Почему цифровая радиосвязь?! Системы цифровой радиосвязи. Цифровые системы сотовой связи

Для большинства из 100 лет прошедшего столетия подключение телефона абонента к телефонной станции (или «локальный участок линии связи», «последняя миля») осуществлялось медным проводом (витая пара), скрытым в подземных коллекторах или протянутым по воздуху.

Длительное время используемая полоса пропускания не превосходила 3 кГц, что ограничивалось аналоговыми оконечными устройствами. Однако витая пара по своей сути способна к намного более высоким полосам пропускания и по коротким расстояниям может нести видеосигнал или широкополосные данные. Новые технологии (ISDN и ADSL) были разработаны, чтобы обеспечить более высокую производительность на существующей инфраструктуре.

Кроме того, в 1990 годы. кабельные компании вложили значительные капиталы в альтернативные каналы подключения к домам. Здесь использовались как технологии витой пары, так и волоконно-оптические и коаксиальные кабели. В большинстве случаев эти кабельные сети были проведены, чтобы обеспечить трансляцию телевидения. Однако создавшиеся коммуникационные возможности, их высокая полоса пропускания могут эксплуатироваться также чтобы организовать другие формы цифровых услуг.

ISDN

Цифровая сеть с предоставлением комплексных услуг (Integrated Services Digital Network - ISDN) могла быть расценена как лучшая слишком долго сохраняемая тайна компьютерного сетевого мира. ISDN длительное время была скрыта от пользователей телефонных сетей (Public Switched Telephone Network - PSTN), поскольку она обеспечивает только связь между телефонными станциями , а абонент со станцией по-прежнему соединялся по аналоговому каналу.

ISDN была первоначально доступна в двух версиях:

  • Базовая скорость (Basic Rate ISDN - BRI), которая также известна как ISDN-2. BRI предназначена для домашнего пользователя или мелкого бизнеса, состоит из двух «каналов В» (64 Кбит/с) для передачи данных и одного скрытого «канала D» (16 Кбит/с) для информации управления. Два канала по 64 Кбит/с могут использоваться отдельно или соединяться вместе, чтобы образовать канал 128 Кбит/с.
  • Первичная скорость (Primary Rate ISDN - PRI) или ISDN-30. PRI состоит из 30 «каналов В» (может быть установлено минимум шесть) по 64 Кбит/с плюс «канал D» на 64 Кбит/с для данных управления. В-каналы могут объединяться в единственный канал на 1.92 Мбит/с.

Цифровые абонентские линии

xDSL - групповое название для разнообразия технологии цифровой абонентской линии (Digital Subscriber Line - DSL), разработанных, чтобы предложить телефонным компаниям путь в бизнес кабельного телевидения. Это не новая идея: компания Bell Communications Research Inc разработала первую цифровую абонентскую линию еще в 1987 году, чтобы организовать поставку «видео по заказу» и интерактивное телевидение по проводной связи. В то время распространение подобных технологий было затруднено из-за недостатков стандартов всей промышленности.

Технологии xDSL предлагают скорости входящей передачи (загрузки) до 52 Мбит/с и исходящей (разгрузки) - от 64 Кбит/с до 2 Мбит/с и более и имеют ряд модификаций:

  • асимметричная линия (ADSL);
  • высокая битовая скорость (HDSL);
  • одиночная линия (SDSL);
  • очень высокая скорость передачи данных (HDSL).

Практика показывает, что линии ADSL (Асимметричная Цифровая абонентская линия) наиболее перспективны для бытового применения.

ADSL

Технология ADSL подобна ISDN: обе требуют, чтобы проводные телефонные линии были свободны, и могут использоваться только на ограниченном расстоянии от местной телефонной компании. В большинстве случаев ADSL может работать по соединениям типа витой пары, не нарушая существующие телефонные подключения, что означает, что местные телефонные компании не должны проводить специальные линии, чтобы обеспечить обслуживание ADSL.

ADSL использует тот факт, что поскольку голосовая связь не занимает полную полосу пропускания, доступную от стандартной витой пары, то можно организовать высокоскоростную передачу данных в то же самое время. С этой целью ADSL разбивает максимальную полосу пропускания проводного подключения в 1 МГц на каналы по 4 кГц, из которых один канал используется для простой телефонной системы (обычная телефонная сеть - Plain Old Telephone System - POTS) - голосовая связь, факсимильные и аналоговые модемные данные. Другие 256 доступных каналов используются для параллельной цифровой связи. Связь асимметрична: 192 канала по 4 кГц используются для передачи входящей информации и только 64 - для исходящей.

ADSL может рассматриваться как преобразования последовательной строки цифровых данных в параллельную строку, таким образом увеличивая пропускную способность. Методика модуляции известна как дискретная многочастотная (Discrete Multitone - DMT), кодирование и декодирование выполняется соответственно тем же самым способом, как и обычным модемом.

Когда обслуживание сначала стало коммерчески доступным, единственным оборудованием, которое должны были использовать подписчики ADSL, был специальный модем. Аппарат имеет три выхода: разъем к стенному гнезду и затем к телефонной станции; стандартное RJ11 телефонное гнездо для обслуживания аналогового телефона; и соединитель витой пары Ethernet, который подключает модем ADSL к ПЭВМ.

На стороне пользователя модем ADSL собирает высокочастотные цифровые данные и транслирует их для передачи на персональный компьютер или в сеть. На стороне телефонной службы мультиплексор доступа к цифровой абонентской линии (Digital Subscriber Line Access Multiplexer - DSLAM) подключает пользователя ADSL к высокоскоростному , агрегируя входящие линии ADSL в единственное подключение для передачи голоса или данных. Телефонные сигналы направляются на коммутируемую телефонную сеть, а цифровые - в Интернет через высокоскоростную магистраль (стекловолокно, асинхронную передачу данных или цифровую абонентскую линию).

192 канала по 4 кГц обеспечивают максимальную полосу пропускания 8 Мбит/с. Тот факт, что услуги ADSL ограничены пределом в 2 Мбит/с, объясняется искусственным сужением полосы и тем, что фактические уровни работы зависят от ряда внешних факторов. Они включают длину проводки, количество проводов датчика, «висящие пары» и взаимные помехи. Ослабление сигнала увеличивается с длиной линии и частотой и уменьшается с увеличением диаметра проводов. «Висящая пара» - незамкнутая проводная пара, которая находится параллельно основной проводной паре, например, каждое неиспользованное телефонное гнездо представляет собой «висящую пару».

Если игнорировать влияние «висящих пар», производительность ADSL может быть представлена данными, приведенными в соответствующей таблице.

Производительность ASDL связи

В 1999 года по предложениям Intel, Microsoft , Compaq и других производителей оборудования была разработана спецификация, которая была принята Международным союзом электросвязи (International Telecommunication Union - ITU) как универсальный индустриальный стандарт ADSL, известный как G.922.2 или G.lite. Стандарт предполагает, что пользователи могут делать обычные голосовые телефонные звонки одновременно с передачей цифровых данных. Вносятся некоторые ограничения на скорость - 1.5 Мбит/с по приему данных и 400 Кбит/с по передаче.

ADSL2

В июле 2002 года Международный союз электросвязи закончил два новых стандарта асимметричной цифровой абонентской линии, определяемых как G992.3 и G992.4 для асимметричной цифровой абонентской линии (известных в дальнейшем как ADSL2).

Новый стандарт был спроектирован, чтобы улучшить быстродействие и дальность асимметричной цифровой абонентской линии, достигая лучшей эффективности на длинных линиях в условиях узкополосной интерференции. Скорость ADSL2 для входящего и выходящего информационных потоков достигает соответственно 12 и 1 Мбит/с, в зависимости от дальности связи и других обстоятельств.

Повышение эффективности достигалось за счет следующих факторов:

  • улучшенная технология модуляции - сочетание четырехмерной треллис-модуляции (на 16 состояний) и 1-битовой квадратурной амплитудной модуляции (QAM), что дает, в частности, повышение устойчивости по отношению к помехам со стороны AM радиовещания;
  • использование переменного количества служебных битов (которые в ADSL постоянно занимают полосу в 32 Кбит/с) - от 4 до 32 Кбит/с;
  • более эффективное кодирование (на основе метода Рида - Соломона, Reed-Solomon code).

ADSL2+

В январе 2003 года ITU вводит стандарт G992.5 (ADSL2+) - рекомендация удваивает ширину полосы входящего информационного потока, таким образом, увеличивая скорость передачи данных на телефонных линиях короче, чем приблизительно 1.5 км.

В то время как стандарты ADSL2 определяют диапазон частот входящего информационного потока в 1.1 МГц и 552 кГц соответственно, ADSL2+ увеличивает эту частоту до 2.2 МГц. Результат - существенное увеличение скоростей передачи данных нисходящего информационного потока на более коротких телефонных линиях.

