Можно ли разогнать процессор intel core i5. Руководство по разгону Lynnfield на материнской плате Asus P7P55D Deluxe. Как разогнать процессор Intel Core i5, пошаговая инструкция

02.02.2017 22:52

Данный гайд поможет произвести настройку параметров UEFI BIOS для достижения стабильных 5 ГГц на разблокированных процессорах седьмого поколения Kaby Lake (Intel Core i7-7700K, Intel Core i5-7600K и ).

Немного практической статистики:

  • примерно 20% ЦП седьмого поколения стабильно работают на частоте 5 ГГц в любых приложениях, включая Handbrake/AVX;
  • 80% образцов Kaby Lake способны функционировать на 5 ГГц, однако в программах с использованием системы команд AVX частоту приходится снижать до стабильных 4800 МГц (это происходит в автоматическом формате с активным параметром AVX offset в BIOS);
  • отборные сэмплы Kaby Lake могут работать с четырьмя модулями памяти на частоте DDR4-4133 (на материнских платах ROG Maximus IX) и с парным китом на частоте DDR4-4266 (проверено на плате Maximus IX Apex).

Какой вольтаж является нормальным для 5 ГГц?

Пожалуй, это один из самых главных вопросов, который энтузиасты задают в процессе разгона ЦП. Ведь именно этот параметр ключевым образом сказывается на стабильности и итоговом результате оверклокинга.

Для начала разберемся с уровнем энергопотребления Intel Core i7-7700K в разных режимах работы:

  • в номинале процессор потребляет порядка 45 Вт (в приложении ROG Realbench);
  • на частоте 5 ГГц и с запущенным тестом ROG Realbench получаем 93 Вт;
  • 5 ГГц и Prime95 - 131 Вт.

Для стабильной работы ЦП на 5 ГГц в тесте Prime95 (а значит и в большинстве наиболее часто используемых приложений) необходимо напряжение в 1,35 В (параметр Vcore в BIOS). Превышать это значение не рекомендуется, дабы избежать деградации процессора и перегрева.

Для стабильной работы ЦП на 5 ГГц в тесте Prime95 необходимо напряжение в 1,35 В.

Необходимо отметить, что процессоры семейства Kaby Lake крайне энергоэффективные. Для сравнения стабильный Skylake на 5 ГГц в схожих приложениях, например, Prime95 потребляет порядка 200 Вт.

Для охлаждения разогнанного в процессе стресс-тестов понадобится мощная СО, это может быть либо СВО, либо производительный суперкулер.

Проверенные варианты:

  • СВО с трехсекционным радиатором (температура воды в системе - 18 градусов) охлаждает разогнанный до 5 ГГц процессор на вольтаже 1,28 В до 63 градусов;
  • СВО с двухсекционным радиатором при 1,32 В демонстрирует 72 градуса;
  • кулер на 5 ГГц и 1,32 В - 78 градусов.

Для постоянного использования Kaby Lake на 5 ГГц воздушного охлаждения недостаточно, но не стоит забывать про возможность оптимизации нагрузки. На полную мощность ЦП будет работать только в самых необходимых случаях (об этом ниже).

Разгон оперативной памяти

Отборные сэмплы Kaby Lake могут работать с четырьмя модулями памяти на частоте DDR4-4133.

Напоминаем, что процессоры Kaby Lake прекрасно работают с оперативной памятью на частоте DDR-4133 (проверено на семействе материнских плат ASUS ROG Maximus). Показатель в DDR4-4266 доступен на моделях ASUS Maximus IX Apex и ASUS Strix Z270I Gaming (все дело в двух коннекторах DIMM, которые оптимизированы для таких частот).

Но для повседневного использования не стоит использовать ОЗУ с частотой выше DDR4-3600; покорение 4 ГГц отметок на памяти оставьте энтузиастам, для домашней или игровой системы важнее общая стабильность ПК.

Главное не забывать про необходимость установки в слоты DIMM парных китов ОЗУ (то есть заводских комплектов, состоящих из двух или четырех модулей). Самостоятельно подобранные единичные варианты могут попросту не завестись на требуемых вам настройках, таймингах и т. п.

Параметр AVX offset

Эта опция помогает стабилизировать работу ЦП на высоких частотах, уменьшая рабочую частоту при обработке операций с кодом AVX.

Если зафиксировать множитель процессора на 50 единицах, BCLK – на 100 МГц, а параметр AVX offset на 0, результирующая частота в 5000 МГц будет постоянной. Но в таком случае система может оказаться нестабильной. И причину подобного поведения придется выявлять очень долго.

Именно поэтому опытные энтузиасты советуют воспользоваться опцией AVX offset, установив ее значение на 2. Это значит, что при постоянных 5 ГГц система автоматически уменьшит множитель до 48 пунктов (что соответствует 4800 МГц) в момент, когда будет замечена активность AVX приложений.

5 ГГц без AVX нагрузки
4,8 ГГц с активным AVX приложением

Подобный подход благотворно сказывается не только на стабильности работы ПК, но и на грамотном энергопотреблении, а значит и тепловыделении ЦП.

Для повседневного использования не стоит использовать ОЗУ с частотой выше DDR4-3600.

Функционал материнских плат пока не позволяет подобным образом разделять еще и рабочий вольтаж процессора. Но есть надежда, что в будущих поколениях эту возможность обязательно реализуют.

Методика разгона, мониторинг и проверка системы на стабильность

Как бы банально это ни звучало, но перед любым процессом оверклокинга стоит протестировать ПК в штатном режиме. Запустить несколько бенчмарков, промониторить текущую температуру и исправить выявленные баги (если таковые замечены).

В случае, если все в полном порядке, смело повышаем множитель процессора и вольтаж (в настройках BIOS рекомендуется использовать режим Adaptive voltage mode вместо Manual или Offset mode для параметра Vcore).

Далее ищем стабильную частоту и минимальное напряжение, при котором система ведет себя стабильно (прохождение POST, запуск ОС, работоспособность служебных приложений, стресс-тесты и т. д.). При этом не забываем фиксировать рабочую температуру ЦП, она не должна превышать 80 градусов даже в самых жарких условиях.

Как правило, комплекты с частотой DDR4-4000+ не требуют вольтажа выше 1,25 В для параметра System Agent.

После разгона ЦП переходим к оперативной памяти. Наиболее предпочтительным вариантом является активация параметра XMP (если модули и материнская плата этот профиль поддерживают). В противном случае придется искать максимальную рабочую частоту и тайминги самостоятельно.

Не исключено, что при выявлении стабильного значения ОЗУ потребуется корректировка параметров Vcore, System Agent (VCCSA) и VCCIO, об этом поговорим ниже.

Предпочтительные стресс-тесты:

  • ROG Realbench использует комбинацию Handbrake, Luxmark и Winrar приложений; бенчмарк хорош для проверки ОЗУ, достаточно 2-8 часов прогона;
  • HCI Memtest помогает выявить ошибки ОЗУ и кэша ЦП;
  • AIDA64 является классическим программным инструментом любого энтузиаста; встроенный стресс-тест в состоянии проверить связку процессор-память на прочность (достаточно 2-8 часов прогона).

Практика разгона и настройки в UEFI BIOS

Итак, перейдем к практической части, а именно к настройкам параметров в BIOS и самому разгону. Нам понадобится вкладка Extreme Tweaker на материнских платах ASUS.



