организации архитектуры компьютера, оставим это студентам ВУЗов. Физически магистраль представлена в виде (контактов) на материнской плате.

Я не случайно на фотографии к этой статье указал на надпись "FSB". Дело в том, что за соединение процессора с чипсетом отвечает как раз шина FSB, которая расшифровывается как "Front-side bus" - то есть "передняя" или "системная". И, на который обычно ориентируются при разгоне процессора, например.

Существует несколько разновидностей шины FSB, например, на материнских платах с процессорами Intel шина FSB обычно имеет разновидность QPB, в которой данные передаются 4 раза за один такт. Если речь идет о процессорах AMD, то там данные передаются 2 раза за такт, а разновидность шины имеет название EV6. А в последних моделях CPU AMD, так и вовсе - нет FSB, ее роль выполняет новейшая HyperTransport.

Итак, между и центральным процессором данные передаются с частотой, превышающей частоту шины FSB в 4 раза. Почему только в 4 раза, см. абзац выше. Получается, если на коробке указано 1600 МГц (эффективная частота), в реальности частота будет составлять 400 МГц (фактическая). В дальнейшем, когда речь пойдет о разгоне процессора (в следующих статьях), вы узнаете, почему необходимо обращать внимание на этот параметр. А пока просто запомните, чем больше значение частоты, тем лучше.

Кстати, надпись "O.C." означает, буквально "разгон", это сокращение от англ. Overclock, то есть это предельно возможная частота системной шины, которую поддерживает материнская плата. Системная шина может спокойно функционировать и на частоте, существенно ниже той, что указана на упаковке, но никак не выше нее.

Вторым параметром, характеризующим системную шину, является. Это то количество информации (данных), которая она может пропустить через себя за одну секунду. Она измеряется в Бит/с. Пропускную способность можно самостоятельно рассчитать по очень простой формуле: частоту шины (FSB) * разрядность шины. Про первый множитель вы уже знаете, второй множитель соответствует разрядности процессора - помните, x64, x86(32)? Все современные процессоры уже имеют разрядность 64 бита.

Итак, подставляем наши данные в формулу, в итоге получается: 1600 * 64 = 102 400 МБит/с = 100 ГБит/с = 12,5 ГБайт/с. Такова пропускная способность магистрали между чипсетом и процессором, а точнее, между северным мостом и процессором. То есть системная, FSB, процессорная шины - все это синонимы . Все разъемы материнской платы - видеокарта, жесткий диск, оперативная память "общаются" между собой только через магистрали. Но FSB не единственная на материнской плате, хотя и самая главная, безусловно.

Как видно из рисунка, Front-side bus (самая жирная линия) по-сути соединяет только процессор и чипсет, а уже от чипсета идет несколько разных шин в других направлениях: PCI, видеоадаптера, ОЗУ, USB. И совсем не факт, что рабочие частоты этих подшин должны быть равны или кратны частоте FSB, нет, они могут быть абсолютно разные. Однако, в современных процессорах часто контроллер ОЗУ перемещается из северного моста в сам процессор, в таком случае получается, что отдельной магистрали ОЗУ как бы не существует, все данные между процессором и оперативной памятью передаются по FSB напрямую с частотой, равной частоте FSB.

Пока что это все, спасибо.

Шиной называют совокупность линий, сгруппированных по функциональному назначению - шина адреса (ША), шина данных (ШД), шина управления (ШУ), шина питания (ШИ).

Чтобы охарактеризовать конкретную шину, нужно описать:

  • - совокупность сигнальных линий;
  • - физические, механические и электрические характеристики шины;
  • - используемые сигналы арбитража, состояния, управления и синхронизации;
  • - правила взаимодействия подключенных к шине устройств (протокол шины).

Важным критерием, определяющим характеристики шины, может служить ее целевое назначение. По этому критерию можно выделить:

  • - шины «процессор-память»;
  • - шины ввода/вывода;
  • - системные шины.

