Протокол tcp. Структура пакета TCP (формат заголовка сегмента)

Linux-сервер своими руками Колисниченко Денис Николаевич

1.7.7. Структура пакетов IP и TCP

Вот теперь можно смело перейти к рассмотрению структуры пакетов IP и TCP. Протокол IP не ориентирован на соединение, поэтому не обеспечивает надежную доставку данных. Поля, описание которых приведено в табл. 1.6, представляют собой IP-заголовки и добавляются к пакету при его получении с транспортного уровня.

Структура заголовка IP-пакета Таблица 1.6

Поле Описание
Source IP-address (IP-адрес отправителя) Отправитель пакета
Destination IP-address (IP-адрес получателя) Получатель пакета
Protocol (Протокол) TCP или UDP
Checksum (Контрольная сумма)
TTL (Time to Live, время жизни пакета) Определяет, сколько секунд дейтаграмма может находиться в сети. Предотвращает бесконечное блуждание пакетов в сети. Значение TTL автоматически уменьшается на одну или более секунд при проходе через каждый маршрутизатор сети
Version Версия протокола IP - 4 или 6. Шестая версия протокола IP рассматривается в гл. 8 (4 бита)
Header Length (Длина заголовка) Минимальный размер заголовка - 20 байт (4 бита)
Type of Service (Тип обслуживания) Обозначение требуемого для этого пакета качества обслуживания при доставке через маршрутизаторы IP-сети. Здесь определяются приоритет, задержки, пропускная способность. (8 бит)
Total Length (Общая длина) Длина дейтаграммы IP-протокола (16 бит)
Identification (Идентификация) Идентификатор пакета. Если пакет фрагментирован (разбит на части), то все фрагменты имеют одинаковый идентификатор (16 бит)
Fragmentation Flags (Фрагментационные флаги) 3 бита для флагов фрагментации и 2 бита для текущего использования
Fragmentation Offset (Смещение фрагмента) Указывает на положение фрагментов относительно начала поля данных IP-пакета. Если фрагментации нет, смещение равно 0x0 (13 бит)
Options and Padding (Опции и заполнение) Опции

Протокол TCP, в отличие от протокола IP, ориентирован на установление соединения и обеспечивает надежную доставку данных. Структура TCP-пакета описана в табл. 1.7.

Структура TCP-пакета Таблица 1.7

Поле Описание
Source port (Порт отправителя) Порт TCP узла-отправителя
Destination Port (Порт получателя) Порт TCP узла-получателя
Sequence Number (Порядковый номер) Номер последовательности пакетов
Acknowledgement Number (Номер подтверждения) Порядковый номер байта, который локальный узел рассчитывает получить следующим
Data Length (Длина данных) Длина TCP– пакета
Reserved (Зарезервировано) Зарезервировано для будущего использования
Flags (Флаги) Описание содержимого сегмента
Window (Окно) Показывает доступное место в окне протокола TCP
Checksum (Контрольная сумма) Значение для проверки целостности пакета
Urgent Pointer (Указатель срочности) При отправке срочных данных (поле Flags) в этом поле задается граница области срочных данных
Из книги Fedora 8 Руководство пользователя автора

3.1. Менеджер пакетов yum 3.1.1. Основные понятие о пакетах Давайте сначала рассмотрим процесс установки программ в Windows. Как правило, дистрибутив Windows-программы состоит та установочного файла (обычно называется setup.exe или install.exe) и нескольких вспомогательных файлов (например,

Из книги 200 лучших программ для Linux автора Яремчук Сергей Акимович

3.3.3.1. Установка пакетов Для установки пакета (или пакетов - в командной строке можно указать несколько пакетов) используется опция -i:rpm - i пакетЕсли вы хотите наблюдать за процессом установки (это очень полезно, если устанавливается большой пакет или же производится

Из книги Skype: бесплатные звонки через Интернет. Начали! автора Гольцман Виктор Иосифович

3.3.3.2. Удаление пакетов Для удаления пакета используется опция -е. При удалении не нужно задавать полное имя файла пакета, достаточно названия самой программы. Например, если изначально пакет назывался program-base-0.94-2.i386.rpm, то для его удаления достаточно ввести команду: rpm -e

Из книги Linux-сервер своими руками автора Колисниченко Денис Николаевич

Конвертеры пакетов Отдельно хотелось бы отметить наличие утилит, позволяющих конвертировать пакеты из одного формата в другой. Их возможности применения ограничены, так как из пакета одного типа получить полноценный другой тип пакета невозможно. Кроме того, приложения,

Из книги UNIX: взаимодействие процессов автора Стивенс Уильям Ричард

Передача пакетов Следующий этап – это передача пакетов. Транспортировка цифрового трафика осуществляется через Интернет с помощью технологии TCP/IP. Термин TCP/IP обозначает целый набор технологий и прикладных программ, связанных с передачей данных через Интернет. Сюда

Из книги Ubuntu 10. Краткое руководство пользователя автора Колисниченко Д. Н.