Регулируем следующие опции:

  • в случае использования СВО устанавливаем значение Vcore на 1,30 В, множитель на 49; для воздушного охлаждения - 1,25 В и 48 соответственно;
  • параметр Ai Overclock Tuner переводим в режим Manual;
  • CPU Core Ratio в положение Sync All Cores;
  • для CPU/Cache Voltage (CPU Vcore) выбираем Adaptive Mode;
  • для Additional Turbo Mode CPU Core Voltage устанавливаем значение в 1,30 В (при использовании СВО) или 1,25 В для кулеров уровня .

Для CPU/Cache Voltage (CPU Vcore) выбираем Adaptive Mode
Для Additional Turbo Mode CPU Core Voltage устанавливаем значение в 1,30 В

Переходим в подменю Internal CPU Power Management:

  • IA DC Load Line фиксируем на 0.01
  • IA AC Load Line на 0.01

Internal CPU Power Management

Сохраняем настройки и перезагружаем систему, пробуем пройти POST и зайти в ОС. Если система стабильна, повышаем множитель до 49-50 пунктов, а к текущему вольтажу, при необходимости, подкидываем +0,02 В. Но стараемся не превышать критическую отметку в 1,35 В.

После этого проверяем систему на прочность в Prime95 и следим за температурой ЦП (она должна быть не выше 80 градусов).

Для ОЗУ в UEFI выбираем режим XMP. При поиске стабильной частоты памяти может потребовать регулировка опций CPU VCCIO и CPU System Agent в соответствии со следующими рекомендациями:

  • для частоты DDR4-2133 – DDR4-2800 вольтаж CPU VCCIO и CPU System Agent должен находиться в диапазоне 1,05-1,15 В;
  • для DDR4-2800 – DDR4-3600 CPU VCCIO можно увеличить до 1,10-1,25 В, а CPU System Agent - 1,10-1,30 В;
  • DDR4-3600 - DDR4-4266: 1,15-1,30 В и 1,20-1,35 В соответственно.

Выбор профиля XMP
Вольтаж CPU VCCIO

Впрочем в зависимости от используемого процессора и памяти приведенные показатели могут варьироваться. Как правило, комплекты с частотой DDR4-4000+ не требуют вольтажа выше 1,25 В для параметра System Agent.

Вновь проводим стресс-тесты с примененными параметрами. Не забываем про опцию AVX Core Ratio Negative Offset, которую рекомендуется зафиксировать на значении в 2 пункта (при тактовой частоте ЦП 4900 МГц, AVX приложения будут функционировать на 4700 МГц).

Параметр AVX Core Ratio Negative Offset

Заключение

Данные советы помогут добиться желаемого результата в деле разгона процессоров Intel Kaby Lake до 5 ГГц и выше; потенциал у камней внушительный.

Главное не пренебрегать качественным охлаждением и длительным прогоном стресс-тестов.

Разгон процессора когда-то был очень сложным и кропотливым трудом, заставляющим не один час посидеть с паяльником, а перед этим еще и выучив мат.часть, которую найти было не так уж и легко. Сейчас разгон, он же оверклокинг, удел не только энтузиастов, его может позволить себе абсолютно каждый. Пообщавшись с пользователями, а так же изучая комментарии на других ресурсах, мы поняли, что разгон все еще оставляет много вопросов и решили открыть отдельную рубрику «Про Разгон «, в которой будем рассказывать вам, как правильно разгонять актуальное «железо». В данном выпуске мы расскажем наглядно о разгоне процессоров Intel Core i7 — 7740X (4 ядра/8 потоков) и (8 ядер/16 потоков), рассмотрим, как нащупать оптимальную рабочую частоту и будет ли препятствовать разгону пластичный термоинтерфейс под крышкой процессора.

Кратко про разгон

Начнем с того, что же это такое разгон и зачем он нужен? Разгон — это процесс повышения тактовых частот компьютерных комплектующих относительно их штатного режима, а нужен он, конечно же. для того, что бы получить больше производительности, чем нам предлагает производитель.

Если говорить про оверклокинг, в наше время это не только способ получения «бесплатной» дополнительной производительности, но и вид спорта, постоянно притягивающий все больше внимания.Условно, я бы разредил разгон на два основных вида: первый — «домашний» для повышения производительности вашего ПК; и «спортивный», который служит исключительно для установки рекордов и не актуален в домашних условиях.

Что потребуется для разгона процессора Intel?

Конечно, потребуется сам процессор, но здесь есть ограничения: для разгона подойдут процессоры Intel с разблокированным множителем. Определить модель можно без особых усилий, в ее названии должен присутствовать индекс «K» или «X», как раз таким примером и служат Intel Core i7 — 7740X и которые сегодня пойдут под разгон.
Но так же стоит обратить внимание, что под разгон подойдут не все материнские платы. Ниже приведена таблица с названием архитектуры актуальных процессоров Intel и названием подходящего чипсета, поддерживающего разгон. Поскольку у нас процессоры на архитектуре Skylake-X и Kaby Lake-X, для их разгона мы будем использовать материнкую плату на чипсете X299 — ASUS ROG Strix X299-E Gaming.

Выбор процессора и материнской платы — это только основа и помимо этих компонентов стоит задуматься еще о системе охлаждения, оперативной памяти, блоке питания.

Разгоняя процессор, вы должны прекрасно понимать, что придется работать с повышенными температурами и охлаждение должно быть на должном уровне. Конечно, если мы говорим о простом «домашнем» разгоне не для рекордных результатов, система должна быть собрана в хорошо продуваемом корпусе, думаю, вряд ли кто-то будет у себя дома собирать открытый стенд. Хорошо продуваемый корпус — это не всегда значит дорогой, пример недорогого, но отлично продуваемого корпуса — обзор которого совсем скоро будет у нас на сайте.
Выбор системы охлаждения очень важен, ведь разгон чаше всего упирается именно в температуры, так во время экстремального оверклокинга используется для охлаждения жидкий азот, температура которого впечатляющие «−196 °C». Нам подойдет более традиционное охлаждение. Но в любом случае, я рекомендую использовать именно жидкостное, для 2-6 ядерных процессоров двух-секционное, а для 8-18 ядерных трех-секционное или, вообще, кастомное и эти рекомендации относятся только для процессоров на выше указанных архитектурах.
Экономить на блоке питания не стоит, важно понимать, что комплектующие под разгоном потребляют больше питания, чем обычно. Поэтому во-первых стоит брать с запасом, во-вторых присмотреться к качественным хорошо себя зарекомендовавшим брендовым моделям.
Оперативная память так же влияет на производительность системы, но стоит ли тратить огромные деньги на покупку высокочастотной оперативной памяти, решает, конечно, каждый сам для себя. Лично для меня, оптимальные частоты оперативной памяти — 2800 МГц и выше. Стоит понимать, что процессоры Intel не так привязаны к оперативной памяти, как AMD Ryzen, и долго мучиться с выбором ОЗУ вам не придется.

Сразу скажу, что конфигурация моего тестового стенда сделана с запасом на более мощные сборки и я не рекомендую ее как эталонную, она просто приводится к сведению.