Шипа «процессор-память»

Шина «процессор-память» обеспечивает непосредственную связь между центральным процессором (ЦП) вычислительной машины и основной памятью (ОП). В современных микропроцессорах такую шину часто называют шиной переднего тана и обозначают аббревиатурой FSB (Front-Side Bus). Интенсивный трафик между процессором и памятью требует, чтобы полоса пропускания шины, то есть количество информации, проходящей по шине в единицу времени, была наибольшей. Роль этой шины иногда выполняет системная шина (см. ниже), однако в плане эффективности значительно выгоднее, если обмен между ЦП и ОП ведется по отдельной шине. К рассматриваемому виду можно отнести также шину, связывающую процессор с кэш-памятью второго уровня, известную как шина заднего тана - BSB (Back-Side Bus). BSB позволяет вести обмен с большей скоростью, чем FSB, и полностью реализовать возможности более скоростной кэш-памяти.

Поскольку в фон-нсймановских машинах именно обмен между процессором и памятью во многом определяет быстродействие ВМ, разработчики уделяют связи ЦП с памятью особое внимание. Для обеспечения максимальной пропускной способности шины «процессор-память» всегда проектируются с учетом особенностей организации системы памяти, а длина шины делается по возможности минимальной.

Шина ввода/вывода

Шина ввода/вывода служит для соединения процессора (памяти) с устройствами ввода/вывода (УВВ). Учитывая разнообразие таких устройств, шины ввода/вывода унифицируются и стандартизируются. Связи с большинством УВВ (но не с видеосистемами) не требуют от шины высокой пропускной способности. При проектировании шин ввода/вывода в учет берутся стоимость конструктива и соединительных разъемов. Такие шины содержат меньше линий по сравнению с вариантом «процессор-память», но длина линий может быть весьма большой. Типичными примерами подобных шин могут служить шины PCI и SCSI.

С целью снижения стоимости некоторые ВМ имеют общую шину для памяти и устройств ввода/вывода. Такая шина часто называется системной. служит для физического и логического объединения всех устройств ВМ. Поскольку основные устройства машины, как правило, размещаются на общей монтажной плате, системную шину часто называют объединительной шиной (backplane bus), хотя эти термины нельзя считать строго эквивалентными.

Системная шина в состоянии содержать несколько сотен линий. Совокупность линий шины можно подразделить на три функциональные группы (рис. 7.1): шину данных, шину адреса и шину управления. К последней обычно относят также линии для подачи питающего напряжения на подключаемые к системной шине модули.

Рис 7.1

Особенности каждой из этих групп и распределение сигнальных линий подробно рассматриваются позже.

Функционирование системной шины можно описать следующим образом. Если один из модулей хочет передать данные в другой, он должен выполнить два действия: получить в свое распоряжение шину и передать по ней данные. Если какой-то модуль хочет получить данные от другого модуля, он должен получить доступ к шине и с помощью соответствующих линий управления и адреса передать в другой модуль запрос. Далее он должен ожидать, пока модуль, получивший запрос, пошлет данные.

Физически системная шина представляет собой совокупность параллельных электрических проводников. Этими проводниками служат металлические полоски на печатной плате. Шина подводится ко всем модулям, и каждый из них подсоединяется ко всем или некоторым ее линиям. Если ВМ конструктивно выполнена на нескольких платах, то все линии шины выводятся на разъемы, которые затем объединяются проводниками на общем шасси.

Среди стандартизированных системных шин универсальных ВМ наиболее известны шины Unibus, Fastbus, Futurebus, VME, NuBus, Multibus-II. Персональные компьютеры, как правило, строятся на основе системной шины в стандартах ISA, EISA или MCA.

Иерархия шин

Если к шине подключено большое число устройств, ее пропускная способность падает, поскольку слишком частая передача прав управления шиной от одного устройства к другому приводит к ощутимым задержкам. По этой причине во многих ВМ предпочтение отдается использованию нескольких шин, образующих определенную иерархию:

  • - вычислительная машина с одной шиной;
  • - вычислительная машина с двумя видами шин;
  • - вычислительная машина с тремя видами шин.

Вычислительная машина с одной шиной

В структурах взаимосвязей с одной шиной имеется одна системная шина, обеспечивающая обмен информацией между процессором и памятью, а также между УВВ, с одной стороны, и процессором либо памятью - с другой.

Для такого подхода характерны простота и низкая стоимость. Однако одношинная организация нс в состоянии обеспечить высокие интенсивность и скорость транзакций, причем «узким местом» становится именно шина.