ADSL2+ также позволяет уменьшить взаимные помехи. Это может быть особенно полезным, когда линии асимметричной цифровой абонентской линии как от центральной станции, так и от удаленного терминала находятся в одной связке, поскольку они приближаются к домам клиентов. Взаимные помехи могут значительно вредить скоростям передачи данных на линии.

ADSL2+ может исправить эту проблему путем использования частот ниже 1.1 МГц от центральной станции до удаленного терминала, и частот между 1.1 и 2.2 МГц от удаленного терминала до абонентского пункта. Это устранит большинство переходных помех между службами и сохранит скорости передачи данных на линии от центральной станции.Другие технологии xDSL

Таблица характеристик технологий xSDL

Тип сети Скорость связи, Мбит/с Расстояние, км
Исходящий поток Входящий поток
RDSL 128 Кбит/с 1 600 Кбит/с 7 3.5 5.5
HDSL 2.048 4.0
SDSL 1.544-2.048 3.0
VDSL 1 1.6-2.3 12.96 25.82 51.84 1.5 1.0 0.3

RADSL

В 2001 года была введена спецификация адаптивной скорости передачи (Rate Adaptive Digital Subscriber Line - RADSL), в которой предусмотрена коррекция скорости передачи согласно длине и качеству местной линии. Ранее подписчики должны были располагаться в пределах 3.5 км от местной телефонной станции, чтобы можно было подключить ADSL. Для RADSL дальность расширена до 5.5 км, а шумовые допуски увеличились от 41 до 55 дБ.

HDSL

Технология HDSL симметрична, означая, что обеспечивается одна и та же полоса пропускания для выходного и входного потоков данных. Здесь используется проводка с 2-3 и более витыми парами в кабеле. Хотя типичная дальность (3 км) ниже, чем для ADSL, но могут быть установлены повторители сигнала несущей, что позволяет удлинить связь на 1 - 1.5 километра.

SDSL

Технология аналогична HDSL, но с двумя исключениями: используется единственная проводная пара и максимальная длина ограничена 3 км.

VDSL

Это самая быстрая технология цифровой абонентской линии. Скорость входного потока 13-52 Мбит/с, а выходного - 1.6-2.3 Мбит/с по единственной проводной паре. Однако максимальная дистанция связи составляет только 300-1500 м и оборудование ADSL и VDSL несовместимы, хотя и используются сходные алгоритмы сжатия и технологии модуляции.

Кабельные модемы. Кабель-модемы предлагают перспективу быстрого доступа к Интернет, используя существующие широкополосные сети кабельного телевидения. Технология соответствует, скорее, домашним, нежели офисным применениям, так как обычно жилые кварталы более охвачены кабельной связью.

Типичные устройства, изготовленные, например, такими продавцами, как Bay Networks или Motorola, - внешние модули, присоединяемые к клиентским ПЭВМ через интерфейсы Ethernet, USB или FireWire. В большинстве случаев кабельному модему пользователя назначается единственный IP адрес, но могут быть либо поставлены дополнительные адреса IP для нескольких компьютеров, либо несколько персональных компьютеров могут совместно эксплуатировать единственный адрес IP, используя proxy сервер. Кабельный модем использует один или два канала телевидения на 6 МГц.

Поскольку сеть кабельного телевидения имеет шинную топологию, каждый кабельный модем в окрестности совместно использует доступ к единственной коаксиальной кабельной магистрали.

Кабель имеет ряд практических недостатков по сравнению с хDSL: не все дома снабжены кабельным телевидением, а некоторые - не будут никогда; кроме того, для многих пользователей, которые подсоединены, все же более вероятно размещение персональных компьютеров поблизости от телефонного гнезда, нежели у телевизора или кабельного ввода. Однако для многих домашних пользователей кабель дает перспективу быстрого доступа к Интернет по доступной цене. Теоретически возможны скорости до 30 Мбит/с. Практически кабельные компании устанавливают скорости исходящего потока в 512 Кбайт/с, а входящего - 128 Кбайт/с.

Широкополосная спутниковая связь

Поскольку максимальная дистанция, поддерживаемая xDSL, - от 3.5 до 5.5 км, она оказывается недоступной для многих сельских районов. В теории спутниковая связь может достигать почти любых точек, и спутниковая широкополосная передача становится все более и более выполнимым решением для тех, для кого ADSL и кабельная связь недостижимы.

Существенным преимуществом спутниковых систем связи по сравнению с пейджинговой и сотовой является отсутствие ограничений по привязке к конкретной местности Земли. Ожидается, что в начале XXI в. площадь зон обслуживания сотовых систем приблизится к 15 % площади земной поверхности.

В обозримом будущем системы персональной спутниковой связи способны дополнить системы сотовой связи там, где она невозможна или недостаточно эффективна при передаче информации: в морских акваториях, в районах с малой плотностью населения, в местах разрывов наземной инфраструктуры коммуникаций.

Организация спутниковых систем

В соответствии с международными соглашениями для спутниковых систем связи выделены полосы частот, соответствующие установленным диапазонам.

Таблица диапазонов частот спутниковых систем связи

Современные спутники используют узкоапертурную технологию передачи VSAT (Very Small Aperure Terminals). Такие терминалы используют антенны диаметром 1 м и выходную мощность около 1 Вт. При этом канал к спутнику имеет пропускную способность 19.2 Кбит/с, а со спутника - более 512 Кбит/с. Непосредственно такие терминалы не могут работать друг с другом, но через телекоммуникационный спутник. Для решения этой проблемы используются промежуточные наземные антенны с большим усилением, что, правда, увеличивает задержку.

GSM

В 1982 года Европейская конференция почтовой и электросвязи (Conference of European Posts and Telecommunications - CEPT) сформировала Рабочую группу по проблемам мобильной телефонии (Groupe Special Mobile - GSM), чтобы она разработала общеевропейский стандарт в данной области.

Было принято решение, что системы мобильной телефонии будут разрабатываться на базе цифровой связи, и «GSM» впоследствии стало акронимом для Глобальной Системы Мобильных коммуникаций. В 1989 года ответственность за спецификации GSM перешла от СЕРТ к европейскому Институту Стандартов Телесвязи (European Telecommunications Standards Institute - ETSI). Спецификации GSM (Стадия 1) были изданы в следующем году, но коммерческое использование системы не начиналось до середины 1991 года В 1995 года спецификации Стадии 2 расширили охват на сельские районы, и к концу этого же года около 120 сетей действовали приблизительно в 70 годаографических областях.

В сети GSM выделяются четыре главных компонента:

  • мобильная станция (телефон, «трубка»), которой пользуется абонент;
  • базовая станция, которая осуществляет радиосвязь с мобильной станцией;
  • сеть и подсистема переключения, главная часть которой - центр переключения мобильных услуг, который исполняет переключение запросов между мобильным телефоном и другими стационарными или мобильными пользователями сети так же, как управление мобильными услугами типа установления аутентичности;
  • система операционной поддержки, которая наблюдает за надлежащим действием и настройками сети.

Международный Союз Телесвязи (International Telecommunication Union - ITU), который (среди других функций) координирует международное распределение радиоспектра, разместил полосы 890-915 МГц для «восходящего сигнала» (мобильная станция к базе) и 935-960 МГц для «нисходящего» (база к мобильной станции) для мобильных сетей в Европе.

Метод, выбранный GSM, - комбинация FDMA и TDMA. FDMA осуществляет разделение частот полной полосы пропускания в 25 МГц на 124 несущих частоты полосы пропускания по 200 кГц. Одна или более несущих частот отводятся на каждую базовую станцию. Каждая из этих несущих частот, используя схему TDMA, после этого разделяется на восемь временных интервалов. Один интервал времени используется для передачи мобильным телефоном и другой - для приема. Они разнесены во времени так, чтобы мобильная станция не могла одновременно получать и передавать данные (что упрощает электронику).

Система GSM, используемая с переносным персональным компьютером, обеспечивает всестороннее решение проблемы коммуникации в движении. Пропускная способность факса в 9600 бод, наряду со специальными возможностями, подобными международному роумингу и Службе коротких сообщений (Short Message Service - SMS), позволяет мобильным пользователям легко и надежно соединяться при перемещении из страны в страну. Эти способности передачи данных не являются автоматическими - провайдер GSM должен поддерживать эти функциональные возможности для мобильных пользователей. Услугами передачи данных могут быть:

  • исходящая передача (Mobile Originated - МО) подразумевает, что пользователи могут посылать данные, находясь в отдаленном месте, используя сеть GSM;
  • входящая передача (Mobile Terminated - МТ) - пользователи могут получать данные, факсы или сообщения SMS на ноутбук, используя сеть GSM.

Системы 2G, доступные с конца 1999 года для передачи голоса или данных, занимали единственный временной интервал TDMA, предлагая скорость передачи 9.6 кбод.

