Простой высокочастотный генератор своими руками. Высокочастотный генератор: обзор, особенности,виды и характеристики

РадиоМир 2008 №9

Предлагаемый ВЧ-генератор является попыткой заменить громоздкий промышленный Г4-18А более малогабаритным и надёжным прибором.

Обычно при ремонте и налаживании КВ-аппаратуры необходимо "уложить" КВ-диапазоны с помощью LC-контуров, проверить прохождение сигнала по ВЧ- и ПЧ-тракту, настроить отдельные контура в резонанс и т.д. Чувствительность, избирательность, динамический диапазон и другие важные параметры КВ-устройств определяются схемотехническими решениями, так что для домашней лаборатории не обязательно иметь многофункциональный и дорогой ВЧ-генератор. Если генератор имеет достаточно стабильную частоту с "чистой синусоидой", значит, он подходит радиолюбителю. Конечно, считаем, что в арсенал лаборатории также входят частотомер, ВЧ-вольтметр и тестер. К сожалению, большинство испробованных мной схем ВЧ-генераторов КВ-диапазона выдавало очень искажённую синусоиду, улучшить которую без неоправданного усложнения схемы не удавалось. ВЧ-генератор, собранный по приведённой на рис.1 схеме, зарекомендовал себя очень хорошо (получалась практически чистая синусоида во всём КВ-диапазоне). За основу взята схема из . В моей схеме вместо настройки контуров варикапом применён КПЕ, а индикаторная часть схемы не используется.

В данной конструкции использован конденсатор переменной ёмкости типа КПВ-150 и малогабаритный переключатель диапазонов ПМ (11П1Н). С данным КПЕ (10...150 пФ) и катушками индуктивности L2...L5 перекрывается участок КВ-диапазона 1,7...30 МГц. По ходу работы над конструкцией были добавлены ещё три контура (L1, L6 и L7) на верхний и нижний участки диапазона. В экспериментах с КПЕ ёмкостью до 250 пФ весь КВ-диапазон перекрывался тремя контурами.

ВЧ-генератор собран на печатной плате из фольгированного стеклотекстолита толщиной 2 мм и размерами 50x80 мм (рис.2). Дорожки и монтажные "пятачки" вырезаны ножом и резаком. Фольга вокруг деталей не удаляется, а используется вместо "земли". На рисунке печатной платы для наглядности эти участки фольги условно не показаны. Конечно, можно изготовить и печатную плату, приведённую в .

Вся конструкция генератора вместе с блоком питания (отдельная плата со стабилизатором напряжения на 9 В по любой схеме) размещена на дюралевом шасси и помещена в металлический корпус подходящих размеров. Я использовал кассету от старой аппаратуры с размерами 130x150x90 мм. На переднюю панель выводятся ручка переключателя диапазонов, ручка настройки КПЕ, малогабаритный ВЧ-разъём (50-Омный) и светодиодный индикатор включения в сеть. При необходимости можно установить регулятор выходного уровня (переменный резистор сопротивлением 430...510 Ом) и аттенюатор с дополнительным разъёмом, а также проградуированную шкалу.

В качестве каркасов катушек контуров использованы унифицированные секционные каркасы СВ и ДВ диапазонов от устаревших радиоприёмников. Количество витков каждой катушки зависит от ёмкости используемого КПЕ и первоначально берется "с запасом". При налаживании ("укладке" диапазонов) генератора часть витков отматывается. Контроль ведётся по частотомеру.

Катушка индуктивности L7 имеет ферритовый сердечник М600-3 (НН) Ш2,8х14. Экраны на катушки контуров не устанавливаются. Намоточные данные катушек, границы поддиапазонов и выходные уровни ВЧ-генератора приведены в таблице.

Диапазон, МГц

Количество витков

Провод (диаметер, мм)

Каркас, сердечник

Выходной уровень, В

Бескаркасная диаметром 6 мм. L=12 мм

Керамический диаметром 6 мм, L=12 мм

Унифицированный
3-секционный

Унифицированный
4-секционный

В схеме генератора, кроме указанных транзисторов, можно применить полевые КП303Е(Г), КП307 и биполярные ВЧ-транзисторы BF324, 25С9015, ВС557 и т.д. Блокировочные ёмкости желательно использовать импортные малогабаритные.

Конденсатор связи С5 ёмкостью 4,7...6,8 пФ - типа КМ, КТ, КА с малыми потерями по ВЧ. В качестве КПЕ очень желательно использовать высококачественные (на шарикоподшипниках), однако они дефицитны. Более доступны регулировочные КПЕ типа КПВ с максимальной ёмкостью 80...150 пФ, но они легко ломаются и имеют заметный "гистерезис" при вращении вперёд и назад.