Вычислительная машина с двумя видами шин

Хотя контроллеры устройств ввода/вывода (УВВ) могут быть подсоединены непосредственно к системной шине, больший эффект достигается применением одной или нескольких шин ввода/вывода. УВВ подключаются к шинам ввода/вывода, которые берут на себя основной трафик, не связанный с выходом на процессор или память. Адаптеры шин обеспечивают буферизацию данных при их пересылке между системной шиной и контроллерами УВВ. Это позволяет ВМ поддерживать работу множества устройств ввода/вывода и одновременно «развязать» обмен информацией по тракту процессор-память и обмен информацией с УВВ.

Подобная схема существенно снижает нагрузку на скоростную тину «процессор-память» и способствует повышению общей производительности ВМ. В качестве примера можно привести вычислительную машину Apple Macintosh II, где роль шины «процессор-память» играет шина NuBus. Кроме процессора и памяти к ней подключаются некоторые УВВ. Прочие устройства ввода/вывода подключаются к шине SCSI Bus.

Вычислительная машина с тремя видами шин

Для подключения быстродействующих периферийных устройств в систему шин может быть добавлена высокоскоростная шина расширения.

Шины ввода/вывода подключаются к шине расширения, а уже с нее через адаптер к шине «процессор-память». Схема еще более снижает нагрузку на шину «процессор-память». Такую организацию шин называют архитектурой с «пристройкой» (mezzanine architecture).

Ядро процессора определяется следующими характеристиками:

  • технологический процесс;
  • объем внутреннего кэша L1 и L2;
  • напряжение;
  • теплоотдача.

Перед покупкой центрального процессора, необходимо удостовериться, что выбранная вами материнская плата сможет с ним работать.

Примечательно, что одна линейка процессоров может содержать в себе ЦП, оснащенные разными ядрами. К примеру, в линейке Intel Core i5 имеются процессоры с ядрами Lynnfield, Clarkdale, Arrandale и Sandy Bridge.

Что такое частота шины данных?

Показатель частоты шины данных также обозначается как Front Side Bus (или сокращенно FSB ) .

Шина данных - это набор сигнальных линий, предназначенных для передачи данных в и из процессора.

Частота шины - это тактовая частота, с которой осуществляется обмен данными между процессором и системной шиной.

Следует отметить, что процессоры применяют технологию Quad Pumping. Она дает возможность осуществлять передачу 4 блоков данных за один такт. Эффективная частота шины, при этом, возрастает вчетверо. Следует помнить, что для выше-обозначенных процессоров, в графе "частота шины" указывается увеличенный в 4 раза показатель.

Процессоры компании AMD Athlon 64 и Opteron применяют технологию HyperTransport, которая дает возможность процессору и ОЗУ осуществлять эффективное взаимодействие. Данная система существенно повышает общую производительность.

Что такое тактовая частота процессора?

Тактовая частота процессора - это число операций процессора в секунду. Под операциями, в данном случае, подразумеваются такты. Показатель тактовой частоты пропорционален частоте шины (FSB).

Обычно, чем выше тактовая частота, тем выше производительность. Однако, это правило работает только для моделей процессоров, принадлежащих одной линейке. Почему? В них, на производительность процессора, помимо частоты, оказывают влияние также такие параметры, как:

  • размер кэша второго уровня (L2);
  • присутствие и частота кэша третьего уровня (L3);
  • присутствие специальных инструкций и прочее...

Диапазон тактовой частоты процессора: от 900 до 4200 МГц.

Что такое техпроцесс?

Техпроцесс - это масштаб технологии, определяющей габариты полупроводниковых элементов, составляющих базу внутренних цепей процессора. Цепи образуют соединенные между собой транзисторы.

Пропорциональное сокращение габаритов транзисторов, по мере развития современных технологий, приводит к улучшению характеристик процессоров. К примеру, ядро Willamette, выполненное согласно техпроцессу 0.18 мкм, обладает 42 млн. транзисторов; ядро Prescott с техпроцессом 0.09 мкм, имеет уже 125 млн. транзисторов.

Что такое величина тепловыделения процессора?

Тепловыделение - это показатель отведенной системой охлаждения мощности для обеспечения нормального функционирования процессора. Чем выше значение данного параметра, тем сильнее греется процессор в ходе своей работы.

Данный показатель крайне важно учитывать в случае завышения частоты центрального процессора. Процессор, обладающий низким тепловыделением, охлаждается быстрее, и, соответственно, разогнать его можно сильнее.

Следует также учитывать, что производители процессоров измеряют показатель тепловыделения по-разному. Поэтому сравнение по этой характеристике уместно только в рамках одной компании-производителя.