Последующее введение Высокоскоростных переключаемых сетей передачи данных (High Speed Circuit Switched Data - HSCSD), которые требовали расширения стандарта GSM, чтобы ввести новый протокол радиосвязи, позволило использовать все восемь интервалов TDMA и увеличить скорость до 76.8 кбод.

WiMAX

Хотя широкополосный доступ к данным был доступен уже в течение некоторого времени, в конце 2002 года в США к нему были подсоединены только 17 процентов пользователей.

Предложенная в это время технология глобального микроволнового доступа (Worldwide Interoperability of Microwave Access - WiMAX) стандарта IEEE 802.16 представляет собой решение проблемы «последней мили» для доступа широких масс пользователей к быстрому Интернет.

Беспроводной широкополосный доступ организован наподобие сотовой связи, используя базовые станции, каждая из которых охватывает радиус в несколько километров. Антенны баз могут размещаться на высоких зданиях, либо на других сооружениях (хотя бы на водонапорных башнях). Принимающее устройство пользователя, подобное спутниковому ТВ-приемнику, через Ethernet-кабель либо через связь 802.11 посылает данные прямо на персональный компьютер, либо в локальную сеть.

Первоначальный стандарт 802.16 предусматривал использование частот 10-66 ГГц, обеспечивавших связь только в пределах прямой видимости, а по версии 802.16а (январь 2003 года), - на частотах от 2 до 11 ГГц, этого не требующих.

Пока что неясно, какая из конкурирующих технологий (HSDPA и WiMAX) одержит верх в конечном счете. В ранних стадиях ожидается, что HSDPA сосредоточится на мобильной голосовой связи и передаче данных на основе платформ сотовой связи, a WiMAX - на поставке данных по широкополосной сети на предприятия и в загородные районы. В конечном счете эти технологии пересекутся, поскольку HSDPA повышает скорости передачи, a WiMAX - мобильность связи.

IEEE 802.11

Спецификации 802.11 была выпущена в 1997 году как стандарт для беспроводных локальных сетей (WLAN). Эта исходная версия предусматривала скорости передачи данных 1 и 2 Мбит/с и набор основных методов передачи сигналов и других услуг. Невысокие скорости передачи данных не удовлетворяли современным требованиям и осенью 1999 года был выпущен вариант IEEE 802.11b стандарта (также известный как «высокоскоростной 802.11») для передачи до 11 Мбит/с.

Стандарт 802.11 определяет две составные части оборудования - беспроводная «станция» (обычно персональные компьютеры, оборудованный беспроводной сетевой интерфейсной платой) и «пункт доступа» (access point - АР), который действует как мост между беспроводными и проводными сетями. Пункт доступа включает приемопередатчик, сетевой интерфейс (типа IEEE 802.3) и программную часть, обеспечивающую соединение по стандарту 802.1d. Пункт доступа действует как базовая станция (база) для беспроводной сети, осуществляя доступ беспроводных станций к проводной сети. Беспроводными конечными станциями могут быть платы 802.11 PC Card, сетевые интерфейсы PCI, ISA или встроенные некомпьютерные клиенты (например, мобильный телефон, поддерживающий стандарт 802.11).

Стандарт 802.11 определяет два режима работы: инфраструктурный (infrastructure mode) и специальный (ad hoc mode). В инфраструктурном режиме беспроводная сеть состоит из одного или более пунктов доступа, связанных с проводной сетевой инфраструктурой и набором беспроводных конечных станций. Эту конфигурацию называют основным сервисным набором (Basic Service Set - BSS). Расширенный сервисный набор (Extended Service Set - ESS) - набор двух или больше BSS, образующих отдельную подсеть. Так как большинство корпоративных WLAN требуют доступа к проводной локальной сети для обслуживания (файловые серверы, принтеры, связи с Интернет), они работают в режиме инфраструктуры.

Специальный режим, также называемый одноранговым режимом (peer-to-peer mode) или независимым основным сервисным набором (Independent Basic Service Set - IBSS), - просто совокупность беспроводных станций 802.11, которые связываются непосредственно друг с другом, не используя пункт доступа или любое подключение к проводным сетям. Этот режим полезен для быстрой и легкой установки беспроводной сети там, где беспроводная инфраструктура не существует или не требуется для услуг типа гостиничного номера, центра переговоров или аэропорта, или там, где доступ к проводной сети запрещен.

Три физических уровня, первоначально определенные в 802.11, включали два метода, базирующихся на радиосвязи с разделением спектра, и нечеткую инфракрасную спецификацию. Стандарты на основе радио работают в пределах полосы ISM на 2.4 ГГц. Эти частоты признаны такими агентствами, как FCC (США), ETSI (Европа) и МКК (Япония) для нелицензируемых радиоопераций. Поэтому изделия, выполненные по 802.11, не требуют лицензирования пользователя или специального обучения. Методы разделения спектра в дополнение к удовлетворению регулирующих требований увеличивают надежность и производительность и позволяют многим независимым изделиям совместно использовать спектр без необходимости координации и с минимальными взаимными помехами.

Исходный стандарт 802.11 определяет скорости радиоволновой передачи данных 1 и 2 Мбит/с, используя два различных и взаимно несовместимых метода передачи с разделением спектра для физического уровня:

  • разделение переключением частоты (Frequency Hopping Spread Spectrum - FHSS). Станции передачи и приема синхронно переключаются с канала на канал в предопределенной псевдослучайной последовательности. Заранее спланированная последовательность переключения известна только станциям передачи и получения. В США и Европе IEEE 802.11 определяет 79 каналов и 78 различных последовательностей переключения. Если в канале возникают ошибки или высок уровень шума, данные просто передаются повторно, когда приемопередатчик переключается на чистый канал;
  • разделение в прямой последовательности (Direct Sequence Spread Spectrum - DSSS). Каждый бит, который должен быть передан, кодируется в блок с избыточным кодом, называемым чипом, и закодированные биты передаются одновременно по всей частотной полосе. Код деления на чипы, используемый в передаче, известен только станциям приема и передачи, что затрудняет злонамеренное прерывание передачи или декодирование. Избыточное кодирование позволяет также восстановить поврежденные данные без повторной передачи (код с коррекцией ошибок). DSSS используется в сетях 802.11b.

IEEE 802.11a

Если 802.11b размещается в полосе 2.4 ГГц, то стандарт 802.11а был разработан, чтобы работать в диапазоне 5 ГГц «Нелицензируемая национальная информационная инфраструктура» (Unlicensed National Information Infrastructure). Кроме того, в отличие от 802.11b 802.11а использует полностью отличную схему кодирования - ортогональное мультиплексирование с разделением частот (Coded Orthogonal Frequency Division Multiplexing - COFDM) для беспроводного использования внутри помещения.

COFDM расщепляет одну высокоскоростную несущую частоту на несколько поднесущих более малого быстродействия, которые передаются параллельно. Высокоскоростная несущая шириной 20 МГц разделена на 52 подканала, каждый приблизительно по 300 кГц. COFDM использует 48 из этих подканалов для данных, а остающиеся четыре - для исправления ошибок. COFDM поставляет более высокие скорости передачи данных и высокую степень восстановления благодаря схеме кодирования и исправлению ошибки. Метод обеспечивает скорости передачи в 5.12 и 24 Мбит/с.

Беспроводные локальные сети (WLAN) общего доступа (Public Wi-Fi access). Несмотря на то что протокол IEEE 802.11b был рассчитан на то, чтобы поддерживать Ethernet-подобные беспроводные сети в рамках помещения (здания), в начале 2000 года было обнаружено, что если установить приемопередатчик (точку доступа, Access Point - АР) на высокой мачте (от 15 до 50 м) и использовать специальные наружные маршрутизаторы и мосты протокола 802.11b, то можно расширить беспроводную сеть от здания к зданию и таким образом расширить охват (до 500-1000 м).

США взяли на себя инициативу в создании сетей WLAN общего доступа (известных как «Wi-Fi hot spots», или «Wi-Fi»), и к 2001 года их было в США уже больше 5000, или приблизительно 80 % мирового общего количества. Первыми пользователями являлись университеты, компании типа Starbucks (сеть кофейных лавок, которая снабдила в США 650 кафе доступом Wi-Fi) и множество гостиниц. В 2002 года количество Wi-Fi возросло, охватывая такие объекты, как аэропорты, отели и офисные здания.

Успех Wi-Fi представляет проблему для индустрии мобильной телефонии. Многие провайдеры сотовой связи сделали огромные в ЗG-технологии GSM, предполагая, что это будет технология, которая навсегда решит проблемы доступа к Интернет для мобильных пользователей. Однако поскольку WLAN имеет полосу пропускания, достаточно хорошую для видеотелевизионного качества, что может помешать провайдеру мобильных услуг, не отягощенному обязательствами перед 3G, перейти на эту технологию?