Тем не менее, при жёстком монтаже, качественных деталях и прогреве генератора в течение 10...15 минут можно добиться "ухода" частоты не более 500 Гц в час на частотах 20...30 МГц (при стабильной температуре в помещении).

Форма сигнала и выходной уровень изготовленного ВЧ генератора проверялись по осциллографу С1-64А.

На заключительном этапе наладки все катушки индуктивности (кроме L1, которая припаяна одним концом к корпусу) закрепляются клеем вблизи переключателя диапазонов и КПЕ.

Литература:
1. Коротковолновый ГИР - Радио, 2006, №11, С.72.

А.ПЕРУЦКИЙ, г.Бендеры, Молдова.


Генераторы ВЧ

Итак, самый главный блок любого передатчика – это генератор. От того, насколько стабильно и точно работает генератор, зависит, сможет ли кто-то поймать переданный сигнал и нормально его принимать.

В нашем ненаглядном Интернете валяется просто уйма различных схем жучков, в которых используются различные генераторы. Сейчас мы немного классифицируем эту уйму.

Номиналы деталей всех приведенных схем рассчитаны с учетом того, что рабочая частота схемы составляет 60…110 МГц (то есть, перекрывает наш любимый УКВ-диапазон).

«Классика жанра».

Транзистор включен по схеме с общей базой. Резисторный делитель напряжения R1- R2 создает на базе смещение рабочей точки. Конденсатор C3 шунтирует R2 по высокой частоте.

R3 включен в эмиттерную цепь для ограничения тока протекающего через транзистор.

Конденсатор C1 и катушка L1 образуют частотозадающий колебательный контур.

Кондер C2 обеспечивает положительную обратную связь (ПОС), необходимую для генерации.

Механизм генерации

Упрощенно схему можно представить так:

Вместо транзистора мы ставим некий «элемент с отрицательным сопротивлением». По сути – усилительный элемент. То есть, ток на его выходе больше, чем ток на входе (так вот хитро).

К входу этого элемента подключен колебательный контур. С выхода элемента на этот же колебательный контур подана обратная связь (через кондер C2). Таким образом, когда на входе элемента ток увеличивается (происходит перезарядка контурного конденсатора), увеличивается ток и на выходе. Через обратную связь, он подается обратно на колебательный контур – происходит «подпитка». В результате, в контуре устаканиваются незатухающие колебания.

Все оказалось проще пареной репы (как всегда).

Разновидности

В безбрежном инете можно еще встретить такую реализацию этого же генератора:

Схема называется «емкостная трехточка». Принцип работы – тот же.

Во всех этих схемах сгенерированный сигнал можно снимать либо непосредственно с коллектора VT 1, либо использовать для этого катушку связи, связанную с контурной катушкой.

Эту схему выбираю я, и советую вам.

R1 – ограничивает ток генератора,

R2 – задает смещение базы,

C1, L1 – колебательный контур,

C2 – кондер ПОС

Катушка L1 имеет отвод, к которому подключен эмиттер транзистора. Этот отвод должен быть расположен не ровно посередине, а ближе к «холодному» концу катушки (то есть тому, который соединен с проводом питания). Кроме того, можно вообще не делать отвод, а намотать дополнительную катушку, то есть – сделать трансформатор:

Эти схемы идентичны.

Механизм генерации:

Для понимания того, как работает такой генератор, давайте рассмотрим именно вторую схему. При этом, левая (по схеме) обмотка будет вторичной, правая – первичной.

Когда на верхней обкладке C1 увеличивается напряжение (то есть, ток во вторичной обмотке течет «вверх»), то на базу транзистора через конденсатор обратной связи C2 подается открывающий импульс. Это приводит к тому, что транзистор подает на первичную обмотку ток, этот ток вызывает увеличение тока во вторичной обмотке. Происходит подпитка энергией. В-общем – то, все тоже довольно просто.

Разновидности.

Мое небольшое ноу-хау: можно поставить между общим и базой диод:

Сигнал во всех этих схемах снимаем с эмиттера транзистора либо через дополнительную катушку связи непосредственно с контура.

Двухтактный генератор для ленивых

Самая простая схема генератора, какую только мне приходилось когда-либо видеть:

В этой схеме легко улавливается схожесть с мультивибратором. Я вам скажу больше – это и есть мультивибратор. Только вместо цепочек задержки на конденсаторе и резисторе (RC-цепи), здесь используются катушки индуктивности. Резистор R1 устанавливает ток через транзисторы. Кроме того, без него генерация просто-напросто, не пойдет.