Необходимый набор программного обеспечения

Если говорить про самый простой набор программ, то все сводится к Intel Extreme Tuning Utility ,HWInfo и LinX . Как несложно догадаться, Intel Extreme Tuning Utility — программное обеспечение, разработанное самой Intel для максимально простого разгона процессора непосредственно в Windows, а это как раз то, что нам нужно.
HWInfo — одна из лучших утилит мониторинга и, несмотря на ее малый размер, она показывает все возможные показатели.LinX — один из самых требовательных тестов стабильности системы, выжимающий абсолютно все из процессора.

Подготовка к разгону и как быстро найти предел

Современные материнские платы делают все возможное для того. что бы сохранять стабильность в любой ситуации и пока мы не догадываемся, они сами подстраиваются под рабочий режим. Для начала разгона расставим все по своим местам, Intel XTU с одной стороны экрана, а HWInfo — с другой, это позволит нам наблюдать за самыми интересными для нас параметрами, а именно: максимальный вольтаж, подаваемый на каждое ядро и температура каждого отдельного ядра. После расстановки приложений мы смело можем начать разгонять процессор. В Intel XTU в вкладке Basic Tuning стоит поднимать Processor Core Ratio на одну ступень, а после этого применять настройки нажатием на клавишу Apply . Это действие установит повышенный множитель и этим самым поднимет частоту процессора. После установки повышенного множителя стоит пройти бенчмарк нажатием на клавишу Run Benchmark . В случае успешного прохождения бенчмарка стоит обратить внимание на максимальный вольтаж(вольтаж стоит запомнить) на ядрах и максимальные их температуры, а эта информация, напомню, доступна в HWInfo . После ознакомления с информацией снова поднимаем множитель и повторяем все процедуры до тех пор, пока, в итоге, компьютер не выключится аварийно или не «зависнет» окончательно(в таком случае для отключения нужно зажать клавишу выключения на 5-10 секунд для отключения).
Так, к примеру, базовый множитель Intel Core i7 — 7740X — 45, то есть максимальная его частота может достигать 4500 мегагерц. Несложными манипуляциями мы подняли множитель до 49 и соответственно частоту до 4900 МГц. Предел ли это? — Нет. Для дальнейшего поиска оптимальной частоты придется заглянуть в BIOS для установки адаптивного режима питания процессора. Далее установить вольтаж выше максимально полученного во время предыдущего тестирования. Так, к примеру, максимальный вольтаж в полностью автоматическом режиме составил 1.257V, ставим значение немного выше, в моем случае, — это 1.260V и лимит надбавки к этому напряжению 0.050V. На этом этапе нужно быть максимально внимательным. Масимально допустимое напряжение, которое я могу рекомендовать, — это 1.350V, дальнейшее поднятие напряжения может быть опасно для вашего процессора. Хотя, если покопаться в документации к процессорам, то для Skylake, Kaby Lake, Coffee Lake максимально допустимый вольтаж аж 1.520V, но постоянная эксплуатация процессора при таком вольтаже, наверняка, не допустима.
После успешной загрузки системы стоит еще попробовать поднять множитель и провести бенчмарк, если система его не проходит, стоит вернуться в BIOS и снова добавить напряжение, но не стоит его слишком накручивать, а держать максимальный ориентир на 1.350V . К примеру, наш образец Intel Core i7 — 7740X стабильно держит частоту 5 ГГц на 1.360V.
Проверка стабильности системы — важный этап и для начала стоит пройти 5 минутный стресс-тест в Intel XTU и наблюдать за температурами в HWInfo, которые не должны превышать ∼95°С. Хотя при превышении допустимой температуры процессор сам сбросит частоты. Наша задача найти максимальную частоту и при этом найти для нее минимальный вольтаж — это позволит снизить температуру. В случае, если ваш процессор во время прохождения бенчмарка покоряет высокие частоты, но во время стресс-теста в Intel XTU сильно нагревается и сбрасывает частоты, то стоит снизить множитель, а вместе с этим и вольтаж.

Следующий тест на стабильность это LinX и к нему нужно относится с уважением, но не использовать его в качестве референса для проверки стабильности, а тем более, как средство определения максимальной температуры процессора под нагрузкой. Причина проста: во время стресс теста используется пакет Intel Linpack, активно использующий AVX-инструкции и создающий пиковую нагрузку на оборудование, которая не развивается даже во время монтажа сложнейших видео и 3D-проектов. По этой причине LinX остается лучшим стресс-тестом для оборудования, но он покажет нагрузку, которая никогда в работе не достигается, соответственно, во время его прохождения возможен тротлинг, который при обычной нагрузке не достигается.
После успешного прохождения всех тестов стоит выставить найденные оптимальные параметры в BIOS, а это множитель и оптимальный вольтаж.

Пример разгона Intel Core i7 — 7740X

Как видно из текста выше, наш экземпляр процессора взял стабильную частоту 5 ГГц при вольтаже 1.360V, что, впрочем, не удивительно, по сути, — это тот же хорошо знакомый нам Intel Core i7 -7700K, только с заблокированным видео-ядром и выполненный в упаковке под сокет LGA2066. И это только в плюс, материнские платы для LGA2066, как правило, получили более надежные и точные системы питания.
Рост производительности оценим в реальной рабочей задаче рендере в Adobe Premiere Pro небольшого видео в FullHD 30 кадров/c в кодеке H.264. Время рендера указанно в секундах и разогнанный Intel Core i7 — 7740X справился на 7% быстрее.

Пример разгона Intel Core i7 — 7820X

— это 8 ядер и 16 потоков, и достаточно высокая, как для HEDT-платформы частота в Turbo Boost 4.3 ГГц, а вместе с этим и значительное тепловыделение — 140 Ватт. При разгоне HEDT-процессоров стоит помнить одно — даже малейшее повышение напряжения может привести к значительному повышению тепловыделения. Наш образец процессора заработал на полностью стабильной частоте 4.7 ГГц при максимальном вольтаже 1.310V на ядро.
Говоря о росте производительности при рендере в Adobe Premiere Pro небольшого видео в FullHD 30 кадров/c в кодеке H.264, время рендера указанно в секундах и разогнанный справился на 8% быстрее.

Возможные ошибки во время разгона

Чаше всего, начинающие энтузиасты компьютерного железа повторяют одни и те же ошибки и мы решили сразу о низ рассказать:

  • Самая распространенная ошибка — это выбор слишком высокого вольтажа, который ни к чему хорошему не приводит. Не стоит лениться, нахождение оптимального напряжения приводит к снижению энергопотребления и тепловыделения процессора.
  • Выбор нестабильной частоты. К примеру, вы поставили высокий множитель, бенчмарк в Intel XTU проходит безупречно, но LinX завершает работу с ошибкой или компьютер отключается/зависает. Вы выбрали слишком высокую частоту, на которой процессор не способен работать стабильно. И есть два выхода: или активировать AVX Instruction Core Ratio Negative Offset — опция в биос, снижающая частоту при исполнении AVX инструкций; или снизить множитель, в целом, для всех ядер.
  • Полное доверие материнской плате. Большая часть материнских плат, особенно игровых или оверклокерских серий, оснащены профилями автоматического разгона и, казалось бы, очень удобно, но все без исключения производители закладывают высокий вольтаж для максимизации совместимости даже с неудачными образцами процессоров. По этой причине крайне советую вольтаж подберать самостоятельно.
  • Использование некачественного блока питания. По стандарту Intel ATX допускается отклонение на линию питания ±3%, не качественные блоки питания во время повышенной нагрузки могут уходить далеко за эти пределы, а это приводит, в лучшем случае, к отключения системы, в худшем — к выходу из строя комплектующих.
  • Доверие рекомендуемым настройкам для разгона. Все чаще замечаю, что некоторые блогеры и люди в комментариях рекомендуют настройки оптимального вольтажа и множителя для конкретной модели процессора. Процессор, технически, очень сложное устройство и, если все процессоры одной модели внешне одинаковы, то кристаллы у всех разные, у кого-то более удачные, у кого-то менее. Мало того, разница может быть не только между разными процессорами, но и между разными ядрами одного процессора, так к примеру наш i7 — 7740X работает стабильно на частоте по первым трем ядрам, а активация данной частоты на четвертом ядре окончательно и бесповоротно приводит к отключению системы. Для каждого процессора подбираются оптимальные настройки, и рекомендация того, что у кого-то работает система стабильно на данных настройках не гарантирует, что у вас все будет так же работать без сбоев.

Мешает ли пластичный термоинтерфейс под крышкой процессора разгону?

Вопрос, на самом деле, сложный, но ответ на него есть. Для справки, ранее в процессорах Intel использовался металлический термоинтерфейс под крышкой процессора, но, начиная с третьего поколения Intel Core, а так же процессоры Intel Core X, с этого года комплектуются пластичным термоинтерфейсом(если проще, то термопастой) под крышкой. Как известно, у любой термопасты теплопроводность ниже, чем у металлического термоинтерфейса и во время разгона процессор, естественно, может упираться в то, что термоинтерфейс не способен отвести такое количество тепла.
В новых поколениях процессоров, как вы видите, разгон актуален и процессоры покоряют частоты значительно выше номинальных, другой вопрос, что будет, если заменить термоинтерфейс на более эффективный? Исходя из тестов моих коллег, замена термоинтерфейса, которая стопроцентно приводит к потере гарантии, позволяет добиться дополнительных 100-200 МГц и то не всегда. Стоит ли это затраченных усилий? Скорее нет, чем да. Тем более, что термоинтерфейс Intel рассчитан для оптимальной эксплуатации процессора долгие годы и не ухудшает своих свойств со временем.

Выводы

Разгон сейчас стал предельно простым и для него потребуется минимальный багаж знаний, основу которых мы постарались изложить в этой статье. Если у вас остались вопросы, обязательно задавайте их в комментариях. В следующих публикациях мы оценим эффективность разгона в различных сценариях использования, а после поговорим про спортивную составляющую оверклокинга. Чтобы не пропустить интересные новости и анонсы подписывайся на нашу

Введение

Запуск платформы Intel LGA 1156 оказался очень успешным, публикации в онлайновых изданиях и мнения пользователей оказались весьма позитивными. Наши первые статьи насчёт Core i5 охватывали технологии процессоров и платформ , а также производительность в играх . Теперь настало время изучить возможности разгона новых процессоров. Насколько хорошо можно разогнать последнюю платформу Intel? Каково будет влияние технологии Turbo Boost? Как насчёт энергопотребления на увеличенных тактовых частотах? На все эти вопросы мы постараемся ответить в статье.


P55: “Следующий BX?”

Эту фразу часто используют для описания нового чипсета или платформы, у которой есть потенциал стать стандартом де-факто, то есть доминировать над всеми прямыми конкурентами большее время, чем подразумевает жизненный цикл обычного продукта. Давным-давно чипсет 440BX, с которым работало второе поколение Pentium II, стал наиболее популярным набором системной логики, хотя некоторые конкуренты предлагали на бумаге большие характеристики. BX обеспечивал немало за свою цену, и журналисты очень часто вспоминают название этого продукта.

Многие пользователи всё ещё работают на Pentium 4, Pentium D или Athlon 64/X2 или даже на первом поколении систем Core 2 - и они хотят сделать апгрейд до четырёх ядер, а также, возможно, поставить Windows 7. Core i5 - один из самых привлекательных вариантов по соотношению цена/производительность на сегодня, особенно для пользователей с серьёзными амбициями разгона.

Есть ли у платформы P55 потенциал стать следующей BX? И да, и нет. С одной стороны, Intel будет продвигать интерфейс сокета LGA 1156 не меньше пары лет, хотя раскладка контактов и электрические спецификации могут меняться. Из того, что мы знаем сегодня, можно предположить, что базовая платформа доживёт до 2011 года, и на этот сокет можно будет устанавливать все 32-нм процессоры Westmere. Так что да, хорошие перспективы у него есть.

Впрочем, есть некоторые функции, которые обещают вскоре стать актуальными и которые платформа P55 сегодня не поддерживает. Первая - USB 3.0. Вторая - SATA с интерфейсом 6 Гбит/с. Конечно, ускоренный интерфейс SATA будет существенно влиять только на SSD на основе флэш-памяти и на оснастки eSATA, у которых подключаются несколько накопителей через один интерфейс eSATA. Но USB 3.0, как нам кажется, должен стать обязательным стандартом после своего появления, поскольку большинство внешних накопителей обычно ограничены пропускной способностью всего 30 Мбайт/с из-за "узкого места" в виде интерфейса USB 2.0.

Разгон: хорошие скорости, но некоторые препятствия

Для нашего проекта мы использовали материнскую плату MSI P55-GD65, планируя разогнать процессор Core i5-750 начального уровня до 4,3 ГГц. Однако мы смогли достичь частот чуть выше 4 ГГц, выключив некоторые важные функции процессора.

Выбор лучшего процессора LGA 1156 для разгона



Нажмите на картинку для увеличения.

Intel пока что выпустила три разных процессора, все из которых базируются на интерфейсе LGA 1156: Core i5-750 на 2,66 ГГц, Core i7-860 на 2,8 ГГц и самый быстрый Core i7-870 на 2,93 ГГц. Эти процессоры отличаются не только штатной тактовой частотой, но и реализацией функции ускорения Turbo Boost. Процессоры линейки 800 могут ускорять отдельные ядра более агрессивно, чем другие модели. Позвольте привести небольшую таблицу.

Turbo Boost: доступные шаги (в допустимых пределах TDP/A/Temp)
Модель процессора Штатная частота 4 ядра активны 3 ядра активны 2 ядра активны 1 ядро активно
Core i7-870 2,93 ГГц 2 2 4 5
Core i7-860 2,8 ГГц 1 1 4 5
Core i5-750 2,66 ГГц 1 1 4 4
Core i7-975 3,33 ГГц 1 1 1 2
Core i7-950 3,06 ГГц 1 1 1 2
Core i7-920 2,66 ГГц 1 1 2 2

Многие ожидают, что более быстрые модели процессоров будут разгоняться лучше, но это не всегда подтверждается на практике. Поскольку ядра у всех существующих процессоров LGA 1156 одинаковые, мы решили сначала проанализировать цены. И цена при покупке в партии 1000 штук у Core i7-870 составляет $562. Мы считаем, что это несколько дороговато для энтузиастов, желающих получить оптимальное соотношение цена/производительность, поэтому мы решили обратить внимание на оставшиеся модели: Core-i7-860 за $284 и i5-750 за $196.