Позиция, занятая европейскими компаниями, разрабатывающими беспроводные технологии и инфраструктуру, проста - технологии 3G и WLAN дополняют друг друга: изготовители сотового телефона включают доступ по Wi-Fi в новые модели и разрабатывают модули, которые без затруднений переключают обычный телефон GSM к Wi-Fi в зависимости от того, какой канал связи обеспечивает лучший сигнал.

IEEE 802.11n

Потребность в беспроводных LAN испытала феноменальный рост после ратификации IEEEa 802.11а летом 1999 года Появилось множество пользователей, подключающих ноутбуки к сетям на работе и к Интернет дома так же, как и в магазинах, кафе, аэропортах, гостиницах и других местах, обеспеченных доступом к Wi-Fi. Тем временем, однако, выпуск единиц Wi-Fi оборудования существенно вырос - до 100 млн модулей в 2005 году, сравнительно с менее чем 10 млн в 2001 году Поэтому существующие сетевые инфраструктуры Wi-Fi начали испытывать перегрузку.

Эта ситуация предвиделась, и IEEE (2003 года) принял предложения рабочей группы 802.11 TGn о поправках к стандартам 802.11, предполагающих приблизительно 4-кратное повышение производительности WLAN по сравнению с потоком 802.11a/g.

Спецификация проекта 802.11n отличается от предшественников тем, что предусматривает разнообразие дополнительных режимов и конфигураций для различных скоростей передачи данных. Это дает возможность стандарту обеспечить базовые параметры для всех 802.11n-устройств, разрешая изготовителям охватывать широкий спектр различных приложений и цен на оборудование. Максимальная скорость, допускаемая 802.11n, - до 600 Мбит/с, однако, если аппаратные средства WLAN не поддерживают каждую опцию, они могут быть совместимы со стандартом.

Один из наиболее широко известных компонентов спецификации известен как многократный вход-выход (Multiple Input Multiple Output - MIMO). MIMO использует методику, известную как пространственное мультиплексирование (space-division multiplexing). Передающее устройство WLAN фактически разбивает поток данных на части, названные пространственными потоками, и передает каждый из них через отдельные антенны к соответствующим антеннам-приемникам. Стандарт 802.11n предусматривает до четырех пространственных потоков, даже при том, что совместимые аппаратные средства не обязаны это поддерживать.

Удвоение числа пространственных потоков фактически удваивает скорость данных. Другой дополнительный режим в 802.11n также увеличивает скорость, удваивая ширину канала связи WLAN от 20 до 40 МГц.

Вообще говоря, 802.11n предусматривает 576 возможных конфигураций потока данных. Для сравнения, 802.11g обеспечивает 12 возможных потоков данных, а 802.11а и 802.11b определяют восемь и четыре, соответственно. Таблица демонстрирует характеристики различных версий спецификации 802.11.

Цифровая связь, и предпосылки ее использования.

Современное поколение уже не удивить словами модем, выделенная линия или “коннект”. Особенно это относиться к “фидошникам” или к людям так или иначе связанным с сетью Интернет. Но часто возникают недопонимания между операторами связи и абонентами, именно из-за проблем модемной связи по коммутируемой или выделенной линии. Кроме того, постоянно в конференциях и “фидошных эхах” идут обсуждения “какие номера с какими лучше вяжутся, какие модемы лучше держат коннект, а какие хуже”. Как это не прискорбно, но такие споры и обсуждения редко рождают истину. В такой ситуации всем сильно не хватает технической поддержки местного оператора связи.

Чаще всего все претензии абонента насчет плохих скоростей соединения модемов не принимаются, и ответ прост: изоляция в норме, постороннего нет. А причины плохой связи могут крыться в таких тонкостях, которые в голосовой связи ни когда не проявляются. Для разных типов Автоматических Телефонных Станций (АТС), такие причины могут быть разные.

Механические АТС (Координатные и Декадно-шаговые).

Это уже устаревшие типы АТС, но, тем не менее, еще используются на территории России ввиду дороговизны новых и тяжелым экономическим положением в стране. И конечно нельзя не упомянуть что кабельное хозяйство российских операторов связи на 40% 60-х годов. Именно на этих станциях обычно не используется никакого оборудования уплотнения, и качество связи зависит только от оборудования механической коммутации. Общая структура взаимодействия АТС и абонентов показана на рисунке:

В Томске на механических АТС работают номера, начинающиеся на цифры: 21, 22, 23, 25, 77, 78.

С одной стороны преимуществом является то, что, соединившиеся абоненты соединены физической двухпроводной линией. То есть рабочий диапазон такой линии от 300 Гц до 20 кГц, что теоретически позволяет при использовании широкополосных модемов получить скорости обмена до 2 Мбит, а в редких случаях и больше. Но такие оптимистические цифры в реальных соединениях невозможны из-за нескольких факторов:

Качество коммутационных контактов на АТС очень низкое.

Очень высокий “шум станции”.

Сильные перекрестные помехи в кабельных магистралях (50-100 парный кабель с малым количеством витков на метр).

Подверженность кабельных магистралей многим природным факторам и электромагнитным помехам (многие встречались с тем, что кабель, подходящий к вашему дому или офису, либо “замокает” при дожде, либо прослушивается сторонний разговор).

Несколько лет назад в Томске эта проблема была частично решена ЦСП (Цех Систем Передачи), введением развитой сети ИКМ – трактов (Импульсно-кодовая модуляция). На схеме №2 схематично показаны отличия многопарных кабельных магистралей и ИКМ – трактов:


Как видно из рисунка многопарный медный кабель из-за дороговизны обслуживания и низкого качества соединения теперь используется эффективнее. Но на смену пришла ВОЛС (Волоконно-оптический линия связи), которая передает цифровой поток со скоростью до 300Мбит/с и более(скорость передачи цифрового потока по 4-парному медному проводу 2Мбит/с). То есть теперь абонентское соединение после коммутации на механической АТС аналоговый сигнал выходит со станции и входит в оборудование ЦСП. Аналого-цифровой преобразователь (АЦП) превращает этот сигнал в цифровой поток 64кбит/с на передачу и 64кбит/с поток в аналоговый сигнал на прием. Потом 30+2 цифровых потока (2 управляющих) по 64кбит/с объединяются в один 2Мбит-ный поток E1 (ИКМ-тракт). В ВОЛС входит до 64 потоков E1. С другой стороны магистрали ситуация повторяется с точностью до наоборот. С ВОЛС снимаются 64 цифровых потока E1, далее каждый разбирается на 64кбит-ные потоки, и подаются на цифро-аналоговый преобразователь (ЦАП). Получившийся аналоговый сигнал поступает на станцию, и после коммутации к абоненту.

Проанализируем, какие преимущества и недостатки дает переход на цифровое уплотнение оператору связи, а какие абоненту:

Преимущества.

Оператор связи:

ВОЛС не подвержены проникновению влаге и электромагнитным помехам, следовательно, дешевле обходиться прокладка шахт и обслуживание.

Гибкость такого решения позволяет модернизировать объемы межстанционных соединений без дополнительных работ.

Экономия на стоимости кабеля 1м 100-парного медного кабеля стоит на сегодняшний день дороже, чем 1м двухжильного оптического волокна.

Абонент:

Качество связи повышается за счет уменьшения перекрестных помех межстанционных соединений.

Расстояние между абонентами перестает влиять на качество связи (ВОЛС может передавать сигнал на десятки километров без потерь, кроме того, за счет передачи сигнала в цифровом виде можно использовать алгоритмы коррекции).

Недостатки.

Оператор связи:

Сложность и дороговизна решений с цифровой передачей.

Необходимость формирования и обучения служб монтажа и обслуживания ВОЛС.

Абонент:

Проблемы, обусловленные прохождением через АЦП/ЦАП и оборудование уплотнения: диапазон рабочих частот 300-3300Гц, “джиттер” (дрожание фазы) и временные задержки (в голосовой связи незаметные).

Перекрестные помехи на магистралях распределительных шкафов, попадание влаги в шахты магистралей (проблема последней мили).

Так как механическая коммутация происходит с аналоговым сигналом, шумы станции попадают в линию, как и прежде без применения ИКМ-трактов.

Преимущества оператора связи очевидны, так же как и абонента. А вот недостатки вызывают сомнение, повышает ли введение ИКМ-трактов качество обслуживание. Уменьшение рабочего диапазона частот делает невозможным использование широкополосых модемов, а “джиттер” должен отрицательно повлиять на скорость соединения.(алгоритм АЦП!!) В то же время перекрестные помехи не исчезнут совсем, так как от станции до распределительного шкафа магистраль проведена медным кабелем. И в завершении “шум станции”, который не уменьшился и не увеличился, наводит на мысли что переход на цифровые ИКМ-тракты в межстанционных магистралях на механических станциях, не дают преимуществ для модемной связи абонента.