Механизм генерации:

Допустим, VT1 открывается, через L1 течет коллекторный ток VT1. Соответственно, VT2 закрыт, через L2 течет открывающий базовай ток VT1. Но поскольку сопротивление катушек раз в 100…1000 меньше сопротивления резистора R1, то к моменту полного открытия транзистора, напряжение на них падает до очень маленького значения, и транзистор закрывается. Но! Поскольку до закрытия транзистора, через L1 тек большой коллекторный ток, то в момент закрытия происходит выброс напряжения (ЭДС самоиндукции), который подается на базу VT2 открывает его. Все начинается по новой, только с другим плечом генератора. И так далее…

Этот генератор имеет только один плюс – простота изготовления. Остальные – минусы.

Поскольку в нем отсутствует четкое времязадающее звено (колебательный контур или RC-цепь), то частоту такого генератора рассчитать весьма сложно. Она будет зависеть от свойств применяемых транзисторов, от напряжения питания, от температуры и т.д. Во-общем, в серьезных вещах этот генератор лучше не использовать. Однако, в диапазоне СВЧ его применяют довольно часто.

Двухтактный генератор для трудолюбивых

Другой генератор, который мы рассмотрим – тоже двухтактный. Однако, он содержит колебательный контур, что делает его параметры более стабильными и прогнозируемыми. Хотя, по сути, он тоже довольно прост.

Что мы здесь видим?

Видим колебательный контур L1 C1,
А дальше видим каждой твари по паре:
Два транзистора: VT1, VT2
Два конденсатора обратной связи: С2, С3
Два резистора смещения: R1, R2

Опытный глаз (да и не сильно опытный), обнаружит и в этой схеме схожесть с мультивибратором. Ну что же – оно так и есть!

Чем примечательна данная схема? Да тем, что ввиду использования двухтактного включения, она позволяет развивать двойную мощность, по сравнению со схемами 1-тактных генераторов, при том же напряжении питания и при условии применения тех же транзисторов. Во как! Ну, в общем, у нее почти нет недостатков:)

Механизм генерации

При перезаряде конденсатора в одну или другую сторону, через один из конденсаторов обратной связи поступает ток на соответствующий транзистор. Транзистор открывается, и добавляет энергию в «нужном» направлении. Вот и вся премудрость.

Особо изощренных вариантов исполнения этой схемы я не встречал…

Теперь немного креатива.

Генератор на логических элементах

Если использование транзисторов в генераторе кажется вам несовременным или громоздким или недопустимым по религиозным соображениям – выход есть! Можно использовать вместо транзисторов микросхемы. Обычно используется логика: элементы НЕ, И-НЕ, ИЛИ-НЕ, реже – Исключающее ИЛИ. Вообще говоря, нужны только элементы НЕ, остальное – излишества, только лишь ухудшающие скоростные параметры генератора.

Видим страшную схему.

Квадратики с дырочкой в правом боку – это инвертеры. Ну или – «элементы НЕ». Дырочка как раз указывает на то, что сигнал инвертируется.

Что такое элемент НЕ с точки зрения банальной эрудиции? Ну, то есть, с точки зрения аналоговой техники? Правильно, это усилитель с обратным выходом. То есть, при увеличении напряжения на входе усилителя, напряжение на выходе пропорционально уменьшается . Схему инвертера можно изобразить примерно так (упрощенно):

Это конечно, слишком просто. Но доля правды в этом есть.
Впрочем, нам пока что это не столь важно.

Итак, смотрим схему генератора. Имеем:

Два инвертера (DD1.1, DD1.2)

Резистор R1

Колебательный контур L1 C1

Заметьте, что колебательный контур в этой схеме – последовательный. То есть, конденсатор и катушка стоят друг за другом. Но это – все равно колебательный контур, он рассчитывается по тем же формулам, и ничуть ни хуже (и не лучше) своего параллельного собрата.

Начнем сначала. Зачем нам нужен резистор?

Резистор создает отрицательную обратную связь (ООС) между выходом и входом элемента DD1.1. Это надо для того, чтобы держать под контролем коэффициент усиления – это раз, а также – чтоб создать на входе элемента начальное смещение – это два. Как это работает, подробно мы рассмотрим где-нибудь в обучалке по аналоговой технике. Пока что уясним, что благодаря этому резистору, на выходе и входе элемента, в отсутствие входного сигнала, устаканивается напряжение, равное половине напряжения питания. Точнее – среднему арифметическому напряжений логических «нуля» и «единицы». Не будем пока на этом заморачиваться, у нас еще много дел…

Итак, на одном элементе мы получили инвертирующий усилитель. То есть, усилитель, который «переворачивает» сигнал вверх ногами: если на входе много – на выходе мало, и наоборот. Второй элемент служит для того, чтобы сделать этот усилитель неинвертирующим. То есть, он переворачивает сигнал еще раз. И в таком виде, усиленный сигнал подается на выход, на колебательный контур.