Поскольку в нашем обзоре в момент запуска процессора и связанных с ним статьях мы обычно использовали более быстрые модели, то мы изначально решили в проекте разгона взять процессор начального уровня. Действительно, эта модель будет наиболее привлекательной для большинства наших читателей.

Мы начнём со штатной тактовой частоты 2,66 ГГц, причём реализация Turbo Boost у данной модели может увеличивать тактовую частоту до максимума 3,2 ГГц. Так как процессор Core i7-870 достигает частоты 3,6 ГГц при максимальном режиме Turbo Boost для одного ядра, мы решили начать разгон с частоты 3,6 ГГц, после чего мы проверим, какую максимальную частоту сможет достичь самый доступный процессор Core i5.

Описание платформы



Нажмите на картинку для увеличения.

В Интернете можно найти много результатов успешного разгона разных платформ на архитектуре LGA 1156 (есть также результаты, которых лучше избежать; дополнительные детали мы привели в обзоре материнских плат начального уровня на чипсете P55 ). Все крупные производители материнских плат считают чипсет P55 ключевым продуктом, поэтому все они инвестируют в разработку немало средств. Мы уже использовали три разных материнских платы на чипсете P55 в статье, посвящённой выпуску процессора , поэтому для разгона решили взять флагманскую модель MSI P55-GD65. На рынке также присутствует модель P55-GD80, у которой более крупная система охлаждения на тепловых трубках, а также три слота x16 PCI Express 2.0 вместо двух. Однако три слота P55-GD80 ограничены числом линий 16, 8 и 4, а плата P55-GD65 работает в конфигурациях с 16 и 8 линиями.

MSI реализовала динамический стабилизатор напряжения с семью фазами, систему охлаждения с тепловыми трубками и многие другие функции, которые производители материнских плат обычно устанавливают на модели для оверклокеров. Плату MSI отличает от многих других небольшая особенность: система облегчения разгона OC Genie - простое решение, которое автоматически разгоняет вашу систему, увеличивая базовую частоту после активации. MSI утверждает, что система сама управляет всеми необходимыми настройками, но данная функция требует высококачественных компонентов платформы. Но для данного обзора мы решили отказаться от всех необычных функций и выбрали традиционный способ разгона.

Мы установили последнюю версию BIOS, которая позволяет выключить защиту Intel Overspeed, после чего приступили к нашему проекту разгона. Самый большой множитель, который мы могли выбрать, соответствовал максимальному режиму Turbo Boost с активными четырьмя ядрами - то есть на один шаг больше 20x по умолчанию (21 x 133 = 2,8 ГГц). Мы получили более высокую тактовую частоту, увеличив базовую частоту до 215 МГц.



Нажмите на картинку для увеличения.

Штатное напряжение i5-750 составляет 1,25 В - и при нём мы смогли достичь как раз такой же максимальной тактовой частоты, которую Intel указывает для процессора Core i7-870 с максимальным режимом Turbo Boost с одним ядром: 3,6 ГГц.


3,6 ГГц в режиме бездействия.


3,6 ГГц - настройки памяти.

Результат весьма впечатляет, но мы и не ждали меньшего. Мы могли разгонять процессоры Core i7 на сокете LGA 1366 точно таким же образом без особого подъёма напряжения.


3,7 ГГц в режиме бездействия.


3,7 ГГц под нагрузкой.


3,7 ГГц - настройки памяти.

Частоты 3,8 ГГц мы достигли без особых проблем. Однако нам пришлось увеличить напряжение в BIOS с 1,25 до 1,32 В.


3,8 ГГц в режиме бездействия.


3,8 ГГц под нагрузкой.


3,8 ГГц - настройки памяти.


3,9 ГГц в режиме бездействия.


3,9 ГГц под нагрузкой.


3,9 ГГц - настройки памяти.


4,0 ГГц в режиме бездействия.


4,0 ГГц под нагрузкой.


4,0 ГГц - настройки памяти.

Мы смогли достичь 4,0 ГГц с дальнейшим повышением напряжения до 1,45 В. Мы также увеличили напряжение чипсета PCH (P55), чтобы гарантировать стабильность, но наши первые проблемы не проявили себя до частоты 4,1 ГГц.

Помните, что именно напряжение 1,45 В оказалось проблемным, когда мы проводили тесты недорогих материнских плат . Три модели на P55 (ASRock, ECS и MSI) вышли из строя. Мы планируем выпустить материал на следующей неделе, в котором мы рассмотрим шаги, сделанные каждым производителем для решения выявленных недостатков.


4,1 ГГц в режиме бездействия.


4,1 ГГц под нагрузкой.


4,1 ГГц - настройки памяти.

Мы смогли заставить работать процессор Core i5-750 на частоте 4,1 ГГц, выставив напряжение Vcore в BIOS на уровне 1,465 В, но система не смогла вернуться с пикового режима нагрузки в режим бездействия без краха. Дальнейшее увеличение напряжения процессора или платформы также не помогло. Мы смогли и дальше повышать тактовые частоты, когда выключили поддержку C-состояний в BIOS.

К великому сожалению энергопотребление системы после данного шага в режиме бездействия возросло на существенные 34 Вт. Конечно, мы смогли достичь более высоких тактовых частот, но также получили наглядное доказательство того, что лучше сохранять процессор в наименьшем возможном состоянии работы в режиме бездействия, чтобы транзисторы и целые функциональные блоки отключались тогда, когда они не нужны.


4,2 ГГц в режиме бездействия.


4,2 ГГц под нагрузкой.


4,2 ГГц - настройки памяти.

Чтобы добиться стабильной работы на частоте 4,2 ГГц нам пришлось увеличить напряжение до 1,52 В.


4,3 ГГц в режиме бездействия.


4,3 ГГц под нагрузкой.


4,3 ГГц - настройки памяти.

Увеличив напряжение нашего Core i5-750 до 1,55 В, мы смогли достичь 4,3 ГГц, но эта настройка уже не имела значения. Система работала достаточно стабильно, чтобы провести тесты Fritz и снять показания CPU-Z, но мы не смогли завершить весь пакет тестов. Впрочем, мы всё равно не рекомендуем данную настройку для повседневной работы, поскольку энергопотребление в режиме бездействия увеличивается до 127 Вт. Давайте посмотрим, какой уровень производительности мы сможем получить после разгона до 4,2 ГГц, и как такая частота повлияет на эффективность.