Диапазон тепловыделения процессора: от 10 до 165 Вт.

Поддержка технологии Virtualization Technology

Virtualization Technology - технология, позволяющая единовременную работу нескольких операционных систем на одном ПК.

Так, благодаря технологии виртуализации, одна компьютерная система может функционировать в виде нескольких виртуальных.

Поддержка технологии SSE4

SSE4 - технология, включающая в себя пакет, состоящий из 54 новых команд, направленных на улучшение показателей производительности процессора в ходе выполнения им различных ресурсоемких задач.

Поддержка технологии SSE3

SSE3 - технология, включающая в себя пакет, состоящий из 13 новых команд. Их введение в новую генерацию направлено на улучшение показателей производительности процессора в части операций потоковой обработки данных.

Поддержка технологии SSE2

SSE2 - технология, включающая в себя пакет команд, дополняющий технологии своих "предшественников": SSE и MMX . Является разработкой корпорации Intel. Включенные в набор команды позволяют добиться существенного прироста производительности в приложениях, оптимизированных под SSE2. Данную технологию поддерживают практически все современные модели процессоров.

Поддержка технологии NX Bit

NX Bit - технология, способная предотвращать внедрение и исполнение вредоносного кода некоторых вирусов.

Поддерживается операционной системой Windows XP SP2, а также всеми 64-битными ОС.

Поддержка технологии HT (Hyper-Threading)

Hyper-Threading - технология, дающая возможность процессору обрабатывать два потока команд параллельно, что существенно повышает эффективность выполнения определенных ресурсоемких приложений, связанных с многозадачностью (редактирование аудио и видео, 3D-моделирование и прочее). Впрочем, в некоторых приложениях применение данной технологии может произвести обратный эффект. Так, технология Hyper-Threading имеет опциональный характер, и в случае необходимости, пользователь может в любое время отключить ее. Автором разработки является компания Intel.

Поддержка технологии AMD64/EM64T

Процессоры, построенные на 64-битной архитектуре, могут работать как с 32-битными приложениями, так и с 64-битными, причем, с абсолютно одинаковой эффективностью.

Примеры линеек x-64 процессоров: AMD Athlon 64, AMD Opteron, Core 2 Duo, Intel Xeon 64 и другие.

Минимальный объем оперативной памяти для процессоров, поддерживающих 64-битную адресацию, составляет 4 Гб . Такие параметры недоступны для традиционных 32-битных процессоров. Чтобы активировать работу 64-битных процессоров, необходимо, чтобы операционная система была под них адаптирована, то есть, тоже имела x64-архитектуру.

Названия реализации 64-битных расширений в процессорах:

  • Intel - EM64T .
Поддержка технологии 3DNow!

3DNow! - технология, вмещающая в себя пакет, состоящий из 21 дополнительной команды для обработки мультимедиа. Главной целью данной технологии является улучшение процесса обработки мультимедийных приложений.

Технология 3DNow! реализована исключительно в процессорах компании AMD.

Что такое объем кэша L3?

Под объемом кэша L3 подразумевается кэш-память третьего уровня.

Оснащаясь быстродействующей системной шиной, кэш-память L3 образует высокоскоростной канал для обмена данными с системной памятью.

Обычно, кэш-памятью L3 комплектуются лишь топовые процессоры и серверные системы. К примеру, такие линейки процессоров, как AMD Opteron, AMD Phenom, AMD Phenom II, Intel Core i3, Intel Core i5, Intel Core i7, Intel Xeon.

Диапазон объема кэша L3: от 0 до 30720 Кб.

Что такое объем кэша L2?

Под объемом кэша L2 подразумевается кэш-память второго уровня.

Кэш-память второго уровня представляет собой блок высокоскоростной памяти, выполняющий аналогичные кэшу L1 функции. Данный блок обладает более низкой скоростью, а также отличается бóльшим объемом.

Если пользователю необходим процессор для выполнения ресурсоемких задач, то следует выбирать модель с большим объемом кэша L2.

В моделях процессоров, обладающих несколькими ядрами, указывается общий объем кэш-памяти второго уровня.

Диапазон объема кэша L2: от 128 до 16384 Кб.

Что такое объем кэша L1?

Под объемом кэша L1 подразумевается кэш-память первого уровня.