А ну-ка, смотрим внимательно на колебательный контур? Как он включен? Правильно! Он включен между выходом и входом усилителя. То есть, он создает положительную обратную связь (ПОС). Как мы уже знаем из рассмотрения предыдущих генераторов, ПОС нужна для генератора, как валерьянка для кота. Без ПОС ни один генератор не сможет что? Правильно – возбудиться. И начать генерацию…

Все наверно знают такую вещь: если к входу усилителя подключить микрофон, к выходу – динамик, то при поднесении микрофона к динамику, начинается противный «свист». Это – ни что иное как генерация. Мы же подаем сигнал с выхода усилителя на вход. Возникает ПОС. Как следствие, усилитель начинает генерить.

Ну, короче, посредством LC -цепочки в нашем генераторе создается ПОС, приводящая к возбуждению генератора на резонансной частоте колебательного контура.

Ну что, сложно?
Если (сложно)
{
чешем (репу) ;
читаем еще раз;
}

Теперь поговорим о разновидностях подобных генераторов.

Во-первых, вместо колебательного контура, можно включить кварц. Получится стабилизированный генератор, работающий на частоте кварца:

Если в цепь ОС элемента DD1.1 включить вместо резистора колебательный контур – можно завести генератор на гармониках кварца. Для получения какой-либо гармоники, нужно, чтобы резонансная частота контура была близка к частоте этой гармоники:

Основное предназначение высокочастотного генератора заключается в том, что он создает колебания электрического поля. Диапазон этих колебаний имеет довольно широкие границы: от нескольких десятков килогерц и до сотен мегагерц.

Общее описание устройства ВЧ

Большинством обычных людей этот прибор используется для остановки счетчика. Высокочастотный генератор действительно способен останавливать работу такой техники, создавая колебания. Кроме того, этот прибор можно также использовать в качестве питания для обычных бытовых устройств. Если говорить о мощностях, то выходное напряжение достигает 220 А, а мощность - 1 кВт. Также возможна замена некоторых элементов на более мощные. Если это сделать, то выходные характеристики высокочастотного генератора повысятся, и с его помощью станет возможно питать большее количество агрегатов или же несколько, но уже более мощных. Подключение же самого ВЧ осуществляется к обычной бытовой сети. Здесь важно отметить, что схема электрических проводов довольно проста, и изменять ее как-либо нет смысла. К тому же нет необходимости в использовании системы заземления для этого прибора. При подключении таких колебательных агрегатов в сеть они не полностью останавливают работу счетчика. Агрегат продолжает работать, но при этом ведется учет лишь 25 % от реального расхода электроэнергии.

Действие прибора

Если разобраться более подробно с работой высокочастотного генератора, то остановка техники происходит из-за того, что в схеме прибора используется конденсатор. Подключение осуществляется именно к этой детали, которая имеет заряд, полностью совпадающий с синусоидой напряжения, протекающего в сети. Осуществление заряда происходит посредством импульсов с высокой частотой. Таким образом, получается, что ток, который потребитель расходует из своей домашней сети, становится высокочастотным импульсом. Обычные же электронные счетчики, установленные в домах, характеризуются отсутствием чувствительности к такого рода колебаниям. Это означает, что учитывать расход тока импульсной формы агрегат будет с отрицательной погрешностью.

Описание схемы

Схема высокочастотного генератора характеризуется наличием определенных ключевых элементов. К ним относятся: выпрямитель, емкость, транзистор. Далее, если говорить о подключении конденсатора, то он последовательно включается в схему с выпрямителем. Это необходимо для того, чтобы во время того, как выпрямитель работает на транзистор, конденсатор мог заряжаться до того размера напряжения, которое имеется в сети.

Чаще всего пределом зарядки конденсатора в высокочастотном генераторе становится 2 кГц. Если говорить о напряжении, которое в данный момент присутствует на нагрузке и емкости устройства, то оно приближается к синусу на 220 В. Для того чтобы ограничить ток, протекающий через транзистор в то время, как заряжается емкость, в схеме имеется резистор, который подключается с каскадом ключа, используя последовательное соединение.

Особенности выполнения ВЧ

Генератор выполняется полностью на логических элементах. Он производит колебания или импульсы с частотой 2 кГц, а также с амплитудой в 5 Вольт. Имеется также такая характеристика, как сигнальная частота. Значение этого параметра определяется элементами С2 и R7. В стандартных схемах обозначения используют именно такой формат подписи. Свойства, которые дают эти элементы, могут применяться для того, чтобы настроить максимальную погрешность учета расхода энергии. За создание импульсов отвечают такие элементы, как Т2 и Т3 - транзисторы. Вместе их называют создателем импульсов. Эта деталь отвечает также за правильную работу транзистора Т1.

Такие устройства, как выпрямитель, трансформатор и другие используются в качестве небольшого блока питания. Основная задача - это поставка энергии для работы микросхемы с другими элементами. Такие небольшие блоки питания обычно рассчитаны на 36 В.