Таблица тактовых частот и напряжений

Разгон Core i5-750 3600 МГц 3700 МГц 3800 МГц
Множитель 20 20 20
74 Вт 75 Вт 77 Вт
179 Вт 190 Вт 198 Вт
BIOS Vcore 1,251 В 1,301 В 1,32 В
CPU-Z VT 1,208 В 1,256 В 1,264 В
Cpu VTT 1,101 В 1,149 В 1,149 В
PCH 1,81 Вт 1,81 Вт 1,85 Вт
Память 1,651 В 1,651 В 1,651 В
Результаты теста Fritz Chess 10 408 10 698 10 986
C-состояния Включены Включены Включены
Стабильная работа Да Да Да

Разгон Core i5-750 3900 МГц 4000 МГц 4200 МГц
Множитель 20 20 20
Энергопотребление системы в режиме бездействия 78 Вт 79 Вт 125 Вт
Энергопотребление системы под нагрузкой 221 Вт 238 Вт 270 Вт
BIOS Vcore 1,37 В 1,45 В 1,52 В
CPU-Z VT 1,344 В 1,384 В 1,432 В
Cpu VTT 1,203 В 1,25 В 1,303 В
PCH 1,9 Вт 1,9 Вт 1,9 Вт
Память 1,651 В 1,651 В 1,651 В
Результаты теста Fritz Chess 11 266 11 506 12 162
C-состояния Включены Включены Выключены
Стабильная работа Да Да Да

Разгон Core i5-750 4100 МГц 4100 МГц 4300 МГц
Множитель 20 20 20
Энергопотребление системы в режиме бездействия 80 Вт 114 Вт 127 Вт
Энергопотребление системы под нагрузкой 244 Вт 244 Вт 282 Вт
BIOS Vcore 1,465 В 1,463 В 1,55 В
CPU-Z VT 1,384 В 1,384 В 1,456 В
Cpu VTT 1,25 В 1,25 В 1,318 В
PCH 1,9 Вт 1,9 Вт 1,9 Вт
Память 1,651 В 1,651 В 1,651 В
Результаты теста Fritz Chess 11 785 11 842 12 359
C-состояния Включены Выключены Выключены
Стабильная работа Нет Да Нет

Тестовая конфигурация

Системное аппаратное обеспечение
Тесты производительности
Материнская плата (Socket LGA 1156) MSI P55-GD65 (Rev. 1.0), чипсет: Intel P55, BIOS: 1.42 (09/08/2009)
CPU Intel I Intel Core i5-750 (45 нм, 2,66 ГГц, 4 x 256 кбайт L2 и 8 Мбайт L3, TDP 95 Вт, Rev. B1)
CPU Intel II Intel Core i7-870 (45 нм, 2,93 ГГц, 4 x 256 кбайт L2 и 8 Мбайт L3, TDP 95 Вт, Rev. B1)
Память DDR3 (два канала) 2 x 2 Гбайn DDR3-1600 (Corsair CM3X2G1600C9DHX)
2 x 1 Гбайт DDR3-2000 (OCZ OCZ3P2000EB1G)
Кулер Thermalright MUX-120
Видеокарта Zotac Geforce GTX 260², GPU: Geforce GTX 260 (576 МГц), память: 896 Мбайт DDR3 (1998 МГц), потоковые процессоры: 216, частота блока шейдеров: 1242 МГц
Жёсткий диск Western Digital VelociRaptor, 300 Гбайт (WD3000HLFS), 10 000 об/мин, SATA/300, кэш 16 Мбайт
Привод Blu-Ray LG GGW-H20L, SATA/150
Блок питания PC Power & Cooling, Silencer 750EPS12V 750 Вт
Системное ПО и драйверы
Операционная система Windows Vista Enterprise Version 6.0 x64, Service Pack 2 (Build 6000)
Драйверы чипсета Intel Chipset Installation Utility Ver. 9.1.1.1015
Драйверы подсистемы накопителей Intel Matrix Storage Drivers Ver. 8.8.0.1009

Тесты и настройки

3D-игры
Far Cry 2 Version: 1.0.1
Far Cry 2 Benchmark Tool
Video Mode: 1280x800
Direct3D 9
Overall Quality: Medium
Bloom activated
HDR off
Demo: Ranch Small
GTA IV Version: 1.0.3
Video Mode: 1280x1024
- 1280x1024
- Aspect Ratio: Auto
- All options: Medium
- View Distance: 30
- Detail Distance: 100
- Vehicle Density: 100
- Shadow Density: 16
- Definition: On
- Vsync: Off
Ingame Benchmark
Left 4 Dead Version: 1.0.0.5
Video Mode: 1280x800
Game Settings
- Anti Aliasing none
- Filtering Trilinear
- Wait for vertical sync disabled
- Shader Detail Medium
- Effect Detail Medium
- Model/Texture Detail Medium
Demo: THG Demo 1
iTunes Version: 8.1.0.52
Audio CD ("Terminator II" SE), 53 min.
Convert to AAC audio format
Lame MP3 Version 3.98
Audio CD "Terminator II SE", 53 min
convert WAV to MP3 audio format
Command: -b 160 --nores (160 Kbps)
TMPEG 4.6 Version: 4.6.3.268
Video: Terminator 2 SE DVD (720x576, 16:9) 5 Minutes
Audio: Dolby Digital, 48000 Hz, 6-channel, English
Advanced Acoustic Engine MP3 Encoder (160 Kbps, 44.1 KHz)
DivX 6.8.5 Version: 6.8.5
== Main Menu ==
default
== Codec Menu ==
Encoding mode: Insane Quality
Enhanced multithreading
Enabled using SSE4
Quarter-pixel search
== Video Menu ==
Quantization: MPEG-2
XviD 1.2.1 Version: 1.2.1
Other Options / Encoder Menu -
Display encoding status = off
Mainconcept Reference 1.6.1 Version: 1.6.1
MPEG-2 to MPEG-2 (H.264)
MainConcept H.264/AVC Codec
28 sec HDTV 1920x1080 (MPEG-2)
Audio:
MPEG-2 (44.1 kHz, 2-channel, 16-bit, 224 Kbps)
Codec: H.264
Mode: PAL (25 FPS)
Profile: Settings for eight threads
Adobe Premiere Pro CS4 Version: 4.0
WMV 1920x1080 (39 sec)
Export: Adobe Media Encoder
== Video ==
H.264 Blu-ray
1440x1080i 25 High Quality
Encoding Passes: one
Bitrate Mode: VBR
Frame: 1440x1080
Frame Rate: 25
== Audio ==
PCM Audio, 48 kHz, Stereo
Encoding Passes: one
Grisoft AVG Anti Virus 8 Version: 8.5.287
Virus base: 270.12.16/2094
Benchmark
Scan: some compressed ZIP and RAR archives
Winrar 3.9 Version 3.90 x64 BETA 1
Compression = Best
Benchmark: THG-Workload
Winzip 12 Version 12.0 (8252)
WinZIP Commandline Version 3
Compression = Best
Dictionary = 4096KB
Benchmark: THG-Workload
Autodesk 3D Studio Max 2009 Version: 9 x64
Rendering Dragon Image
Resolution: 1920x1280 (frame 1-5)
Adobe Photoshop CS 4 (64-Bit) Version: 11
Filtering a 16MB TIF (15000x7266)
Filters:
Radial Blur (Amount: 10; Method: zoom; Quality: good), Shape Blur (Radius: 46 px; custom shape: Trademark sysmbol), Median (Radius: 1px), Polar Coordinates (Rectangular to Polar)
Adobe Acrobat 9 Professional Version: 9.0.0 (Extended)
== Printing Preferenced Menu ==
Default Settings: Standard
== Adobe PDF Security - Edit Menu ==
Encrypt all documents (128-bit RC4)
Open Password: 123
Permissions Password: 321
Microsoft Powerpoint 2007 Version: 2007 SP2
PPT to PDF
Powerpoint Document (115 Pages)
Adobe PDF-Printer
Deep Fritz 11 Version: 11
Fritz Chess Benchmark Version 4.2
Синтетические тесты
3DMark Vantage Version: 1.02
Options: Performance
Graphics Test 1
Graphics Test 2
CPU Test 1
CPU Test 2
Version: 1.00
PCMark Benchmark
Memories Benchmark
SiSoftware Sandra 2009 Version: 2009 SP3
Processor Arithmetic, Cryptography, Memory Bandwith


Все протестированные нами игры показали впечатляющие преимущества. Особенно хорошо с тактовой частотой масштабируется игра Left 4 Dead. 3DMark Vantage не работает намного быстрее, поскольку этот тест больше зависит от графической производительности.