Кэш-память первого уровня представляет собой блок высокоскоростной памяти, находящийся непосредственно на ядре процессора. В этот блок производится копирование извлеченных из оперативной памяти данных. Обработка данных из кэша осуществляется в разы быстрее, чем обработка данных из оперативной памяти.

Кэш память дает возможность повысить производительность процессора за счет более высокой скорости обработки данных. Кэш-память первого уровня исчисляется килобайтами, она довольно небольшая. Как правило, "старшие" модели процессоров оснащены кэш-памятью L1 большего объема.

В моделях процессоров, обладающих несколькими ядрами, объем кэш-памяти первого уровня указывается всегда для одного ядра.

Диапазон объемов кэша L1: от 8 до 128 Кб.

Номинальное напряжение питания ядра процессора

Данный параметр обозначает напряжение, необходимое процессору для его работы. Им характеризуется энергопотребление процессора. Этот параметр особенно важно учитывать при выборе процессора для мобильной и нестационарной системы.

Единица измерения - Вольты.

Диапазон напряжения ядра: от 0.45 до 1.75 В.

Максимальная рабочая температура

Это показатель максимально допустимой температуры поверхности процессора, при которой возможна его работа. Температура поверхности зависит от загруженности процессора, а также от качества теплоотвода.

  • При нормальном охлаждении, температура процессора находится в диапазоне 25-40°C (холостой режим);
  • При большой загруженности температура может достигать 60-70 °C.

Процессоры с высокой рабочей температурой требуют установки мощных систем охлаждения.

Диапазон максимальной рабочей температуры процессора: от 54.8 до 105.0 °C.

Что такое линейка процессора?

Каждый процессор относится к определенному модельному ряду или линейке. В рамках одной линейки, процессоры могут серьезно отличаться друг от друга по целому ряду характеристик. Каждый производитель имеет линейку недорогих процессоров. Скажем, у Intel это Celeron и Core Solo; у AMD - Sempron .

Процессоры бюджетных линеек, в отличие от более дорогих "собратьев", не имеют некоторых функций, а их параметры - обладают меньшими значениями. Так, в недорогих процессорах может быть существенно уменьшенная кэш-память, более того, она может и вовсе отсутствовать.

Бюджетные линейки процессоров подходят для офисных компьютеров, не предполагающих работы с большими нагрузками и масштабными задачами. Более ресурсоемкие задачи (обработка видео /аудио) требуют установки "старших" линеек. К примеру, Core 2 Duo, Core 2 Quad, Core i3, Core i5, Core i7, Phenom X3, Phenom X4, Phenom II X4, Phenom II X6 и т.д.

Серверные материнские платы, обычно, используют специализированные линейки процессоров: Opteron , Xeon и им подобные.

Что такое коэффициент умножения процессора?

На основании коэффициента умножения процессора осуществляется подсчет итоговой тактовой частоты его работы.

Тактовая частота процессора = частота шины (FSB) * коэффициент умножения.

К примеру, частота шины (FSB) составляет 533 Mhz, а коэффициент умножения - 4.5. Так, 533*4.5= 2398,5 Mгц. Получаем тактовую частоту работы процессора.

В большинстве современных процессоров этот параметр заблокирован на уровне ядра, он не подлежит изменению.

Следует также отметить, что процессоры типа Intel Pentium 4, Pentium M, Pentium D, Pentium EE, Xeon, Core и Core 2 применяют технологию Quad Pumping (передача 4-х блоков данных за один такт). В данном случае, эффективная частота шины возрастает, соответственно, в 4 раза. В поле "Частота шины", в случае с выше-приведенными процессорами, указывается увеличенная в четыре раза частота шины. Чтобы получить показатель физической частоты шины, необходимо эффективную частоту разделить на 4.

Диапазон коэффициента умножения: от 6.0 до 37.0.

Число ядер в процессоре

Современные технологии производства процессоров позволяют размещать несколько ядер в одном корпусе. Чем больше ядер имеет процессор, тем выше его производительность. К примеру, в серии Core 2 Duo применяются 2-ядерные процессоры, а в линейке Core 2 Quad - 4-ядерные.

Диапазон количества ядер в процессоре: от 1 до 16.

Что такое Socket (сокет)?

Каждая материнская плата оснащена разъемом определенного типа, предназначенным для установки процессора. Этот разъем и называется сокетом. Обычно, тип сокета определяется числом ножек, а также компанией-производителем процессора. Различные сокеты соответствуют различным типам процессоров.