Высокочастотный генератор сигналов Г4-151

Основное предназначение такого генератора заключается в настройке, проверке, регулировке и испытаниях радиотехнических устройств. При помощи данного прибора можно обеспечить измерение амплитудно-частотной характеристики, чувствительности, избирательности и т.д. Кроме этого, использовать данную аппаратуру можно и в качестве источника сигнала, который работает с разными способами модуляции колебаний. Это может быть амплитудная, частотная или импульсная модуляция. Также возможно создание немодулированных колебаний. Чаще всего такое оборудование используют в поверочных органах, в мастерских по ремонту оборудования, в цехах или лабораториях.

Вывод информации у данного высокочастотного - это обычный цифровой код. Кроме этого, для удобства управления имеются аналоговые входы, позволяющие дистанционно регулировать все параметры аппарата.

Собственноручная сборка

Так как собирать реальную схему высокочастотного может быть трудно, имеется несколько упрощенный вариант сборки. В таком случае вместо транзистора в схеме будет использоваться элемент с отрицательным сопротивлением. Еще такие элементы довольно часто называют усилительными. Если говорить совсем простыми словами, то ток на выходе таких приборов всегда больше, чем ток на их входе.

К входу такого прибора подключается колебательный контур. Далее очень важно с выхода этого же усилителя через обратную связь необходимо подключить его к этому же колебательному контуру. Соединив схему таким образом, получите следующий результат. На вход поступает ток определенного значения, проходя через усилительный элемент, он увеличивается, чем подпитывает контурный конденсатор. При помощи обратной связи уже усиленный ток возвращается снова на вход в схему, где опять усиливается. Такой круговой процесс происходит постоянно. Именно он и вызывает незатухающие колебания внутри генератора.

Ламповый ВЧ

Одна из разновидностей ге нераторов сигналов высокочастотных - это ламповые устройства. Такие приборы используют для того, чтобы получать плазму с нужными параметрами. Для этого нужно подвести определенный разряд к мощности устройства. У таких приборов ключевыми элементами являются эмиттеры, работа которых основывается на принципе подведения мощности.

Еще одним важным элементом для работы ламповых ВЧ стали усилители мощности. Эти детали, установленные на лампах, используются для того, чтобы преобразовать постоянный ток в переменный. Естественно, что эксплуатация лампового генератора невозможна без самой лампы. Использовать можно различные элементы. Довольно распространенным стал тетрод ГУ-92А. Данная деталь является электронной лампой, для работы которой используется четыре элемента: анод, катод, экранирующая и управляющая сетки.

Идея сделать недорогой генератор УКВ диапазонов для работы в полевых условиях родилась, когда возникло желание измерить параметры собранных своими руками антенн самодельным КСВ-метром . Быстро и удобно сделать такой генератор удалось, используя сменные блоки-модули. Уже собрал несколько генераторов на: радиовещательный 87,5 – 108 МГц, радиолюбительские 144 – 146 МГц и 430 - 440 МГц, включая PRM (446 МГц) диапазоны, диапазон эфирного цифрового телевидения 480 - 590 МГц. Такой мобильный и простой измерительный прибор помещается в кармане, а по некоторым параметрам не уступает профессиональным измерительным приборам. Линейку шкалы легко дополнить, поменяв несколько номиналов в схеме или модульную плату.


Структурная схема для всех используемых диапазонов одинаковая.

Это задающий генератор (на транзисторе Т1) с параметрической стабилизацией частоты, который определяет необходимый диапазон перекрытия. Для упрощения конструкции, перестройка по диапазону осуществляется подстроечным конденсатором. На практике такая схема включения, при соответствующих номиналах, на стандартизированных чип-индуктивностях и чип-конденсаторах, проверялась вплоть до частоты 1300 МГц.

Фото 2. Генератор с ФНЧ на диапазоны 415 - 500 МГц и 480 - 590 МГц.

Фильтр нижних частот (ФНЧ) подавляет высшие гармоники более чем на 55 дБ, выполнен на контурах с катушками индуктивностями L 1, L 2, L 3. Конденсаторы параллельные индуктивностям образуют режекторные фильтры-пробки настроенные на вторую гармонику гетеродина, что и обеспечивает дополнительное подавление высших гармоник гетеродина.

Линейный усилитель на микросхеме имеет нормированное выходное сопротивление 50 Ом и для данной схемы включения развивает мощность от 15 до 25 мВт, достаточную для настройки и проверки параметров антенн, не требующую регистрации. Именно такую мощность на выходе имеет высокочастотный генератор Г4 – 176. Для простоты схемы ФНЧ на выходе микросхемы отсутствует, поэтому подавления высших гармоник генератора на выходе ухудшилось на 10 дБ.