1.7.7. Структура пакетов IP и TCP Вот теперь можно смело перейти к рассмотрению структуры пакетов IP и TCP. Протокол IP не ориентирован на соединение, поэтому не обеспечивает надежную доставку данных. Поля, описание которых приведено в табл. 1.6, представляют собой IP-заголовки и

Из книги Linux глазами хакера автора Флёнов Михаил Евгеньевич

14.3.2. Фрагментация пакетов Иногда передаваемый пакет слишком большой, чтобы его можно было бы передавать за один раз. Если такое происходит, то пакет делится на фрагменты, и эти фрагменты пересылаются. Компьютер, которому этот пакет предназначен, собирает эти фрагменты в

Из книги Linux Mint и его Cinnamon. Очерки применителя автора

19.5. Создание RPM-пакетов Программа RPM предназначена для произведения всех видов операций с программным обеспечением, в том числе и для создания пакетов для установки (RPM-пакетов).Прежде, чем описать много сухих фактов, взятых из документации, рассмотрим простой пример

Из книги Священные войны мира FOSS автора Федорчук Алексей Викторович

16.9. Форматы пакетов RPC На рис. 16.5 приведен формат запроса RPC в пакете TCP.Поскольку TCP передает поток байтов и не предусматривает границ сообщений, приложение должно предусматривать способ разграничения сообщений. Sun RPC определяет запись как запрос или ответ, и каждая запись

Из книги автора

9.6. Установка в Ubuntu RPM-пакетов В начале этой главы я обещал рассказать, как установить в Ubuntu программы из не предназначенных для этой системы RPM-пакетов. Для этого можно попробовать преобразовать RPM-файл в формат DEB с помощью команды alien, а потом установить обычным

Из книги автора

11.3. Установка необходимых пакетов Первым делом нужно установить основные мультимедиакодеки, поэтому введите одну из двух команд (в зависимости от архитектуры вашей системы):? sudo apt-get install w32codecs - если у вас 32-битная система;? sudo apt-get install w64codecs - для 64-битной

Из книги автора

4.10.1. Фильтрация пакетов Итак, основной, но не единственной задачей сетевого экрана является фильтрация пакетов. В Linux уже встроен Firewall, и вам его не надо устанавливать отдельно. Точнее сказать, их даже два: iptables и ipchains. Они позволяют контролировать трафик, который проходит

Из книги автора

14.12.1. Дефрагментация пакетов С помощью фрагментированных пакетов хакеры производят очень много атак на серверы. В Linux можно сделать так, чтобы ОС объединяла приходящие пакеты. Если у вас монолитное ядро (без поддержки модулей), то необходимо прописать 1 в файл

Из книги автора

Из книги автора

Формат пакетов Как уже было сказано, в дистрибутиве Mint принят deb-формат пакетов. Будучи разработан ещё в прошлом тысячелетии для дистрибутива Debian, формат этот был унаследован от него Ubuntu, во многом предопределив успех последней. А вслед за ней - и удачливость нашего

Когда мы рассматривали метод коммутации пакетов, мы узнали, что пакет состоит из заголовка и поля данных, содержащего передаваемые данные. Тогда мы были не готовы к подробному рассмотрению структуры заголовка пакета, но сейчас мы можем сделать это. Протокол IP не ориентирован на соединение, поэтому не обеспечивает надежную доставку данных. Поля, описание которых приведено в табл. 1.4, представляют собой IP-заголовок и добавляются к пакету при его получении с транспортного уровня. Протокол TCP, в отличие от протокола IP, ориентирован на установление соединения и обеспечивает надежную доставку данных. Структура TCP-пакета описана в табл. 1.5.

Таблица 1.4. Структура заголовка 1Р-пакета

Поле

Описание

Sours IP address(1Р-адрес отправителя) Отпправитель пакета
Destination IP address(1Р-адрес получателя) Получатель пакета
Protocol(Протокол) ТСР или UDР
Checksum(контрольная сумма)
ТТL(время жизни пакета) Определяет сколько секунд пакет может находится в сети. Предотвращает бесконечное блуждание пакетов в сети. Значение ТТL автоматически уменьшается на несколько секунд при переходе через каждый маршрутиризатор сети
Version Версия протокола 1Р- 4 или 6
Header Length(длинна заголовка) Минемальный размер заголовка - 20 байт
Type of Service(тип обслуживания) Обозначение требуемогодля этого пакета качества обслуживания при доставке через маршрутиризаторы сети
Total Length(0бщая длинна) Длинна дейтаграммы 1Р-протокола
Idetification Flags(индефикация) Индефикатор пакета
Fragmentstion Flag(Фрагментационные флаги) 3 бита для флагоф фрагментации и 2 бита для текущего использования
Fragmentstion Offset(Смешание фрагмента) Указывает на положение Фрагментов относительно начала поля данных 1Р пакета. Если Фрагментации нет, смешение равно 0х0
Option and Padding(опции и заполнение) Опции

Таблица 1.5. Структура ТСР-пакета

Поле

Описание

Source port(порт отправителя) Порт ТСР узла отправителя
Destination port(порт получателя) Порт ТСР узла получателя
Sequence Number(порядковый номер) Номер последовательности пакетов
Acknowledgement Number(Номер потверждения) Порядковый номер байта, который локальный узел расчитывает получить следующим
Data Length(длинна данных) Длинна ТСР-пакета
Reserved(зарезервированно) Зарезервированно для будущего использования
Flags(Флаги) Описание содержимого сегмента
Window(окно) Показывает доступное место в окне протокола ТСР
Checksum(контрольная сумма) Значение для проверки целостности пакета
Urgent Point(Указатель срочности) При отправке срочных данных в этом поле задается гранича области срочных данных

0 - 3

4 - 9

10 - 15

16 - 31

Порт источника, Source Port

Порт назначения, Destination Port

Порядковый номер, Sequence Number (SN)

Номер подтверждения,

Длина заголовка

Зарезервировано

Флаги

Размер Окна

Контрольная сумма

Указатель важности

Опции (необязательное, но используется практически всегда)

160/192+

Данные

П орт источника, Порт назначения

Эти 16-битные поля содержат номера портов - числа, которые определяются по специальному списку .

Порт источника идентифицирует приложение клиента, с которого отправлены пакеты. Ответные данные передаются клиенту на основании этого номера.

Порт назначения идентифицирует порт, на который отправлен пакет.