Производительность приложений тоже значительно улучшается после разгона.








То же самое можно сказать и про тесты кодирования аудио и видео. Более высокая тактовая частота процессоров даёт ощутимый эффект.






Энергопотребление системы практически не меняется, даже если вы увеличите частоту процессора и его напряжение. Функции энергосбережения процессора дают прекрасную эффективность энергопотребления, выключая блоки и ядра, когда они не нужны. Однако нам пришлось отключить поддержку C-состояний для разгона процессора выше 4 ГГц, и этот шаг привёл к заметному влиянию на энергопотребление системы в режиме бездействия.

Разница в энергопотреблении при пиковой загрузке тоже заметна. Энергопотребление практически удваивается при переходе с 2,66 на 4,2 ГГц. Конечно, производительность при этом увеличивается не в два раза, то есть от разгона будет страдать эффективность системы.


Суммарная потреблённая энергия за прогон PCMark Vantage (Вт-ч).



Среднее энергопотребление за прогон PCMark Vantage (мощность, Вт).



Эффективность: результат в баллах на среднее энергопотребление в ваттах.

Как и можно было ожидать, стандартные тактовые частоты с активным режимом Turbo Mode дают наибольшую эффективность (производительность на ватт). Повышение тактовых частот и напряжения старым добрым образом повышает производительность, но ещё сильнее увеличивает энергопотребление. Если вам требуется эффективная машина, то от серьёзного разгона лучше отказаться.


Наши ожидания прироста производительности были высоки, но реалистичны. Архитектура Intel Nehalem сегодня не имеет равных по производительности на такт; мы ожидали, что она будет приятно масштабироваться с добавлением каждого мегагерца к тактовой частоте. Фактически, наша тестовая система на основе материнской платы MSI P55-GD65 обеспечила существенное и почти линейное увеличение производительности вплоть до частоты 4 ГГц, когда нам пришлось выключить внутреннюю систему энергосбережения процессора (C-состояния), чтобы достичь максимальной тактовой частоты. Конечно, мы не рекомендуем идти на такой шаг, если вы хотите сохранить низкое энергопотребление в режиме бездействия.

Зная, что в Интернете есть множество примеров демонстрации частоты 4,5 ГГц и выше, наши результаты кажутся разочаровывающими. Но помните, что мы использовали в данном проекте процессор Intel начального уровня Core i5-750, у которого штатная тактовая частота составляет 2,66 ГГц. Если взять разумный максимум 4 ГГц, то мы всё равно получаем увеличение тактовой частоты на 1,33 ГГц или на 50 процентов. Кроме того, мы не особо заботились о выборе системы охлаждения. Воздушный кулер Thermalright MUX-120 прекрасно себя показал, но жидкостные или более мощные воздушные решения могут дать ещё более высокие пределы разгона.

Core i5-750 - прекрасный процессор для разгона, но всё же не следует слишком увлекаться процессом, чтобы избежать чрезмерного энергопотребления. Да, вы можете получить частоты уровня 4,2 ГГц, схожие со многими платформами LGA 1366, у которых потенциал разгона примерно такой же - и намного дешевле. Но, опять же, мы не можем не отметить, что обычный "грубый" разгон уже не является столь привлекательным, как раньше.

Intel сегодня меняет само понятие разгона, поскольку меняет спецификации процессора с привязки к тактовой частоте на привязку к тепловому пакету. Пока процессор не превышает определённые тепловые и электрические пороги, то он может работать так быстро, насколько это возможно. Фактически, именно на такой модели могут строиться будущие процессоры AMD и Intel. Процессор Core i5 и наш проект разгона наглядно показывают, что статические частоты уже не так интересны. Что на самом деле имеет значение, так это диапазон тактовых частот и тепловые/электрические ограничения, в пределах которых может работать процессор. И разгон в будущем может быть связан с изменением этих ограничений, а не с достижением какой-либо максимальной тактовой частоты.

Мы не знаем, можно ли называть платформу P55 "следующим BX", но процессоры Core i5/i7 для нового интерфейса Intel LGA 1156 имеют высокую практическую ценность независимо от того, будете вы их разгонять или нет.

В первом обзоре процессоров Sandy Bridge (Core i5-2400 и Core i7-2600) я несколько раз обращал внимание читателей, что исследование новых CPU является неполным без участия «самых-самых оверклокерских» моделей с индексом К.

На тот момент Sandy Bridge еще не был официально представлен и таких процессоров в России были считанные единицы, так что для редакции сайт стоило больших трудов достать сразу пару CPU на тестирование. Речи о том, чтобы еще и выбрать конкретные модели, вообще не шло. В завершении обзора я пообещал читателям вскоре раздобыть экземпляр с индексом «K». В силу обстоятельств и большой загрузки тестами новых ускорителей nVidia сделать это быстро не получилось.

реклама

Попробую исправиться, пусть и с опозданием . На сегодняшний день «разблокированные» Sandy Bridge успешно обосновались в системных блоках многих посетителей форума сайт, уже накоплены некоторые данные о разгонном потенциале этих CPU.

Так что данная заметка о разгоне не претендует на какую-то ультра-новизну и «открыть Америку» автор не пытается. Это скорее материал «вдогонку», где будут учтены не только данные, полученные при тестировании. Будет приведен ряд собственных соображений по поводу новых процессоров и сравнение Intel Core i5-2500 «лоб в лоб» с парой очень популярных и активно разгоняемых моделей предыдущего поколения. Надеюсь, что это станет полезным для читателей, подумывающих о переходе на новую платформу LGA1155.

Для начала - немного информации об архитектуре исследуемого процессора.

Архитектура и положение в модельном ряду

Читатели, хорошо осведомленные о положении процессоров Intel в модельной линейке нынешнего поколения (или просто читавшие мои предыдущие обзоры Sandy Bridge) могут просмотреть этот раздел «по диагонали». Здесь я повторю уже известные сведения для объяснения «общего расклада» и вкратце расскажу, чем же так интересен исследуемый процессор Intel Core i5-2500K.

Читайте, как увеличить частоту процессора Intel (Overclocking) . Пошаговая инструкция. Ваш компьютер работает очень быстро. Невероятно быстро, по крайней мере, по сравнению с ПК, который у вас был десять или двадцать лет назад. Но всё равно, он может работать намного быстрее. Если это заявление побуждает вас узнать, как это можно сделать, то в этой статье вы найдёте нужную информацию.

Содержание:

  • Оверклокинг (Overclocking)

    Оверклокинг (Overclocking) – это совокупность действий по увеличению частоты работы устройства, увеличении напряжения сверх нормы, чем сертифицировано производителем устройства с целью увеличения скорости его работы. Максимальный уровень частоты процессора должен быть в пределах, при которых сохраняется стабильная работа устройства при максимальной производительности.