Микросхема ADL 5324 предназначена для работы на частотах от 400 МГц до 4-х ГГц, но практика показала, что она вполне работоспособна и на более низких частотах УКВ диапазона.

Питание генераторов осуществляется от литиевого аккумулятора с напряжением до 4,2 вольта. Устройство имеет разъём для внешнего питания и подзарядки аккумулятора и высокочастотный разъём для подключения внешнего счётчика, а самодельный КСВ-метр может служить индикатором уровня.

Генератор диапазона 87.5 – 108 МГц.

Параметры. Реальная перестройка частоты составила 75 – 120 МГц. Напряжение питания V п = 3,3 – 4,2 В. Выходная мощность до 25 мВт (V п = 4 В). Выходное сопротивление R вых = 50 Ом. Подавление высших гармоник более 40 дБ. Неравномерность в частотном диапазоне 87,5 – 108 МГц менее 2 дБ. Ток потребления не более 100 мА (V п = 4 В).


Рис. 1. Генератор диапазона 87,5 - 108 МГц.

Рис. 2.
На рис. 2. представлен эскиз монтажа задающего генератора на частоту 115,6 – 136 МГц. Этот генератор используется в роли гетеродина в преобразователе суперсверхрегенеративного приёмник а и в тюнере FM c двойным преобразованием частоты. Перестройка генератора осуществляется с помощью переменного резистора, изменяющего напряжение на варикапе.

Генератор радиолюбительского диапазона 144 - 146 МГц.

Параметры. Реальная перестройка частоты при этом составила 120 – 170 МГц. Напряжение питания V п = 3,3 – 4,2 В. Выходная мощность до 20 мВт (V п = 4 В). Выходное сопротивление R вых = 50 Ом. Подавление высших гармоник более 45 дБ. Неравномерность в частотном диапазоне менее 1 дБ. Ток потребления не более 100 мА (V п = 4 В).

В генераторе катушка индуктивности уменьшается до 10 витков (диаметр оправки 4 мм, диаметр провода 0,5 мм). Номиналы конденсаторов ФНЧ уменьшились.

Генератор радиолюбительского диапазона 430 – 440 МГц.

Параметры. Реальный диапазон перестройки при указанных номиналах составил 415 – 500 МГц. Напряжение питания V п = 3,3 – 4,2 В. Выходная мощность до 15 мВт (V п = 4 В). Выходное сопротивление R вых = 50 Ом. Подавление высших гармоник более 45 дБ. Неравномерность в частотном диапазоне 430 – 440 МГц менее 1 дБ. Ток потребления не более 95 мА (V п = 4 В).

Фото 6. Конструкция генератора на диапазон 415 - 500 МГц и 480 - 590 МГц.

Генератор диапазона эфирного цифрового телевидения 480 – 590 МГц.

Параметры. Реальный диапазон перестройки при указанных номиналах составил 480 – 590 МГц. Напряжение питания V п = 3,3 – 4,2 В. Выходная мощность до 15 мВт (V п = 4 В). Выходное сопротивление R вых = 50 Ом. Подавление высших гармоник более 45 дБ. Неравномерность в частотном диапазоне менее 1 дБ. Ток потребления не более 95 мА (V п = 4 В).


Рис.3 Генератор диапазона 480 - 490 МГц.
Генератор диапазона 415 -500 МГц. Lг = 47 нГн. С3, С4 -5,6 пФ.

Юным радиолюбителям посвящается…

Предисловие

Радиосигнал, однажды сгенерированный, уносится в глубь Вселенной со скоростью света… Эта фраза, прочитанная в журнале «Юный техник» в далеком детстве произвела на меня очень сильное впечатление и уже тогда я твердо решил, что обязательно пошлю свой сигнал нашим «братьям по разуму», чего бы мне это не стоило. Но путь, от желания до воплощения мечты долог и непредсказуем…

Когда я только начинал заниматься радиоделом, мне очень хотелось построить портативную радиостанцию. В то время я думал, что она состоит из динамика, антенны и батарейки. Стоит только соединить их в правильном порядке и можно будет разговаривать с друзьями где-бы они не находились… Я изрисовал не одну тетрадку возможными схемами, добавлял всевозможные лампочки, катушки и проводки. Сегодня эти воспоминания вызывают у меня лишь улыбку, но тогда мне казалось, что еще чуть-чуть и чудо-устройство будет у меня в руках…