П орядковый номер

Порядковый номер выполняет две задачи:

  1. Если установлен флаг SYN, то это изначальный порядковый номер - ISN (Initial Sequence Number), и первый байт данных, которые будут переданы в следующем пакете, будет иметь номер, равный ISN + 1.
  2. В противном случае, если SYN не установлен, первый байт данных, передаваемый в данном пакете, имеет этот порядковый номер

Поскольку поток TCP в общем случае может быть длиннее, чем число различных состояний этого поля, то все операции с порядковым номером должны выполняться по модулю 2 32 . Это накладывает практическое ограничение на использование TCP. Если скорость передачи коммуникационной системы такова, чтобы в течение MSL (максимального времени жизни сегмента) произошло переполнение порядкового номера, то в сети может появиться два сегмента с одинаковым номером, относящихся к разным частям потока, и приёмник получит некорректные данные.

Н омер подтверждения

Acknowledgment Number (ACK SN) (32 бита) - если установлен бит ACK, то это поле содержит порядковый номер октета, который отправитель данного сегмента желает получить. Это означает, что все предыдущие октеты (с номерами от ISN+1 до ACK-1 включительно) были успешно получены.

Д лина заголовка (смещение данных)

Это поле определяет размер заголовка пакета TCP в 4-байтных (4-октетных) словах. Минимальный размер составляет 5 слов, а максимальный - 15, что составляет 20 и 60 байт соответственно. Смещение считается от начала заголовка TCP.

З арезервировано

Зарезервировано (6 бит) для будущего использования и должно устанавливаться в ноль. Из них два (5-й и 6-й) уже определены:

  • CWR (Congestion Window Reduced) - Поле «Окно перегрузки уменьшено» - флаг установлен отправителем, чтобы указать, что получен пакет с установленным флагом ECE (RFC 3168 )
  • ECE (ECN-Echo) - Поле «Эхо ECN» - указывает, что данный узел способен на ECN (явное уведомление перегрузки) и для указания отправителю о перегрузках в сети (RFC 3168 )

Ф лаги (управляющие биты)

Это поле содержит 6 битовых флагов:

  • URG - поле «Указатель важности» задействовано (англ. Urgent pointer field is significant )
  • ACK - поле «Номер подтверждения» задействовано (англ. Acknowledgement field is significant )
  • PSH - (англ. Push function ) инструктирует получателя протолкнуть данные, накопившиеся в приёмном буфере, в приложение пользователя
  • RST - оборвать соединения, сбросить буфер (очистка буфера) (англ. Reset the connection )
  • SYN - синхронизация номеров последовательности (англ. Synchronize sequence numbers )
  • FIN (англ. final , бит) - флаг, будучи установлен, указывает на завершение соединения (англ. FIN bit used for connection termination ).

Р азмер окна

Количество байт данных начиная с последнего номера подтверждения, которые может принять отправитель данного пакета. Иначе говоря, отправитель пакета располагает для приема данных буфером длинной "размер окна" байт.

К онтрольная сумма

Поле контрольной суммы - это 16-битное дополнение к сумме всех 16-битных слов заголовка (включая псевдозаголовок) и данных. Если сегмент, по которому вычисляется контрольная сумма, имеет длину не кратную 16-ти битам, то длина сегмента увеличивается до кратной 16-ти, за счет дополнения к нему справа нулевых битов заполнения. Биты заполнения (0) не передаются в сообщении и служат только для расчёта контрольной суммы. При расчёте контрольной суммы значение самого поля контрольной суммы принимается равным 0.

У казатель важности

16-битовое значение положительного смещения от порядкового номера в данном сегменте. Это поле указывает порядковый номер октета, которым заканчиваются важные (urgent) данные. Поле принимается во внимание только для пакетов с установленным флагом URG. Используется для внеполосных данных .

О пции

Могут применяться в некоторых случаях для расширения протокола. Иногда используются для тестирования. На данный момент в опции практически всегда включают 2 байта NOP (в данном случае 0x01) и 10 байт, задающих timestamps . Вычислить длину поля опции можно через значение поля смещения.

М еханизм действия протокола

В отличие от традиционной альтернативы - UDP, который может сразу же начать передачу пакетов, TCP устанавливает соединения, которые должны быть созданы перед передачей данных. TCP соединение можно разделить на 3 стадии:

  • Установка соединения
  • Передача данных
  • Завершение соединения

С остояния сеанса TCP

Упрощённая диаграмма состояний TCP. Более подробно в TCP EFSM diagram (на английском языке)

Состояния сеанса TCP

CLOSED

Начальное состояние узла. Фактически фиктивное

LISTEN

Сервер ожидает запросов установления соединения от клиента

SYN-SENT

Клиент отправил запрос серверу на установление соединения и ожидает ответа

SYN-RECEIVED

Сервер получил запрос на соединение, отправил ответный запрос и ожидает подтверждения

ESTABLISHED

Соединение установлено, идёт передача данных

FIN-WAIT-1

Одна из сторон (назовём её узел-1) завершает соединение, отправив сегмент с флагом FIN

CLOSE-WAIT

Другая сторона (узел-2) переходит в это состояние, отправив, в свою очередь сегмент ACK и продолжает одностороннюю передачу

FIN-WAIT-2

Узел-1 получает ACK, продолжает чтение и ждёт получения сегмента с флагом FIN

LAST-ACK

Узел-2 заканчивает передачу и отправляет сегмент с флагом FIN

TIME-WAIT

Узел-1 получил сегмент с флагом FIN, отправил сегмент с флагом ACK и ждёт 2*MSL секунд, перед окончательным закрытием соединения

CLOSING

Обе стороны инициировали закрытие соединения одновременно: после отправки сегмента с флагом FIN узел-1 также получает сегмент FIN, отправляет ACK и находится в ожидании сегмента ACK (подтверждения на свой запрос о разъединении)

У становка соединения

Процесс начала сеанса TCP (также называемый «рукопожатие» (англ. handshake )), состоит из трёх шагов.