Выделенные линии (прямые линии).

Часто для объединения локальных сетей двух удаленных офисов применяют постоянное модемное соединение. Но для максимальной эффективности такого решения применяют не обычную коммутируемую линию, имеющую ряд вышеперечисленных недостатков, а прямую (выделенную) линию. По определению прямая линия – это выделенная только для нужд абонента некоммутируемая физическая линия (см. рис.).


Как видно из рисунка, предоставление абонентам прямой линии требует выделение свободной пары во всех магистралях по пути ее установки. На станцию пара не заходит, а соединяется с парой из следующей магистрали в кроссе . И важным свойством прямой линии является то, что она не заходит ни в ИКМ-тракт или другое оборудование уплотнения, а, следовательно, рабочий диапазон частот не ограничен 3,3кГц и нет потерь из-за временных задержек и дрожания фазы. И последним важным фактором является полная длина прямой (чем больше длина, тем хуже параметры линии), и уже имея этот параметр, можно взяться за выбор модели модемов. В таких случаях рекомендуют либо модемы short-range модемы (модемы “последней мили”), либо широкополосные xDSL модемы с пропускной способностью 2Мбит/с и более.

Short-range модемы или модемы "последней мили" - это устройства, используемые для связи между компьютерами, терминалами, контроллерами и другой аппаратурой передачи данных, на сравнительно коротких расстояниях. Например: внутри зданий, в пределах территории кампуса или в границах города. Эти устройства проектируются с целью преодоления ограничений в дальности действия интерфейсов канала передачи данных.

Но в последнее время в связи с вытеснением межстанционных медных магистралей ИКМ-трактами, возможность провести прямую линию абоненту в разных районах города (разные АТС) становиться проблемой. Иногда это решается проведением магистралей между распределительными шкафами, а иногда ни каких вариантов кроме ввода в ИКМ-тракт нет. Это наталкивает операторов связи на внедрение современных технологий цифровых сетей.

Электронные АТС.

В представлении абонента электронные или цифровые АТС - это что-то такое ультрасовременное и недоступное. Хотя в Томске уже более 100000 абонентов обслуживаются именно электронными АТС. Ключевое отличие электронных станций от механических в методе и среде коммутации абонентов.


Механические АТС коммутируют аналоговые линии контактными площадками, управляемыми электромагнитным приводом, в то время как электронные коммутируют пространственно-временными манипуляциями цифровых потоков.

Как видно из рисунка аналоговый сигнал от абонента приходит в абонентский комплект, где объединяется с входным потоком и после эхокомпенсации преобразуется с помощью АЦП в цифровой поток 64 кбит/с. Входной поток аналогично преобразовывается и поступает абоненту (см. рис.).


Важно заметить, что при коммутации теперь происходит не механическое соединение-разъединение, а манипуляция цифровым потоком во внутриканальном пространстве и распределение этого потока в выделенные интервалы передачи. За счет этого электронные АТС имеют идеальное качество “контакта” и благодаря использованию цифровых технологий “шум станции” на линию не проходит. Однако есть и обратная сторона медали: “шум квантования”.

Шум вызван квантованием аналоговых сигналов, необходимый для преобразования аналогового сигнала в цифру перед отправкой по телефонной сети. Входящий аналоговый сигнал изменяется 8000 раз в секунду, и каждый раз его амплитуда записывается как Пульсовый Код Модуляции (Pulse Code Modulation - PCM). Cэмплирующая система использует 256 дискретных 8-битных PCM кодов. Так как аналоговый сигнал непрерывен, а цифровой код - дискретен, цифровой поток, передаваемый по телефонной сети, воссоздаются на другом конце в приблизительно соответствующий им аналоговый исходный сигнал. Разница между оригинальным сигналом и воссозданным - есть шум квантования , который ограничивает скорость модемов. Шум квантования ограничивает скорость приблизительно до 35кбит/c (по теореме Шенона). Но шум проявляется только при аналого-цифровом преобразовании, а не при цифро-аналоговом.

Материал из Википедии - свободной энциклопедии

Цифровая связь - область техники , связанная с передачей цифровых данных на расстояние.

В настоящее время цифровая связь повсеместно используется также и для передачи аналоговых (непрерывных по уровню и времени, например речь, изображение) сигналов, которые для этой цели оцифровываются (дискретизируются). Такое преобразование всегда связано с потерями, т.е. аналоговый сигнал представляется в цифровом виде с некоторой неточностью.

Современные системы цифровой связи используют кабельные (в том числе волоконно-оптические), спутниковые, радиорелейные и другие линии и каналы связи, в том числе и аналоговые.

Линия связи «точка-точка»

Оборудование, осуществляющее формирование данных из пользовательской информации, а также представление данных в виде, понятном пользователю, называется терминальным оборудованием (ООД, оконечное оборудование данных) . Оборудование, преобразующее данные в форму пригодную для передачи по линии связи и осуществляющее обратное преобразование, называется оконечным оборудованием линии связи (АКД, аппаратура канала данных) . Терминальным оборудованием может служить компьютер , оконечным оборудованием обычно служит модем .

Передача сигнала осуществляется символами . Каждый символ представляет собой определённое состояние сигнала в линии, множество таких состояний конечно. Таким образом, символ передаёт некоторое количество информации, обычно один или несколько бит.

Число передаваемых символов в единицу времени называется скоростью манипуляции или символьной скоростью (baud rate). Она измеряется в бодах (1 бод = 1 символ в секунду). Количество информации, передаваемое в единицу времени, называется скоростью передачи информации и измеряется в битах в секунду . Существует распространённое заблуждение, что бит в секунду и бод - это одно и то же, но это верно, только если каждый символ передаёт только один бит, что бывает не очень часто.

Преобразование данных в форму пригодную для передачи по линии/каналу связи называется модуляцией .

Технологии цифровой связи

Следующие технологии находят применение в цифровой связи:

Кодирование источника информации

Кодирование источника связано с задачей создания эффективного описания исходной информации. Эффективное описание допускает снижение требований к памяти или полосе частот, связанных с хранением или передачей дискретных реализаций исходных данных. Для дискретных источников способность к созданию описаний данных со сниженной скоростью передачи зависит от информационного содержимого и статистической корреляции исходных символов. Для аналоговых источников способность к созданию описаний данных со сниженной скоростью передачи (согласно принятому критерию точности) зависит от распределения амплитуд и временной корреляции сигнала источника. Целью кодирования источника является получение описания исходной информации с хорошей точностью при данной номинальной скорости передачи битов или допуск низкой скорости передачи битов, чтобы получить описание источника с заданной точностью.

Сжатие данных

Шифрование данных

Помехоустойчивое кодирование

Любая система связи подвержена воздействию шумов и особенностей линий и каналов связи (и как следствие возникновению искажений), которые могут привести к неправильному приёму сигнала. Для борьбы с возникающими при этом ошибками в сигнал вводится специальным образом сконструированная избыточность, что позволяет принимающей стороне обнаружить, а в некоторых случаях и исправить определённое число ошибок. Существует большое количество помехоустойчивых (ПУ) кодов, различающихся избыточностью, обнаруживающей и исправляющей способностью.

Основные классы помехоустойчивых кодов:

  • Блочные коды , преобразующие фиксированные блоки информации длиной k символов (эти символы могут отличаться от используемых при модуляции) в блоки длиной n символов. При этом декодирование каждого блока производится отдельно и независимо от других. Примеры блочных кодов: коды Хемминга , коды БЧХ , коды Рида-Соломона .
  • Свёрточные коды работают с непрерывным потоком данных, кодируя их при помощи регистров сдвига с линейной обратной связью. Декодирование свёрточных кодов производится, как правило, с помощью алгоритма Витерби .

Модуляция

Модуля́ция (лат. modulatio - размеренность, ритмичность ) - процесс изменения одного или нескольких параметров высокочастотного несущего колебания по закону низкочастотного информационного сигнала(сообщения).

Передаваемая информация заложена в управляющем (модулирующем) сигнале, а роль переносчика информации выполняет высокочастотное колебание, называемое несущим(модулируемым). Модуляция, таким образом, представляет собой процесс «посадки» информационного колебания на заведомо известную несущую с целью получения нового, модулированного сигнала.

В результате модуляции спектр низкочастотного управляющего сигнала переносится в область высоких частот. Это позволяет при организации вещания настроить функционирование всех приёмо-передающих устройств на разных частотах с тем, чтобы они «не мешали» друг другу.

В качестве несущего могут быть использованы колебания различной формы (прямоугольные, треугольные и т. д.), однако чаще всего применяются гармонические колебания. В зависимости от того, какой из параметров несущего колебания изменяется, различают вид модуляции (амплитудная, частотная, фазовая и др.). Модуляция дискретным сигналом называется цифровой модуляцией или манипуляцией.