Я помню свой первый радиопередатчик. В 7 классе я ходил в кружок спортивной радиопеленгации (т.н. охоты на лис). В один из прекрасных весенних дней наша последняя «лиса» — приказала долго жить. Руководитель кружка, недолго думая, вручил мне её со словами — «… ну, ты там её почини…». Я наверное был страшно горд и счастлив, что мне доверили столь почетную миссию, но мои знания электроники на тот момент не дотягивали до «кандидатского минимума». Я умел отличать транзистор от диода и приблизительно представлял как они работают по отдельности, но как они работают вместе — для меня это было загадкой. Придя домой, я с благоговейным трепетом вскрыл небольшую металлическую коробочку. Внутри неё оказалась плата, состоящая из мультивибратора и генератора РЧ на транзисторе П416. Для меня это была вершина схемотехники. Самой загадочной деталью в данном устройстве была катушка задающего генератора (3,5МГц.), намотанная на броневом сердечнике. Детское любопытство пересилило здравый смысл и острая металлическая отвертка впилась в броневой кожух катушки. «Хрясь» — раздался хруст и кусок броневого корпуса катушки, со стуком упал на пол. Пока он падал, мое воображение уже нарисовало картину моего расстрела руководителем нашего кружка…

У этой истории был счастливый конец, правда случился он через месяц. «Лису» я все-таки починил, хотя точнее сказать — сделал её заново. Плата радиомаяка, сделанная из фольгированного гетинакса, не выдержала пыток моим 100 ваттным паяльником, дорожки отслоились от постоянной перепайки деталей… Пришлось плату делать заново. Спасибо моему папе, что принес (достал где-то с большим трудом) фольгированный гетинакс, а маме — за дорогой французский красный лак для ногтей, который я использовал для рисования платы. Новый броневой сердечник мне достать не удалось, но зато удалось аккуратно склеить старый клеем БФ… Отремонтированный радиомаяк радостно послал в эфир свое слабое «ПИ-ПИ-ПИ», но для меня это было сравни запуску первого искусственного спутника Земли, возвестившего человечеству о начале космической эры таким-же прерывистым сигналом на частоте 20 и 40 МГц. Вот такая история…

Схема устройства

В мире существует огромное количество схем генераторов, способных генерировать колебания различной частоты и мощности. Обычно, это достаточно сложные устройства на диодах, лампах, транзисторах или других активных элементах. Их сборка и настройка требует некоторого опыта и наличия дорогих приборов. И чем выше частота и мощность генератора, тем сложнее и дороже нужны приборы, тем опытнее должен быть радиолюбитель в данной теме.

Но сегодня, мне бы хотелось рассказать о достаточно мощном генераторе ВЧ, построенном всего на одном транзисторе. Причем работать этот генератор может на частотах до 2ГГц и выше и генерировать достаточно большую мощность — от единиц до десятков ватт, в зависимости от типа применяемого транзистора. Отличительной особенностью данного генератора, является использование симметричного дипольного резонатора, своеобразного открытого колебательного контура с индуктивной и емкостной связью. Не стоит пугаться такого названия — резонатор представляет собой две параллельные металлические полоски, расположенные на небольшом расстоянии друг от друга.

Свои первые опыты с генераторами подобного вида я проводил ещё в начале 2000-х годов, когда для меня стали доступны мощные ВЧ-транзисторы. С тех пор я периодически возвращался к этой теме, пока в середине лета на сайте VRTP.ru не возникла тема по использованию мощного однотранзисторного генератора в качестве источника ВЧ-излучения для глушения бытовой техники (музыкальных центров, магнитол, телевизоров) за счет наведения модулированных ВЧ-токов в электронных схемах этих устройств. Накопленный материал и лег в основу данной статьи.

Схема мощного генератора ВЧ, достаточно проста и состоит из двух основных блоков:

  1. Непосредственно сам автогенератор ВЧ на транзисторе;
  2. Модулятор — устройство для периодической манипуляции (запуска) генератора ВЧ сигналом звуковой (любой другой) частоты.

Детали и конструкция

«Сердцем» нашего генератора является высокочастотный MOSFET-транзистор . Это достаточно дорогостоящий и мало распространенный элемент. Его можно купить за приемлемую цену в китайских интернет-магазинах или найти в высокочастотном радиооборудовании — усилителях/генераторах высокой частоты, а именно, в платах базовых станций сотовой связи различных стандартов. В своем большинстве эти транзисторы разрабатывались именно под данные устройства.
Такие транзисторы, визуально и конструктивно отличаются от привычных с детства многим радиолюбителям КТ315 или МП38 и представляют собой «кирпичики» с плоскими выводами на мощной металлической подложке. Они бывают маленькие и большие в зависимости от выходной мощности. Иногда, в одном корпусе располагаются два транзистора на одной подложке (истоке). Вот как они выглядят:


Линейка внизу, поможет вам оценить их размеры. Для создания генератора могут быть использованы любые MOSFET-транзисторы. Я пробовал в генераторе следующие транзисторы: MRF284, MRF19125, MRF6522-70, MRF9085, BLF1820E, PTFA211801E — все они работают. Вот как данные транзисторы выглядят внутри:


Вторым, необходимым материалом для изготовления данного устройства является медь . Необходимы две полоски данного металла шириной 1-1,5см. и длинной 15-20см (для частоты 400-500 МГц). Можно сделать резонаторы любой длинны, в зависимости от желаемой частоты генератора. Ориентировочно, она равна 1/4 длинны волны.
Я использовал медь, толщиной 0,4 и 1 мм. Менее тонкие полоски — будут плохо держать форму, но в принципе и они работоспособны. Вместо меди, можно использовать и латунь . Резонаторы из альпака (вид латуни) тоже успешно работают. В самом простом варианте, резонаторы можно сделать из двух кусочков проволоки, диаметром 0,8-1,5 мм.