1. Клиент, который намеревается установить соединение, посылает серверу сегмент с номером последовательности и флагом SYN.

  • Сервер получает сегмент, запоминает номер последовательности и пытается создать сокет (буферы и управляющие структуры памяти) для обслуживания нового клиента.
  • В случае успеха сервер посылает клиенту сегмент с номером последовательности и флагами SYN и ACK, и переходит в состояние SYN-RECEIVED.
  • В случае неудачи сервер посылает клиенту сегмент с флагом RST.

2. Если клиент получает сегмент с флагом SYN, то он запоминает номер последовательности и посылает сегмент с флагом ACK.

  • Если он одновременно получает и флаг ACK (что обычно и происходит), то он переходит в состояние ESTABLISHED.
  • Если клиент получает сегмент с флагом RST, то он прекращает попытки соединиться.
  • Если клиент не получает ответа в течение 10 секунд, то он повторяет процесс соединения заново.

3. Если сервер в состоянии SYN-RECEIVED получает сегмент с флагом ACK, то он переходит в состояние ESTABLISHED.

  • В противном случае после тайм-аута он закрывает сокет и переходит в состояние CLOSED.

Процесс называется «трёхэтапным согласованием» (англ. three way handshake ), так как несмотря на то что возможен процесс установления соединения с использованием четырёх сегментов (SYN в сторону сервера, ACK в сторону клиента, SYN в сторону клиента, ACK в сторону сервера), на практике для экономии времени используется три сегмента.

Пример базового 3-этапного согласования:

TCP A TCP B

1. CLOSED LISTEN

2. SYN-SENT --> --> SYN-RECEIVED

3. ESTABLISHED <-- <-- SYN-RECEIVED

4. ESTABLISHED --> --> ESTABLISHED

5. ESTABLISHED <-- <-- ESTABLISHED

В строке 2 TCP A начинает передачу сегмента SYN, говорящего об использовании номеров последовательности, начиная со 100. В строке 3 TCP B передает SYN и подтверждение для принятого SYN в адрес TCP A. Надо отметить, что поле подтверждения показывает ожидание TCP B приёма номера последовательности 101, подтверждающего SYN с номером 100.

В строке 4 TCP A отвечает пустым сегментом с подтверждением ACK для сегмента SYN от TCP B; в строке 5 TCP B передает некоторые данные. Отметим, что номер подтверждения сегмента в строке 5 (ACK=101) совпадает с номером последовательности в строке 4 (SEQ=101), поскольку ACK не занимает пространства номеров последовательности (если это сделать, придется подтверждать подтверждения - ACK для ACK). Алгоритм Нейгла и Медленный старт

При обмене данными приёмник использует номер последовательности, содержащийся в получаемых сегментах, для восстановления их исходного порядка. Приёмник уведомляет передающую сторону о номере последовательности, до которой он успешно получил данные, включая его в поле «номер подтверждения». Все получаемые данные, относящиеся к промежутку подтвержденных последовательностей, игнорируются. Если полученный сегмент содержит номер последовательности больший, чем ожидаемый, то данные из сегмента буферизируются, но номер подтвержденной последовательности не изменяется. Если впоследствии будет принят сегмент, относящийся к ожидаемому номеру последовательности, то порядок данных будет автоматически восстановлен исходя из номеров последовательностей в сегментах.

Для того, чтобы передающая сторона не отправляла данные интенсивнее, чем их может обработать приёмник, TCP содержит средства управления потоком. Для этого используется поле «окно». В сегментах, направляемых от приёмника передающей стороне, в поле «окно» указывается текущий размер приёмного буфера. Передающая сторона сохраняет размер окна и отправляет данных не более, чем указал приёмник. Если приёмник указал нулевой размер окна, то передача данных в направлении этого узла не происходит, пока приёмник не сообщит о большем размере окна.

В некоторых случаях передающее приложение может явно затребовать протолкнуть данные до некоторой последовательности принимающему приложению, не буферизируя их. Для этого используется флаг PSH. Если в полученном сегменте обнаруживается флаг PSH, то реализация TCP отдает все буферизированные на текущий момент данные принимающему приложению. «Проталкивание» используется, например, в интерактивных приложениях. В сетевых терминалах нет смысла ожидать ввода пользователя после того, как он закончил набирать команду. Поэтому последний сегмент, содержащий команду, обязан содержать флаг PSH, чтобы приложение на принимающей стороне смогло начать её выполнение.

З авершение соединения

Завершение соединения можно рассмотреть в три этапа:

  1. Посылка серверу от клиента флага FIN на завершение соединения.
  2. Сервер посылает клиенту флаги ответа ACK , FIN, что соединение закрыто.
  3. После получения этих флагов клиент закрывает соединение и в подтверждение отправляет серверу ACK , что соединение закрыто.

TCP - это транспортный механизм, предоставляющий поток данных, с предварительной установкой соединения, за счёт этого дающий уверенность в достоверности получаемых данных, осуществляет повторный запрос данных в случае потери данных и устраняет дублирование при получении двух копий одного пакета. В отличие от UDP , гарантирует, что приложение получит данные точно в такой же последовательности, в какой они были отправлены, и без потерь.

Протокол TCP используется в тех случаях, когда требуется надежная доставка сообщений. Он освобождает прикладные процессы от необходимости использовать таймауты и повторные передачи для обеспечения надежности. Наиболее типичными прикладными процессами, использующими TCP, являются FTP (File Transfer Protocol - протокол передачи файлов) и TELNET. Кроме того, TCP используют система X-Window, rcp (remote copy - удаленное копирование) и другие "r-команды". Большие возможности TCP даются не бесплатно. Реализация TCP требует большой производительности процессора и большой пропускной способности сети. Внутренняя структура модуля TCP гораздо сложнее структуры модуля UDP.