См. также

Напишите отзыв о статье "Цифровая связь"

Литература

  • Скляр, Бернард. Цифровая связь. Теоретические основы и практическое применение = Digital Communications: Fundamentals and Applications. - 2 изд. - М .: «Вильямс» , 2007. - С. 1104. - ISBN 0-13-084788-7 .
  • Прокис, Дж. Цифровая связь = Digital Communications / Кловский Д. Д.. - М .: Радио и связь, 2000. - 800 с. - ISBN 5-256-01434-X .
  • Феер К. Беспроводная цифровая связь. Методы модуляции и расширения спектра = Wireless Digital Communications: Modulation and Spread Spectrum Applications. - М .: Радио и связь, 2000. - 552 с. - ISBN 5-256-01444-7 .
  • Василенко Г.О., Милютин Е.Р. Расчет показателей качества и готовности цифровых линий связи. - СПб.: Изд-во "Линк", 2007. - 192 с.

Отрывок, характеризующий Цифровая связь

«Имел поучительный и длинный разговор наедине с братом В., который советовал мне держаться брата А. Многое, хотя и недостойному, мне было открыто. Адонаи есть имя сотворившего мир. Элоим есть имя правящего всем. Третье имя, имя поизрекаемое, имеющее значение Всего. Беседы с братом В. подкрепляют, освежают и утверждают меня на пути добродетели. При нем нет места сомнению. Мне ясно различие бедного учения наук общественных с нашим святым, всё обнимающим учением. Науки человеческие всё подразделяют – чтобы понять, всё убивают – чтобы рассмотреть. В святой науке Ордена всё едино, всё познается в своей совокупности и жизни. Троица – три начала вещей – сера, меркурий и соль. Сера елейного и огненного свойства; она в соединении с солью, огненностью своей возбуждает в ней алкание, посредством которого притягивает меркурий, схватывает его, удерживает и совокупно производит отдельные тела. Меркурий есть жидкая и летучая духовная сущность – Христос, Дух Святой, Он».
«3 го декабря.
«Проснулся поздно, читал Св. Писание, но был бесчувствен. После вышел и ходил по зале. Хотел размышлять, но вместо того воображение представило одно происшествие, бывшее четыре года тому назад. Господин Долохов, после моей дуэли встретясь со мной в Москве, сказал мне, что он надеется, что я пользуюсь теперь полным душевным спокойствием, несмотря на отсутствие моей супруги. Я тогда ничего не отвечал. Теперь я припомнил все подробности этого свидания и в душе своей говорил ему самые злобные слова и колкие ответы. Опомнился и бросил эту мысль только тогда, когда увидал себя в распалении гнева; но недостаточно раскаялся в этом. После пришел Борис Друбецкой и стал рассказывать разные приключения; я же с самого его прихода сделался недоволен его посещением и сказал ему что то противное. Он возразил. Я вспыхнул и наговорил ему множество неприятного и даже грубого. Он замолчал и я спохватился только тогда, когда было уже поздно. Боже мой, я совсем не умею с ним обходиться. Этому причиной мое самолюбие. Я ставлю себя выше его и потому делаюсь гораздо его хуже, ибо он снисходителен к моим грубостям, а я напротив того питаю к нему презрение. Боже мой, даруй мне в присутствии его видеть больше мою мерзость и поступать так, чтобы и ему это было полезно. После обеда заснул и в то время как засыпал, услыхал явственно голос, сказавший мне в левое ухо: – „Твой день“.
«Я видел во сне, что иду я в темноте, и вдруг окружен собаками, но иду без страха; вдруг одна небольшая схватила меня за левое стегно зубами и не выпускает. Я стал давить ее руками. И только что я оторвал ее, как другая, еще большая, стала грызть меня. Я стал поднимать ее и чем больше поднимал, тем она становилась больше и тяжеле. И вдруг идет брат А. и взяв меня под руку, повел с собою и привел к зданию, для входа в которое надо было пройти по узкой доске. Я ступил на нее и доска отогнулась и упала, и я стал лезть на забор, до которого едва достигал руками. После больших усилий я перетащил свое тело так, что ноги висели на одной, а туловище на другой стороне. Я оглянулся и увидал, что брат А. стоит на заборе и указывает мне на большую аллею и сад, и в саду большое и прекрасное здание. Я проснулся. Господи, Великий Архитектон природы! помоги мне оторвать от себя собак – страстей моих и последнюю из них, совокупляющую в себе силы всех прежних, и помоги мне вступить в тот храм добродетели, коего лицезрения я во сне достигнул».
«7 го декабря.
«Видел сон, будто Иосиф Алексеевич в моем доме сидит, я рад очень, и желаю угостить его. Будто я с посторонними неумолчно болтаю и вдруг вспомнил, что это ему не может нравиться, и желаю к нему приблизиться и его обнять. Но только что приблизился, вижу, что лицо его преобразилось, стало молодое, и он мне тихо что то говорит из ученья Ордена, так тихо, что я не могу расслышать. Потом, будто, вышли мы все из комнаты, и что то тут случилось мудреное. Мы сидели или лежали на полу. Он мне что то говорил. А мне будто захотелось показать ему свою чувствительность и я, не вслушиваясь в его речи, стал себе воображать состояние своего внутреннего человека и осенившую меня милость Божию. И появились у меня слезы на глазах, и я был доволен, что он это приметил. Но он взглянул на меня с досадой и вскочил, пресекши свой разговор. Я обробел и спросил, не ко мне ли сказанное относилось; но он ничего не отвечал, показал мне ласковый вид, и после вдруг очутились мы в спальне моей, где стоит двойная кровать. Он лег на нее на край, и я будто пылал к нему желанием ласкаться и прилечь тут же. И он будто у меня спрашивает: „Скажите по правде, какое вы имеете главное пристрастие? Узнали ли вы его? Я думаю, что вы уже его узнали“. Я, смутившись сим вопросом, отвечал, что лень мое главное пристрастие. Он недоверчиво покачал головой. И я ему, еще более смутившись, отвечал, что я, хотя и живу с женою, по его совету, но не как муж жены своей. На это он возразил, что не должно жену лишать своей ласки, дал чувствовать, что в этом была моя обязанность. Но я отвечал, что я стыжусь этого, и вдруг всё скрылось. И я проснулся, и нашел в мыслях своих текст Св. Писания: Живот бе свет человеком, и свет во тме светит и тма его не объят. Лицо у Иосифа Алексеевича было моложавое и светлое. В этот день получил письмо от благодетеля, в котором он пишет об обязанностях супружества».
«9 го декабря.
«Видел сон, от которого проснулся с трепещущимся сердцем. Видел, будто я в Москве, в своем доме, в большой диванной, и из гостиной выходит Иосиф Алексеевич. Будто я тотчас узнал, что с ним уже совершился процесс возрождения, и бросился ему на встречу. Я будто его целую, и руки его, а он говорит: „Приметил ли ты, что у меня лицо другое?“ Я посмотрел на него, продолжая держать его в своих объятиях, и будто вижу, что лицо его молодое, но волос на голове нет, и черты совершенно другие. И будто я ему говорю: „Я бы вас узнал, ежели бы случайно с вами встретился“, и думаю между тем: „Правду ли я сказал?“ И вдруг вижу, что он лежит как труп мертвый; потом понемногу пришел в себя и вошел со мной в большой кабинет, держа большую книгу, писанную, в александрийский лист. И будто я говорю: „это я написал“. И он ответил мне наклонением головы. Я открыл книгу, и в книге этой на всех страницах прекрасно нарисовано. И я будто знаю, что эти картины представляют любовные похождения души с ее возлюбленным. И на страницах будто я вижу прекрасное изображение девицы в прозрачной одежде и с прозрачным телом, возлетающей к облакам. И будто я знаю, что эта девица есть ничто иное, как изображение Песни песней. И будто я, глядя на эти рисунки, чувствую, что я делаю дурно, и не могу оторваться от них. Господи, помоги мне! Боже мой, если это оставление Тобою меня есть действие Твое, то да будет воля Твоя; но ежели же я сам причинил сие, то научи меня, что мне делать. Я погибну от своей развратности, буде Ты меня вовсе оставишь».

1.1. Общие положения

Эталонная модель OSI стала основной архитектурной моделью для систем передачи сообщений.

Эталонная модель OSI делит проблему передачи информации между абонентами на семь менее крупных и, следовательно, более легко разрешимых задач. Каждой из семи областей проблемы передачи информации ставится в соответствие один из уровней эталонной модели. Два самых низших уровня эталонной модели OSI реализуются аппаратным и программным обеспечением, остальные пять высших уровней, как правило, реализуются программным обеспечением.