Помимо ВЧ-транзистора и меди, для изготовления генератора понадобится микросхема 4093 — это 4 элемента 2И-НЕ с триггерами Шмитта на входе. Её можно заменить на микросхему 4011 (4 элемента 2И-НЕ) или её российский аналог — К561ЛА7 . Также можно использовать другой генератор для модуляции, например, собранный на таймере 555 . А можно вообще исключить из схемы модулирующую часть и получить просто ВЧ-генератор.

В качестве ключевого элемента применен составной p-n-p транзистор TIP126 (можно использовать TIP125 или TIP127, они отличаются только максимально допустимым напряжением). По паспорту он выдерживает 5А, но очень сильно греется. Поэтому необходим радиатор для его охлаждения. В дальнейшем, я использовал P-канальные полевые транзисторы типа IRF4095 или P80PF55 .

Сборка устройства

Устройство может быть собрано как на печатной плате, так и навесным монтажом с соблюдением правил для ВЧ-монтажа. Топология и вид моей платы приведены ниже:

Эта плата рассчитана на транзистор типа MRF19125 или PTFA211801E . Для него прорезается отверстие в плате, соответствующее размеру истока (теплоотводящей пластины).
Одним из важных моментов сборки устройства является обеспечение теплоотвода от истока транзистора. Я применил различные радиаторы, подходящие по размеру. Для кратковременных экспериментов — таких радиаторов достаточно. Для долговременной работы — необходим радиатор достаточно большой площади или применение схемы обдува вентилятором.
Включение устройства без радиатора, чревато быстрым перегревом транзистора и выходом из строя этого дорогостоящего радиоэлемента.

Для экспериментов, мною были изготовлены несколько генераторов по разные транзисторы. Также я сделал фланцевые крепления полосковых резонаторов, чтобы можно было их менять без постоянного нагрева транзистора. Представленные ниже фотографии помогут вам разобраться в деталях монтажа.


















































Запуск устройства

Перед запуском генератора, необходимо еще раз проверить правильность его соединений, чтобы у вас не образовалась весьма не дешёвая кучка транзисторов с надписью «Сгорел».


Первый запуск, желательно производить с контролем потребляемого тока. Этот ток, можно ограничить до безопасного уровня использовав резистор на 2-10 Ом в цепи питания генератора (коллектор или сток модулирующего транзистора).
Работу генератора можно проверить различными приборами: поисковым приемником, сканером, частотомером или просто энергосберегающей лампой. ВЧ-излучение, мощностью более 3-5 Вт, заставляет её светиться.

ВЧ-токи легко нагревают некоторые материалы вступающие с ними в контакт в т. ч. и биологические ткани. Так, что будьте осторожны, можно получить термический ожог прикоснувшись к оголенным резонаторам (особенно при работе генераторов на мощных транзисторах). Даже небольшой генератор на транзисторе MRF284, при мощности всего около 2-х ватт — легко сжигает кожу рук, в чем вы можете убедиться на этом видео:

При некотором опыте и достаточной мощности генератора, на конце резонатора, можно зажечь т.н. «факел» — небольшой плазменный шарик, который будет подпитываться ВЧ-энергией генератора. Для этого достаточно просто поднести зажженную спичку к острию резонатора.

Т.н. «факел» на конце резонатора.

Помимо этого, можно зажечь ВЧ-разряд между резонаторами. В некоторых случаях, разряд напоминает крошечную шаровую молнию хаотично перемещающуюся по всей длине резонатора. Как это выглядит вы можете увидеть ниже. Несколько увеличивается потребляемый ток и во всем доме «гаснут» многие каналы эфирного телевидения))).

Применение устройства

Помимо этого, наш генератор может быть применен для изучения воздействия ВЧ-излучения на различные устройства, бытовую аудио и радиоаппаратуру с целью изучения их помехоустойчивости. Ну и конечно, с помощью данного генератора можно послать сигнал в космос, но это уже другая история…

P.S. Не следует путать этот ВЧ-автогенератор с различными EMP-jammers. Там генерируются импульсы высокого напряжения, а наше устройство генерирует излучение высокой частоты.




Top