Реализация TCP, как правило, встроена в ядро системы, хотя есть и реализации TCP в контексте приложения.

Когда осуществляется передача от компьютера к компьютеру через Internet, TCP работает на верхнем уровне между двумя конечными системами, например, интернет-браузер и интернет-сервер. Также TCP осуществляет надежную передачу потока байт от одной программы на некотором компьютере в другую программу на другом компьютере. Программы для электронной почты и обмена файлами используют TCP. TCP контролирует длину сообщения, скорость обмена сообщениями, сетевой трафик.

Когда прикладной процесс начинает использовать TCP, то модуль TCP на машине клиента и модуль TCP на машине сервера начинают общаться. Эти два оконечных модуля TCP поддерживают информацию о состоянии соединения, называемого виртуальным каналом. Этот виртуальный канал потребляет ресурсы обоих оконечных модулей TCP. Канал является дуплексным; данные могут одновременно передаваться в обоих направлениях. Один прикладной процесс пишет данные в TCP-порт, они проходят по сети, и другой прикладной процесс читает их из своего TCP-порта.

Протокол TCP разбивает поток байт на пакеты; он не сохраняет границ между записями. Например, если один прикладной процесс делает 5 записей в TCP-порт, то прикладной процесс на другом конце виртуального канала может выполнить 10 чтений для того, чтобы получить все данные. Но этот же процесс может получить все данные сразу, сделав только одну операцию чтения. Не существует зависимости между числом и размером записываемых сообщений с одной стороны и числом и размером считываемых сообщений с другой стороны.

Протокол TCP требует, чтобы все отправленные данные были подтверждены принявшей их стороной. Он использует таймауты и повторные передачи для обеспечения надежной доставки. Отправителю разрешается передавать некоторое количество данных, не дожидаясь подтверждения приема ранее отправленных данных. Таким образом, между отправленными и подтвержденными данными существует окно уже отправленных, но еще неподтвержденных данных. Количество байт, которые можно передавать без подтверждения, называется размером окна. Как правило, размер окна устанавливается в стартовых файлах сетевого программного обеспечения. Так как TCP-канал является дуплексным, то подтверждения для данных, идущих в одном направлении, могут передаваться вместе с данными, идущими в противоположном направлении. Приемники на обеих сторонах виртуального канала выполняют управление потоком передаваемых данных для того, чтобы не допускать переполнения буферов.

Схема работы пользовательского приложения с TCP в общих чертах состоит в следующем. Для передачи данных пользовательскому процессу надо вызвать соответствующую функцию TCP, с указанием на буфер передаваемых данных. TCP упаковывает эти данные в сегменты своего стека и вызывает функцию передачи протокола нижнего уровня, например IP.

На другом конце, получатель TCP группирует поступившие от протокола нижнего уровня данные в принимающие сегменты своего буфера, проверяет целостность данных, передает данные пользовательскому процессу и уведомляет отправителя об их получении.

Пользовательский интерфейс с TCP может выполнять такие команды как открыть (OPEN) или закрыть соединение (CLOSE), отправить (SEND) или принять (RECEIVE) данные, а также получить состояние соединения (STATUS).

В модели межсетевого соединения взаимодействие TCP и протоколов нижнего уровня, как правило, не специфицировано, за исключением того, что должен существовать механизм, который обеспечивал бы асинхронную передачу информации от одного уровня к другому. Результатом работы этого механизма является инкапсуляция протокола более высокого уровня в тело протокола более низкого уровня. Реализуется этот механизм через интерфейс вызовов между TCP и IP.

В результате работы этого механизма каждый TCP пакет вкладывается в «конверт» протокола нижнего уровня, например, IP. Получившаяся таким образом дейтаграмма содержит в себе TCP-пакет так же как TCP пакет содержит пользовательские данные.

Краткое описание протоколов семейства TCP/IP с расшифровкой аббревиатур

  • ARP (Address Resolution Protocol, протокол определения адресов) : конвертирует 32-разрядные IP-адреса в физические адреса вычислительной сети, например, в 48-разрядные адреса Ethernet.
  • FTP (File Transfer Protocol, протокол передачи файлов) : позволяет передавать файлы с одного компьютера на другой с использованием TCP-соединений. В родственном ему, но менее распространенном протоколе передачи файлов - Trivial File Transfer Protocol (TFTP) - для пересылки файлов применяется UDP, а не TCP.
  • ICMP (Internet Control Message Protocol, протокол управляющих сообщений Internet) : позволяет IP-маршрутизаторам посылать сообщения об ошибках и управляющую информацию другим IP-маршрутизаторам и главным компьютерам сети. ICMP-сообщения "путешествуют" в виде полей данных IP-дейтаграмм и обязательно должны реализовываться во всех вариантах IP.
  • IGMP (Internet Group Management Protocol, протокол управления группами Internet) : позволяет IP-дейтаграммам распространяться в циркулярном режиме (multicast) среди компьютеров, которые принадлежат к соответствующим группам.
  • IP (Internet Protocol, протокол Internet) : низкоуровневый протокол, который направляет пакеты данных по отдельным сетям, связанным вместе с помощью маршрутизаторов для формирования Internet или интрасети. Данные "путешествуют" в форме пакетов, называемых IP-дейтаграммами.
  • RARP (Reverse Address Resolution Protocol, протокол обратного преобразования адресов) : преобразует физические сетевые адреса в IP-адреса.
  • SMTP (Simple Mail Transfer Protocol, простой протокол обмена электронной почтой) : определяет формат сообщений, которые SMTP-клиент, работающий на одном компьютере, может использовать для пересылки электронной почты на SMTP-сервер, запущенный на другом компьютере.
  • TCP (Transmission Control Protocol, протокол управления передачей) : протокол ориентирован на работу с подключениями и передает данные в виде потоков байтов. Данные пересылаются пакетами - TCP-сегментами, - которые состоят из заголовков TCP и данных. TCP - "надежный" протокол, потому что в нем используются контрольные суммы для проверки целостности данных и отправка подтверждений, чтобы гарантировать, что переданные данные приняты без искажений.
  • UDP (User Datagram Protocol, протокол пользовательских дейтаграмм) : протокол, не зависящий от подключений, который передает данные пакетами, называемыми UDP-дейтаграммами. UDP - "ненадежный" протокол, поскольку отправитель не получает информацию, показывающую, была ли в действительности принята дейтаграмма.