В настоящее время, производители процессоров применяют следующие типы сокетов:

Intel

  • LGA1155;
  • LGA2011.

AMD

  • AM3+;
  • FM1.
Температура процессора постепенно растет со временем.Какие меры наиболее эффективны для снижения температуры процессора?

В зависимости от условий эксплуатации техники, часто возникает ситуация что радиаторы и забиваются пылью, грязью, термоинтерфейс изменяет свои свойства теплопроводности, крепления радиатора слабеют, иногда не равномерно.

В этом случае, необходимо, при подозрении на перегрев, снять систему охлаждения, отчистить радиаторы, поправить крепления, заменить термопасту.Также снизить температуру в корпусе, сменить вентилятор процессорного кулера на более мощный или, если конструкция позволяет, сменить кулер, добавить корпусный кулер на вдув и\или на выдув.

Как определить, что термозащита в действии?

Существует два способа. Первый - программный. Запускаем TAT (Intel Thermal Analysis Tool) для процессоров семейства Core, RMClock для всех остальных и следите за сообщениями в TAT и за графиком во второй. Как только сработает термозащита, TAT выдаст предупреждение, а в мониторинге RMClock появится график CPU Throttle.

Второй способ - опосредованный. Основан на том, что включение термозащиты, особенно
троттлинга, обязательно сопровождается сильным падением производительности процессора.

Температура первого ядра в Х-ядерном процессоре выше на несколько °C, по сравнению со вторым. Чем это объяснить?

Это нормально. Ядро, использующееся в первую очередь, загружено типично больше, поэтому
и нагревается соответственно больше.

Служит для обмена командами и данными между компонентами ЭВМ, расположенными на мат. плате. ПУ подключается к шине через контроллеры (открытая архитектура). передача информации по сист. шине осущ-ся по тактам.

Сист. шина включает в себя:

Кодовую шину данных для //-ой передачи всех разрядов числового кода (машинного слова) операнда из ОЗУ в МПП и обратно (64 разряда)

Кодовую шину адреса ячейки ОЗУ (32 разряда)

Кодовую шину инструкций (команд и управляющих сигналов, импульсов) во все блоки ЭВМ (32 разряда)

Шину питания для подключения блоков ЭВМ к системе энергопитания

Сист. шина обеспечивает 3 направления передачи информации: -между МП и ОЗУ; -между МП и контроллером устройств; -между ОЗУ и Внеш Устр-вами (ВЗУ и ПУ, в режиме прямого доступа к памяти)

Все устройства подключаются к сист. шине через контроллеры -- устр-ва, обеспечивающие взаимодействие ВУ и сист. шины.

Для освобождения МП от управления обменом информацией между ОЗУ и ВУ предусмотрен режим Прямого доступа в память (DMA - direct memory access).

Характеристики сист. шины: кол-во обслуживаемых ею устройств и пропускная способность, т.е. макс. возможная скорость передачи информации.

Пропускная способность шины зависит от:

Разрядности шины (или ширины) - кол-во бит, кот. м.б. передано по шине одновременно (сущ-ют 8,16,32, и 64-рязрядные шины);

Тактовой частоты шины - частоты, с кот. передаются биты информации по шине.

Основные характеристики шин:

PCI (Peripheral Component Interconnect) – самая распространенная системная шина. Быстродействие шины не зависит от количества подсоединенных устройств. Поддерживает следующие режимы:

- Plug and Play (PnP ) – автоматическое определение и настройка подключенного к шине устройства;

- Bus Mastering – режим единоличного управления шиной любым устройством, подключенным к шине, что позволяет быстро передать данные по шине и освободить ее.

AGP (Accelerated Graphics Port) – магистраль между видеокартой и ОЗУ. Разработана, так как параметры шины PCI не отвечают требованиям видеоадаптеров по быстродействию. Шина работает на большей частоте, что позволяет ускорить работу графической подсистемы ЭВМ.

Основные характеристики шин

Лекция 5

18. Память эвм и ее характеристики и назначение. Пзу, озу, взу. Организация и физическое представление данных в эвм.

Постоянное и оперативное ЗУ.

ЗУ в ЭВМ состоят из последовательности ячеек, каждая из которых содержит значение 1-ого байта и имеет собственный номер (адрес), по которому происходит обращение к ее содержимому. Все данные в ЭВМ хранятся в двоичном виде (0,1).