Рис. 1.1. Пример связи уровней OSI

В качестве примера связи типа OSI предположим, что Система А на Рис. 1.1 имеет информацию для отправки в Систему В. В этом случае информация из прикладного процесса через уровень 7 сообщается с уровнем 6, который модифицирует информацию, делая ее понятной для уровня 5 и т.д. вплоть до физического уровня системы А. На стороне системы В осуществляется обратное преобразование, начиная от низших уровней до самого верхнего. Следовательно, каждый уровень Системы А использует услуги, предоставляемые ему смежными уровнями, чтобы осуществить связь с соответствующим ему уровнем Системы В. Нижестоящий уровень называется источником услуг, а вышестоящий - пользователем услуг. Взаимодействие уровней происходит в так называемой точке предоставления услуг.

Обмен управляющей информацией между соответствующими уровнями системы OSI осуществляется в виде «заголовков», добавляемых к информационной части. В принимающей системе осуществляется анализ этой информации с последующим удалением соответствующего заголовка перед передачей на верхний уровень.


Каждый уровень имеет заранее заданный набор функций, которые он должен выполнить для проведения связи.

Прикладной уровень (уровень 7) – это самый близкий к пользователю уровень OSI. Он отличается от других уровней тем, что не обеспечивает услуг ни одному из других уровней OSI. Он обеспечивает услугами прикладные процессы, лежащие за пределами масштаба модели OSI. Прикладной уровень идентифицирует и устанавливает наличие предполагаемых партнеров для связи, синхронизирует совместно работающие прикладные процессы, а также устанавливает и согласовывает процедуры устранения ошибок и управления целостностью информации. Прикладной уровень также определяет, имеется ли в наличии достаточно ресурсов для предполагаемой связи.

Представительный уровень (уровень 6) отвечает за то, чтобы информация, посылаемая из прикладного уровня одной системы, была читаемой для прикладного уровня другой системы. При необходимости представительный уровень осуществляет трансляцию между множеством форматов представления информации путем использования общего формата представления информации.

Сеансовый уровень (уровень 5) устанавливает, управляет и завершает сеансы взаимодействия между прикладными задачами. Сеансы состоят из диалога между двумя или более объектами представления. Сеансовый уровень синхронизирует диалог между объектами представительного уровня и управляет обменом информации между ними. Кроме того, сеансовый уровень предоставляет средства для отправки информации, класса услуг и уведомления в исключительных ситуациях о проблемах сеансового, представительного и прикладного уровней.

Транспортный уровень (уровень 4). Функцией транспортного уровня является надежная транспортировка данных через сеть. Предоставляя надежные услуги, транспортный уровень обеспечивает механизмы для установки, поддержания и упорядоченного завершения действия каналов, систем обнаружения и устранения неисправностей транспортировки и управления информационным потоком (с целью предотвращения переполнения системы данными из другой системы).

Сетевой уровень (уровень 3) - это комплексный уровень, который обеспечивает возможность соединения и выбор маршрута между двумя конечными системами. Поскольку две конечные системы, желающие организовать связь, может разделять значительное географическое расстояние и множество подсетей, сетевой уровень является доменом маршрутизации. Протоколы маршрутизации выбирают оптимальные маршруты через последовательность соединенных между собой подсетей.

Канальный уровень (уровень 2) обеспечивает надежный транзит данных через физический канал. Выполняя эту задачу, канальный уровень решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления об ошибках, упорядоченной доставки блоков данных и управления потоком информации.

Физический уровень (уровень 1) определяет электротехнические, механические, процедурные и функциональные характеристики установления, поддержания и разъединения физического канала между конечными системами.

2. Основные сведения о сетях электросвязи

2.1. Основные определения

Сеть связи - совокупность технических средств, обеспечивающих передачу и распределение сообщений. Принципы построения сетей связи зависят от вида передаваемых и распределяемых сообщений.

В настоящее время применяют следующие принципы построения (топологии) сетей:

· "каждый с каждым". Сеть надежна, отличается оперативностью и высоким качеством передачи сообщений. На практике применяется при небольшом числе абонентов. Если произойдет обрыв одной из соединительных линий, то это не повлияет на общую работоспособность сети, т.к. существует множество обводных маршрутов следования информации.


радиальный ("звезда"). Используется при ограниченном числе абонентских пунктов, расположенных на небольшой территории. Пример, организация сети связи между абонентами и АТС. Недостаток заключается в том, что если произойдет поломка центрального узла, то нарушается работа всего узла связи в целом.

· радиально-узловой. Такую структуру имеют городские телефонные сети, если емкость сети не превышает 80...90 тысяч абонентов;

· радиально-узловой с узловыми районами. Используется при построении телефонных сетей крупных городов.

Телеграфные сети строятся по радиально-узловому принципу с учетом административно-территориального деления страны. Оконечными пунктами телеграфной сети являются либо отделения связи, либо телеграфные абоненты, обладающие телеграфной аппаратурой. Сеть имеет три уровня узловых пунктов: районные, областные и главные. Сеть передачи данных имеет схожую структуру. Сеть факсимильной связи строится на базе телефонной сети.

2.2. Сети передачи индивидуальных сообщений

Для обеспечения передачи индивидуальных сообщений необходимо связать (соединить) оконечные аппараты абонентов. Электрическая цепь (канал), состоящая из нескольких участков и обеспечивающая передачу сигналов между абонентами, называется соединительным трактом.

Процесс поиска и соединения электрических цепей называется коммутацией каналов. Сеть, обеспечивающая коммутацию каналов, называется сетью с коммутацией каналов (СКК). Узловые станции сети СКК называются станциями коммутации.

При передаче документальных сообщений кроме организации связи с коммутацией каналов возможно осуществлять поэтапную передачу сообщения от узла к узлу. Такой способ передачи получил название коммутации сообщений. Соответственно сеть, обеспечивающая коммутацию сообщений, называется сетью с коммутацией сообщений (СКС).

Разновидностью сети СКС является сеть с коммутацией пакетов (СКП). В этом случае полученное от передающего абонента сообщение разбивается на блоки (пакеты) фиксированной длины. Пакеты передаются по сети (необязательно по одному и тому же маршруту) и объединяются в сообщение перед выдачей принимающему абоненту.

Узловые станции сетей СКС и СКП называются центрами коммутации сообщений (ЦКС) и пакетов (ЦКП) соответственно.

3. Цифровые системы передачи

3.1. Преимущества цифровых систем передачи

Рассмотрим основные преимущества цифровых методов передачи перед аналоговыми.

Высокая помехоустойчивость. Представление информации в цифровой форме позволяет осуществлять регенерацию (восстановление) этих символов при передаче их по линии связи, что резко снижает влияние помех и искажений на качество передачи информации.

Слабая зависимость качества передачи от длины линии связи. В пределах каждого регенерационного участка искажения передаваемых сигналов оказываются ничтожными. Длина регенерационного участка и оборудование регенератора при передаче сигналов на большие расстояния остаются практически такими же, как и в случае передачи на малые расстояния.

Стабильность параметров каналов ЦСП. Стабильность и идентичность параметров каналов (остаточного затухания, частотной и амплитудной характеристик и др.) определяются в основном устройствами обработки сигналов в аналоговой форме. Поскольку такие устройства составляют незначительную часть оборудования ЦСП, стабильность параметров каналов в таких системах значительно выше, чем в аналоговых.

Эффективность использования пропускной способности каналов для передачи дискретных сигналов. При вводе дискретных сигналов непосредственно в групповой тракт ЦСП скорость их передачи может приближаться к скорости передачи группового сигнала. При использовании временного метода уплотнения, скорость передачи резко возрастает.

Цифровые системы сотовой связи.

Существует несколько стандартов цифровых систем связи: европейский GSM (Global System for Mobile communications), американский – традиционно использующийся в США PCS (Personal Communications Service), английский (DCS – Digital Cellular System) DCS-1800, являющийся прямым аналогом GSM–1800, японский JDS (Japan Digital System) и СDМА (Code Division Multiple Access).

GSM (Global System for Mobile communications) – это стандарт, определяющий работу в радиотелефонных сетях общего пользования. В России для работы сотовых систем общего пользования систем GSM выделен частотный диапазон 900 МГц. Стандарт GSM-900 (как, впрочем, и NMT-450i) получил статус федерального. Сеть GSM–900 работает в диапазонах частот 900 (или 1800) МГц. В диапазоне 900 МГц подвижной абонентский аппарат передает на одной из частот в диапазоне 890–915 МГц, а принимает на частотах 935–960 МГц. В дуплексном канале, состоящем из восходящего и нисходящего направлений передачи, для каждого из названных направлений применяются частоты, различающиеся точно на 45МГц. В каждом из указанных выше частотных диапазонов создаются по 124 радиоканала (124 для приема и 124 для передачи данных, разнесенных на 45МГц) шириной по 200 кГц каждый. Этим каналам присваиваются номера (N) от 0 до 123.