Состав и предназначение полей заголовка

ТСР-сегменты отправляются как IP-дейтаграммы. Заголовок TCP, следующий за IP-заголовком, содержит информацию TCP-протокола.

Source Port (16 бит). Порт отправителя.

Destination Port (16 бит). Порт получателя.

Sequence Number (32 бита). Номер кадра. Номер кадра первого октета данных в этом сегменте (за исключением пакета, где присутствует флаг SYN). Если в пакете присутствует флаг SYN, то номер данного пакета становится номером начала последовательности (ISN) и номером первого октета данных становится номер ISN+1.

Acknowledgment Number (32 бита). Поле номера кадра подтвержденного получения. Если пакет содержит установленный контрольный бит АСК, то это поле содержит номер следующего пакета данных отправителя, который ожидает получатель. При установленном соединении пакет подтверждения отправляется всегда.

Data Offset (4 бита). Поле величины смещения данных. Оно содержит количество 32-битных слов заголовка TCP-пакета. Это число определяет смещение расположения данных в пакете.

Reserved (6 бит). Резервное поле. Поле зарезервировано.

Флаги управления (слева направо):

  • URG: Флаг срочности
  • АСК: Флаг пакета, содержащего подтверждение получения
  • PSH: Флаг форсированной отправки
  • RST: Переустановка соединения
  • SYN: Синхронизация чисел последовательности
  • FIN: Флаг окончания передачи со стороны отправителя

Window (16 бит). Окно. Это поле содержит количество байт данных, которое отправитель данного сегмента может принять, отсчитанное от номера байта, указанного в поле Acknowledgment Number.

Checksum (16 бит). Поле контрольной суммы. Это поле содержит 16 бит суммы побитных дополнений 16-битных слов заголовка и данных. Если сегмент содержит нечетное число байт заголовка и данных, последний байт дополняется справа нулями. При вычислении контрольной суммы поле контрольной суммы полагается равным нулю.

Urgent Pointer (16 бит). Поле указателя срочных данных. Это поле содержит значение счетчика пакетов, начиная с которого следуют пакеты повышенной срочности. Это поле принимается во внимание только в сегментах с установленным флагом URG.

Options. Поле дополнительных параметров: может быть переменной длины.

Padding. Заполнение: переменная длина. Заполнение (нулями) TCP-заголовка используется для выравнивания его по 32-битному слову.

Эта ссылка на наглядное видео. К сожалению, оно на английском языке, но и так понятно.

На транспортном уровне работают 2 протокола: TCP и UDP.

UDP (User Datagram Protocol) - протокол пользовательских дейтаграмм. Является ненадежным протоколом передачи данных, потому что он не устанавливает и не поддерживает соединения с удаленными узлами. То есть он просто передает данные на нижестоящий уровень и дальнейшая судьба этих данных его не интересует.
Кроме того, он не исправляет ошибки в принятых данных. Если будут обнаружены ошибки, то данные сегменты будут просто уничтожены и без запроса повторной передачи.

Для чего тогда такой протокол нужен?

Он очень полезен там, где передаваемые данные очень критичны к задержкам. Например, при передаче видео и голоса. Там недопустимы задержки, но можно пожертвовать несколькими пакетами в случае обнаружения ошибок - человеческие ухо и глаз не способны заметить потерю нескольких пакетов (если, конечно, число таких пакетов не слишком велико).
Однако для передачи чувствительных данных он совсем не годится, например, при передаче файлов - в данном случае задержки допустимы, но файл должен быть доставлен целостным.

Протокол добавляет следующий заголовок к передаваемым данным

Порт отправителя - идентифицирует приложение прикладного уровня, которое хочет общаться с таким же или другим приложением по сети. Например, Skype использует порт 80. Хотя может использовать и другие порты в зависимости от настроек. То есть, если Алиса пишет сообщение Кате по Skype, то компьютер Кати, приняв сообщение, сможет по номеру порта отправителя определить какое приложение отправило данное сообщение.


Порт получателя - идентифицирует приложение прикладного уровня, которое принимает сообщения от удаленных узлов. Иными словами, приложение “слушает” сеть на этом порту. Например, тот же Skype может принимать сообщение на порту 80. То есть, если Алиса отправит сообщение Кате на порт 80, то компьютер Кати его примет (при условии, что Skype будет в это время работать). Однако если, Алиса отправит на порт 100, а Катя слушает на порту 80, то компьютер Кати просто cбросит принятое сообщение.


А сколько всего может быть таких портов?

Всего насчитывается 65535 портов. Из них с 0 по 1023 зарезервированы под стандартные приложения, такие как FTP, SMTP, SNMP и другие. Остальные порты с 1024 и по 65535 могут быть использованы для любых других приложений. Эти порты еще называют динамическими, потому что у них нет жесткой привязки к определенному приложению и могут меняться от сеанса к сеансу.