ЗУ характеризуется 2-мя параметрами:

Объем памяти - размер в байтах, доступных для хранения информации

Время Доступа к ячейкам памяти - средний временной интервал в течении кот. находится требуемая ячейка памяти и из нее извлекаются данные.

Оперативное запоминающее устройство (ОЗУ; RAM – Random Access Memory) предназначено для оперативной записи, хранения и чтения информации (программ и данных), непосредственно участвующей в информационно-вычислительном процессе, выполняемом ЭВМ в текущий период времени. После выключения питания ЭВМ, информация в ОЗУ уничтожается. (В ЭВМ на базе процессоров Intel Pentium используется 32-разрядная адресация. Т.е число адресов 2 32 , то есть возможное адресное пространство составляет 4,3 Гбайт. время доступа 0,005-0,02 мкс. 1 с = 10 6 мкс.

Постоянное запоминающее устройство (ПЗУ; ROM – Read Only Memory) хранит неизменяемую (постоянную) информацию: программы, выполняемые во время загрузки системы, и постоянные параметры ЭВМ. В момент включения ЭВМ в его ОЗУ отсутствуют данные, так как ОЗУ не сохраняет данные после выключения ЭВМ. Но МП необходимы команды, в том числе и сразу после включения. Поэтому МП обращается по специальному стартовому адресу, который ему всегда известен, за своей первой командой. Этот адрес из ПЗУ. Основное назначение программ из ПЗУ состоит в том, чтобы проверить состав и работоспособность системы и обеспечить взаимодействие с клавиатурой, монитором, жесткими и гибкими дисками. Обычно изменить информацию ПЗУ нельзя. Объем ПЗУ 128-256 Кбайт, время доступа 0,035-0,1 мкс. Так как объем ПЗУ небольшой, но время доступа больше, чем у ОЗУ, при запуске все содержимое ПЗУ считывается в специально выделенную область ОЗУ.

Энергонезависимая память CMOS RAM (Complementary Metal-Oxide Semiconductor RAM), в которой хранятся данные об аппаратной конфигурации ЭВМ: о подключенных к ЭВМ устройствах и их параметры, параметры загрузки, пароль на вход в систему, текущее время и дата. Питание памяти CMOS RAM осуществляется от батарейки. Если заряд батарейки заканчивается, то настройки, хранящиеся в памяти CMOS RAM, сбрасываются, и ЭВМ использует настройки по умолчанию.

ПЗУ и память CMOS RAM составляют базовую систему ввода-вывода (BIOS – Basic Input-Output System).

Внешние ЗУ. ВЗУ для долговременного хранения и транспортировки информации. ВЗУ взаимодействуют с сист. шиной через контроллеры ВЗУ (КВЗУ). КВЗУ обеспечивают интерфейс ВЗУ и сист. шины в режиме прямого доступа к памяти, т.е. без участия МП. ИНТЕРФЕЙС -- это совокупность связей с унифицированными сигналами и аппаратуры, предназначенной для обмена данными между устройствами вычислительной системы.

ВЗУ можно разделить по критерию транспортировки на ПЕРЕНОСНЫЕ и СТАЦИОНАРНЫЕ. Переносные ВЗУ состоят из носителя, подключ-ого к порту вв/вывода (обычно ЮСБ), (флеш-память) или носителя и привода (накопители на ГМД, приводы СиДи и ДВД). В стационарных ВЗУ носитель и привод объединены в единое устройство (НЖМД). Стационарные ВЗУ предназначены для хранения информации внутри ЭВМ.

Перед первым использованием или в случае сбоев ВЗУ необходимо ОТФОРМАТИРОВАТь - записать на носитель служебную информацию.

Основные Технические Характеристики ВЗУ

Информационная емкость определяет наибольшее кол-во ед. данных, кот может одновременно хранить в ВЗУ (зависит от площади объема носителя и плотности записи.)

Плотность записи - число бит информации, записанных на единице поверхности носителя. Различают продольную плотность (бит/мм), и поперечную плотность.//

Время доступа - интервал времени от момента запроса (чтения или записи) до момента выдачи блока (включая время поиска инфции на носителе и время чтения или записи.)

Скорость передачи данных определяет кол-во данных, считываемых или записываемых в единицу времени и зависит от скорости движения носителя, плотности записи, числа каналов и тп.

"



Top