В распоряжение каждой базовой станции может быть предоставлено от одной до 16 частот, причем число частот и мощность передачи определяются в зависимости от местных условий и нагрузки.

В каждом из частотных каналов, которому присвоен номер (N) и который занимает полосу 200 кГц, организуются восемь каналов с временным разделением (временные каналы с номерами от 0 до 7) или восемь канальных интервалов.

Система с уплотнением каналов по частоте позволяет получить 8 каналов по 25кГц, которые в свою очередь уплотняются по времени излучения еще на 8 каналов. В стандарте GSM несущая частота сигнала изменяется 217 раз в секунду для того, чтобы компенсировать возможное ухудшение качества. Поэтому, когда абонент получает канал, ему выделяется не только частотный канал, но и один из строго отведенных временных интервалов – иначе создаются помехи в других каналах. В соответствии с вышеизложенным отметим, что работа передатчика происходит в виде отдельных импульсов, которые происходят в строго отведенном канальном интервале: продолжительность канального интервала составляет 577 мкс, а всего цикла – 4616 мкс. Выделение абоненту только одного из восьми канальных интервалов позволяет разделить во времени процесс передачи и приема путем сдвига канальных интервалов, выделяемых передатчикам подвижного аппарата и базовой станции. Базовая станция всегда передает на три канальных интервала раньше подвижного аппарата.

Таким образом, последовательность импульсов, которая образует физический канал передачи GSM, характеризуется номером частоты и номером временного канального интервала. На основе этой последовательности импульсов организуется целая серия логических каналов, которые различаются своими функциями. Кроме каналов, передающих полезную информацию, стандартом предусматривается ряд каналов, передающих сигналы управления, а также организация прямой двусторонней связи с сотовыми терминалами (или цифровыми устройствами обработки информации). Подобные технологии различаются по наличию инфракрасного (IR-ID) или радиочастотного (Bluetooth, ZigBee и т. п.) интерфейсов малого радиуса действия, которые предназначены для связи находящихся рядом устройств. Большая часть сценариев подобных интерфейсов включает вариант, когда одно из устройств является устройством беспроводной коммуникации стандарта WAP. Реализация таких каналов и их работа находятся под управлением операционной системы (ОС) абонентских устройств.

В виду того, что многие устройства Bluetooth могут являться участниками телеконференций (WAP Forum), существует реальная угроза вирусной атаки ОС сотовых терминалов. По данным компании F-Secure, проникновение вируса Cabir на мобильные телефоны уже было зарегистрировано на Филиппинах, в Сингапуре, Арабских Эмиратах, Китае, Индии, Финляндии, Турции и Вьетнаме. В качестве первого российского носителя сетевого «червя» выступил телефон Nokia 7610. Анализ содержащейся в мобильном телефоне информации показал, что вредоносный код полностью идентичен оригинальному варианту Cabir, обнаруженному в июне 2004 года. Это дает основания для неутешительного вывода: сетевой «червь» уверенно распространяется по всему миру, инфицируя мобильные телефоны Symbian OS.

СDМА – (Code Division Multiple Access) – система цифровой сотовой связи с кодовым разделением каналов на основе использования шумоподобных сигналов. В отличие от других цифровых систем, которые делят отведенный диапазон на узкие каналы по частотному (FDMA) или временному (TDMA) признаку, в стандарте CDMA передаваемую информацию кодируют и код превращают в шумоподобный широкополосный сигнал так, что его можно выделить снова, только располагая кодом на приемной стороне. При этом одновременно в широкой полосе частот можно передавать и принимать множество сигналов, которые не мешают друг другу. Основой метода разделения каналов с реализацией многостанционного доступа с кодовым разделением CDMA-1 (в реализации компании Qualcomm) являются расширение спектра методом прямого кодирования последовательности данных последовательностями Уолша (Walsh Coding).

Одно из преимуществ цифровой связи с шумоподобными сигналами – защищенность канала связи от перехвата, помех и подслушивания. Именно поэтому данная технология была изначально разработана и использована для вооруженных сил США, и лишь совсем недавно американская компания Qualcomm на основе этой технологии создала стандарт IS-95 (CDMA-1) и передала его для коммерческого использования.

Как уже указывалось, технология CDMA обеспечивает высокое качество сигнала при снижении излучаемой мощности и уровня шумов. В результате можно добиться минимальной средней выходной мощности, значение которой в сотни раз меньше значений выходной мощности других, используемых в настоящее время стандартов. Это позволяет уменьшить воздействие на организм человека и увеличить продолжительность бесперебойной работы без подзарядки аккумулятора. Так, излучаемая мобильными аппаратами средняя мощность в сотовых системах CDMA составляет менее 10 мВт, что на порядок ниже мощности, требуемой, например, в системах с временным разделением каналов TDMA. Эффективное использование радиочастотного диапазона с возможностью многократного использования одних и тех же частот в сети (высокая спектральная эффективность) увеличивает емкость CDMA в 10–20 раз по сравнению с аналоговыми системами и в 3–6 раз превышает плотность других цифровых систем.

Наконец, в стандарте предусмотрен плавный переход между сотами (или секторами в пределах одной соты), что позволяет осуществлять «мягкий» переход от одной соты к другой, в отличие от GSM, где такой переход происходит скачкообразно, что приводит к короткому временному разрыву соединения.

Тенденции развития технологий сотовой связи.

Развитие цифровых систем связи предполагает создание нового четвертого поколения (4G) сотовых систем связи. На сегодня 3G-технологии представлены в выборе из 3 стандартов:

§ W-CDMA (Wide Band Code Division Multiple Access), предусматривающий переход к 3G от технологий GSM;

§ cdma2000 (компании Qualcomm), которая ориентирована на замену технологии CDMA-1 (cdmaOne);

§ DoCoMo – японская система, согласованная с W-CDMA, ориентированная на переход с систем, использующих временной (TDMA) принцип разделения каналов (Time Division Multiple Access).

Несмотря на неопределенность в выборе конкретного стандарта, Институт Европейских Стандартов Телекоммуникаций уже разрабатывает соответствующий стандарт UMTS (Universal Mobile Telecommunications System). Так, для UMTS-систем выделены два частотных диапазона – 1885–2025 МГц и 2110–2200 МГц. Определен набор функциональных возможностей средств связи, к наиболее важным функциям отнесены:

§ речевые вызовы;

§ видеотелефония;

§ IP-телефония;

§ передача видеоизображения в режиме «live» по WAP-протоколу;

§ трансляция аудио-репортажа;

§ прием телевизионных программ;

§ видео- и фотосъемка;

§ скоростной доступ к сети Internet включая WEB-браузинг с использованием технологий WAP и GRPS;

§ мобильный офис;

§ определение местоположения абонента по картам и путеводителям;

§ электронная почта, шопинг и коммерция.

Очевидно, что для обеспечения перечисленного в абонентском терминале 3G должна быть видеокамера. Для просмотра телепрограмм необходим цветной жидкокристаллический экран достаточно большого размера. Услуги мобильного офиса, а также игры требуют высокопроизводительного процессора, большой памяти и удобных клавиатуры и манипулятора. Работа всех этих устройств должна обеспечиваться батареей электропитания достаточно большой емкости. И главное – такой прибор должен быть очень компактным, не превосходящим по размеру привычный сотовый телефон.

Предполагается, что по исполнению радиосредства, разрабатываемые для 3G, будут делиться на две категории: интеллектуальные телефоны и планшетные компьютеры. Сегодня примером первых могут служить аппараты, сочетающие в себе мобильный телефон под управлением операционной системы. Вторые лучше всего можно представить планшетными компьютерами оснащенными модулями связи GSM, G3 или WiMax.

Фаза внедрения 3G подходит к завершению и в России ведущие операторы уже получили лицензии на эксплуатацию технологий LTE, (Long Term Evolution).

LTE - это не апгрейд 3G, это более глубокое изменение, знаменующее переход от систем CDMA к системам OFDMA, а также переход от систем с коммутацией каналов к коммутации пакетов. Проблемы перехода на LTE включают необходимость в новом спектре для получения преимуществ от широкого канала, (который в опытном порядке уже осуществлен в республике Татарстан). Кроме того, требуются абонентские устройства, способные одновременно работать в сетях LTE и 3G для плавного перехода абонентов от старых к новым сетям.

Внедрение LTE обеспечивает возможность создания высокоскоростных систем сотовой связи, оптимизированных для пакетной передачи данных со скоростью до 300 Мбит/с в нисходящем канале (от базовой станции к пользователю) и до 75 Мбит/с в восходящем канале. Пиковые скорости передачи данных в ранних реализациях должны составлять более 100 Мбит/с в нисходящем канале и более 50 Мбит/с в направлении от пользователя. Реализация LTE возможна в различных частотных диапазонах - от 1.4 МГц до 20 МГц, а также по различным технологиям разделения каналов - FDD (частотное) и TDD (временное).




Top