Длина дейтаграммы - определяет длину всего сегмента, включая и сам заголовок.


Контрольная сумма - используется для проверки на наличие ошибок.


Как работает проверка?

Способ довольно примитивный. Передающий компьютер вычисляет контрольную сумму всего сегмента по специальному алгоритму и помещает это значение в поле Checksum. Затем принимающий компьютер вычисляет контрольную сумму данного сегмента и сравнивает с суммой в поле Checksum . Если значения совпадают, то сегмент принимается, в противном случае уничтожается.

Ничего, UDP не заботится о дальнейшей судьбе потерянных данных.

TCP (Transmission Control Protocol) - Протокол Управления Передачей. Надежный протокол передачи данных. С помощью него устанавливается и поддерживается связь с удаленными узлами, управляется скорость передачи данных, контролируются ошибки при передаче данных.


Вот как выглядит заголовок сегмента TCP


С некоторыми полями мы уже знакомы. Опишем новые поля.


Порядковый номер - каждый байт в отправленном сегменте нумеруется для того, чтобы на приеме правильно собрать все сегменты в единый поток. Кроме того, с помощью номера контролируется весь поток данных и исправляются поврежденные сегменты.


Номер подтверждения - чтобы убедиться, что все переданные сегменты достигли адресата используются номера подтверждения. Например, узел А отправил сегмент с порядковым номером 45 узлу В. Когда узел В примет сегмент с номером 45, то отправит узлу А пустой сегмент с подтверждающим номером 46. Узел А будет знать, что все в порядке и отправит следующий сегмент под номером 46.


Флаги - специальные знаки-сигналы, указывающие на состояние сессии. Например, запрос на установление соединения или запрос на разрыв соединения.


Размер окна - определяет количество байт для отправки за один раз. Принимающий узел отправит подтверждение только для последнего байта в сегменте. Таким образом не нужно отправлять подтверждение за каждый байт, экономя тем самым время и канал связи. Например, если размер окна равен 500, то передающий узел сразу же отправит 500 байт данных в сегменте. Принимающий узел, получив все 500 байт, отправит лишь одно подтверждение. Размер окна может меняться в течении всего сеанса связи для регулирования скорости передачи.


А кто устанавливает размер окна?

Оба участника соединения. Например, принимающий узел сообщает передающему узлу размер окна исходя из того, как быстро принимающий узел справляется с поступающими данными. Если он не успевает обработать данные, то уменьшает размер и окна и передающий узел обязан уменьшить объем передаваемых данных.
Чтобы лучше понять назначение всех этих полей рассмотрим принцип работы протокола на примере установления соединения.


Установление соединения (Трехэтапное квитирование)

Процесс установления связи осуществляется в 3 этапа.


Этап 1

Когда сторона А хочет установить связь со стороной В, то сторона А отправляет запрос с установленным флагом SYN. После этого узел А переходит в состояние SYN SENT. Узел В остается в состоянии LISTEN:

Вот какие данные устанавливаются в заголовке TCP (для упрощения восприятия некоторые данные опущены):



Генерируется порядковый номер ISNa = 1 и формируется запрос на установление соединения. Если по истечении таймаута со стороны В не поступает никакого ответа, то узел А снова отправит запрос узлу В.


Этап 2

Когда сторона В принимает запрос SYN, то тоже генерируется порядковый номер ISNb = 200 (в реальности номер может принимать другие значения) для своего сегмента. Для формирования ответа стороне А, узел В устанавливает 2 флага: SYN и ACK. Причем в качестве номера подтверждения берется порядковый номер сегмента стороны А и увеличивается на 1, то есть 1 + 1. Это означает, что запрос успешно принят и ожидается следующий сегмент с номером 2. После того, как сегмент отправлен, узел В переходит в состояние SYN-RECEIVED, узел А остается в состоянии SYN SENT:


Вот как выглядит запрос в сетевом анализаторе:


Если по истечении таймаута от узла А не поступит подтверждения, то узел В снова отправит свой запрос.


Этап 3

После того, как узел А примет сразу 2 флага SYN и ACK, причем ACK будет на 1 больше ISN узла А, то сторона А сразу отправит второй сегмент узлу В. ISN будет увеличен на 1. Флаг будет установлен на ACK со значением ISNb + 1, то есть 200 + 1

Вот какие данные устанавливаются в заголовке TCP:

Вот как выглядит запрос в сетевом анализаторе:

После этого соединение считается успешно установленным, то есть помечается как ESTABLISHED.

Отказ в установлении соединения

Если сторона В по каким-то причинам не может установить соединение со стороной А, то генерируется ответ с флагом RST, которой информирует о прекращении попыток установления связи:

Вот какие данные устанавливаются в заголовке TCP:


Вот как выглядит запрос в сетевом анализаторе:


Завершение связи

Когда одна из сторон желает завершить сеанс связи, то формирует запрос FIN и переходит в состояние FIN_WAIT 1


Сторона В подтверждает запрос отправкой ACK и переходит в состояние CLOSE_WAIT. Сразу же вслед посылается запрос FIN. После этого узел В переходит в состояние LAST_ACK:

Сторона А подтверждает отправкой ACK и переходит в состояние CLOSED. Когда узел В примет ACK, то также перейдет в состояние CLOSED. На этом сеанс связи завершен:

Контроль над искаженными и потерянными данными

Концепция TCP такова, что передатчик ожидает от приемника получение подтверждения успешного принятия байта. Пока передатчик не убедится, что данные успешно доставлены получателю он не будет передавать следующую порцию данных.
Однако подтверждать каждый переданный байт слишком дорогое удовольствие - растет нагрузка на сеть, значительно замедляется работа протокола.
Поэтому передатчик отправляет сразу несколько сегментов и ждет подтверждения от приемника. Приемнику в свою очередь достаточно отправить одно подтверждение на последний полученный сегмент.
Передатчик поймет, что все отправленные сегменты успешно получены и сразу же отправит очередной набор сегментов


Для реализации данного механизма и используются порядковые и подтверждающие номера. Каждый сегмент нумеруется первым байтом полезной нагрузки. Затем приемник посылает подтверждающий сегмент, где указывает номер первого байта следующего сегмента. Например, первый сегмент имеет 100 байт полезной нагрузки (заголовок не учитывается), второй сегмент - 200 байт. Первому байту первого сегмента присваивается номер 1, у первого байта второго сегмента номер соответственно равен 101 (100 + 1) и так далее


Теперь посмотрим как будет проходить передача сегментов


Вот как это выглядит в сетевом анализаторе:


Если сложить ISN = 2155299270 первого сегмента с длиной данных Len = 711, то получится ISN = 2155299981 второго сегмента. Таким способом приемник формирует ACK SN для 3-го сегмента.


С этим разобрались. Но что произойдет, если данные потеряны или искажены в процессе передачи?

Представим, что сегмент дошел до получателя, однако содержит ошибки. Это проверяется с помощью контрольной суммы. Тогда приемник сбросит искаженный сегмент и отправит подтверждение только за предпоследний сегмент. Передатчик поймет, что первые 2 сегмента получены без ошибок и снова отправит 3-й сегмент


Теперь посмотрим, что произойдет, если один сегмент не дойдет до получателя. В данном случае приемник вышлет подтверждение только за принятые сегменты. А о 3-ем сегменте он вообще ничего не знает, поэтому ничего не отправит.
Передатчик будет ждать определенное время и не дождавшись подтверждения за 3-й сегмент отправит его снова


Вот так и достигается контроль над ошибками данных.


Контроль за передачей данными (Метод скользящего окна)

Протокол TCP является дуплексным, то есть может одновременно работать на прием и передачу. Для этого на приеме и передаче устанавливаются буферы.
Передающий буфер содержит переданные, но еще не подтвержденные байты, а также байты готовые для передачи.
Приемный буфер содержит принятые байты для последующей обработки.


Но для чего нужны буферы, разве не может приемник сразу же обработать поступивший сегмент?

Буферы необходимы для постановки в очередь принятые и передаваемые данные, так как производительность приёмной и передающей систем, а также самой сети разные, то велика вероятность, что система не сможет на “лету” обработать большой объем данных.


Мы знаем, что передатчик может сразу отправить несколько сегментов данных, не дожидаясь подтверждения на каждый сегмент.
Но что делать, если передатчик передает данные с большой скоростью, а буфер приемника не успевает их всех вместить?

Тогда приемник просто сбросит новые поступающие данные и отправит подтверждения только на полученные и обработанные сегменты.
Передатчику придется повторно отправлять данные, пока не получит подтверждения успешного получения.


В данной ситуации приемник работает на пределе своих возможностей, а сеть постоянно загружена. Поэтому в TCP предусмотрен механизм контроля за передачей данных с помощью метода скользящего окна.


И как работает данный механизм?

В TCP заголовке имеется поле “Размер окна (Window size )”, которое указывает на то, сколько байт приемник способен принять. Иными словами это говорит о доступности буфера и наличии в нем свободного пространства для поступающих данных.
После установления соединения приемник сообщает передатчику размер окна. Например, приемник сообщил, что окно равно 5 байтам. Передатчик передаст 5 байт информации и ждет подтверждения:

В буфере передатчика в очереди на отправку стоят следующие байты, но они не будут отправлены, пока не будут подтверждены уже отправленные байты. Приемник посылает подтверждение и уведомляет о размере окна равным 5, то есть говорит: “В моем буфере есть 5 свободных мест. Пришли мне еще 5 байт.”

Окно в передающем буфере сместится на 5 байт и новая порция данных будет передана приемнику:

Теперь посмотрим, что произойдет, если приемник не успевает обработать все полученные данные и в его буфере свободное место только для 2-х байт:

Передатчик готов передать следующие 5 байт информации, так как получил подтверждение от приемника. Однако приемник также уведомил передатчик, что в приемном буфере свободно только для 2-х байт, то есть сообщает следующее: “Снижай скорость передачи. Готов принять пока 2 байта.”


И передатчик уменьшает окно и передает только 2 байта

В процессе передачи данных размер окна может постоянно меняться. Это зависит от загруженности сети и производительности передатчиков/приемников.


Что происходит, когда в буфере приемника совсем нет места?

Тогда приемник установит размер окна равным 0. Это означает прекратить передачу данных.


Как же передатчик узнает, что буфер приемника снова готов к работе?

После получения нулевого размера окна передатчик запускает специальный таймер, по истечении которого передатчик отправит пробный сегмент. Если буфер свободен, то приемник ответит на этот пробный сегмент и укажет новый размер окна, в противном случае снова укажет нулевое окно.


Итак подведем краткие итоги.
В таблице представлены сравнение протоколов UDP и TCP, а также функции, возложенные на транспортный уровень

Функции TCP UDP
Управление потоком Да Нет
Контроль над ошибками Да Нет
Скорость Медленный Быстрый
Установление соединения Да Нет
Использование в приложениях чувствительных к задержкам данных Нет (иногда допустимо) Да
Использование в приложениях менее чувствительных к задержкам данных Да Да (но не всегда)
Регулирование скорости передачи данных Да Нет
Запрос на повторную передачу потерянного или искаженного сегмента Да Нет
Многоканальный Да Да Назад



Top