    Обратите особое внимание , что при разгоне процессора значительно увеличивается выделение тепла (то есть он больше греется), увеличивается расход электроэнергии, а также устройство быстрее вырабатывает свой ресурс, так как работает при максимальных нагрузках.

    Мы будем разгонять процессор от компании «Intel» , потому что именно эта компания по-прежнему остается лидером по количеству установок для настольных ПК. В статье мы расскажем о процессе разгона для одной из последних моделей из семейства «Core» (K-серии), которые разблокированы для разгона. Но общие шаги будут верны и могут применяться к большинству настольных компьютеров, проданных или собранных за последние несколько лет. Тем не менее, перед тем как приступать, поищите дополнительные рекомендации в сети для разгона именно вашей модели процессора.

    Шаг первый: проверьте свою конфигурацию

    Перед началом, убедитесь, что ваше оборудование может быть разогнано. Если вы купили готовый ПК или вам собирали компьютер, то вы, возможно, не помните точную конфигурацию и все возможные ограничения, установленные производителем. Поэтому, вам следует скачать специальную программу, например, «CPU-Z» и с помощью неё узнать точную модель вашего процессора и материнской платы (со всеми буквами, цифрами, номером версии или выпуска). Потом зайдите на официальный сайт производителя и найдите полную характеристику на устройство.


    Компания «Intel» разработала и представляет на рынке целое множество процессоров, но для разгона хорошо подходят только серии процессоров «K-» и «X-» . Причём серия «K» в этом смысле, скорее всего представляет собой определённую переменную, чем фактическую линейку продуктов, это буква в названии процессора означает, что он «разблокирован» (разлочен) и готов к разгону конечным пользователем. Поддержка этой функции встречается в моделях «i7» , «i5» и «i3» , а также во всех новых, получивших дополнительную мощность, процессорах «X-серии» . Поэтому, если вы покупаете процессор от «Intel» , с осознанием того, что будете пытаться разогнать его, то вам необходим «камень» версии «K» или «X» . Полный список процессоров, которые «разлочены» и могут быть разогнаны конечным потребителем, а также дополнительные рекомендации по разгону, вы сможете найти на официальном сайте компании «Intel» . Мы же будем использовать для разгона «Intel Core i7-2600K» для этого руководства.


    А возможно ли разогнать процессоры от «Intel» не из серии «К» и «Х» ? Естественно да, но это гораздо сложнее, и, вероятно, вам для этого потребуется материнская плата, которая будет поддерживать дополнительные специализированные функции. Кроме того, компания «Intel» пытается всячески запретить разгон «залоченых» процессоров – до такой степени, что они постоянно выпускают и обновляют своё программное обеспечение, специально закрывая все обнаруженные ранее лазейки, позволяющие разгонять «залоченное» оборудование. Такая политика компании вызывает бурю недовольства в рядах энтузиастов, тестирующих их аппаратное оборудование.

    Я также должен упомянуть об определённой концепции, известную среди энтузиастов как «кремниевую лотерею» . Микроархитектура современных процессоров невероятно сложна, как и процесс их производства. Даже если два процессора имеют одинаковую модель и теоретически должны быть полностью идентичными, то вполне возможно, что они будут разгоняться и работать по-разному. Не расстраивайтесь, если ваш конкретный процессор и вся конфигурация в целом не смогут достичь той же производительности разгона, что получил кто-то, описавший свои результаты в Интернете. Вот почему невероятно важно пройти долгий, трудный процесс самостоятельно, а не просто пытаться подключать чужие настройки – ни один из двух разных процессоров не разгонятся одинаково.


    Теперь необходимо убедиться в том, что ваша материнская плата подходит и имеет нужный функционал для разгона вашего процессора. Технически абсолютно любая материнская плата должна предоставлять возможность разгона своего процессора, но некоторые из них разработаны специально для таких, «разлоченных» процессоров, а некоторые нет. Если вы выбираете какую материнскую плату купить, то могу порекомендовать любую «игровую» материнскую плату или найдите в Интернете информацию, какая плата будет отвечать всем необходимым требованиям для разгона именно вашей модели процессора. Они конечно стоят дороже, чем стандартные модели, но имеют доступ к обновлениям «UEFI / BIOS» и специальному программному обеспечению производителя, разработанному с целью упрощения разгона. Вы также можете часто встречать обзоры оверклокеров, энтузиастов, которые обсуждают настройки, нужные для разгона конкретных моделей процессоров на определённой материнской плате и получаемый прирост производительности. Хорошие решения в этом отношении – это топовые и игровые материнские платы от «ASUS» , «Gigabyte» , «EVGA» и «MSI» .

    Это само собой разумеется, но я все равно напомню: вам нужна материнская плата с сокетом, которая совместима с вашим конкретным процессором. Для последних разблокированных процессоров Intel это либо разъем «LGA-1151» (серия K), либо «LGA-2066» (серия X).


    Даже если вы готовитесь разогнать процессор на существующей конфигурации, которая не была построена с учетом разгона, то всё равно захотите использовать новую систему охлаждения, более мощную чем стоковая. Новые системы работают намного эффективные, чем те что предлагает компания «Intel» , они оснащены более крупными вентиляторами и значительно расширенными радиаторами. Фактически, процессоры серии «К» и «Х» , могут специально поставляться без системы охлаждения, именно для того что бы вы установили более мощное охлаждение. Весь смысл в том, что чем лучше и качественней охлаждение, тем меньше будет греться ваш процессор, соответственно вы сможете сильнее разогнать его и ещё больше увеличить производительность ПК.

    Характеристики новейших систем охлаждения ошеломляют, даже если вы не будете использовать самый премиальный вариант – водяное охлаждение. Даже на версию с воздушным охлаждением можно потратить от 20 до 100 долларов, а цена на водяное охлаждение может доходить до 500 долларов. Но если бюджет ограничен, или вы не желаете тратить слишком много, то существует несколько более-менее экономичных вариантов. Кулер, который мы будем использовать, – это «Cooler Master Hyper 612 V.2» , цена на который не превышает 35 долларов и будет входить в большинство полноразмерных ATX-корпусов. Вероятно, мы могли бы получить лучшие результаты с более дорогой и продуманной моделью, но даже это охлаждение позволит нам значительно увеличить наши тактовые частоты, не попадая в небезопасные температурные диапазоны.


    Если вы выберете новый кулер, помимо цены вам нужно будет рассмотреть две переменные: совместимость и размер. Как воздушное охлаждение, так и водяное должны поддерживать тип сокета на вашей материнской плате. Воздухоохладители также нуждаются в достаточно большом физическом пространстве, доступном внутри корпуса вашего ПК, особенно в вертикальном положении. Водяное охлаждение не нуждается в большом количестве места вокруг сокета процессора, но оно нуждается в свободном пространстве на боковине корпуса для вентиляторов, чтобы охлаждать поступающую от процессора горячую воду. Перед тем как принимать решение о покупке, нужно тщательно проверить хватит ли места в вашем корпусе, или есть ли место для установки водяного охлаждения. Также удостоверьтесь, что система охлаждения установлена и подключена правильно, вентиляторы крутятся и вода нигде не бежит. Это нужно сделать ещё до того, как вы соберётесь разогнать свой процессор.

    Шаг второй: проведите стресс-тест вашей системы

    Мы предполагаем, что все настройки, связанные с вашим процессором, установлены по умолчанию. Если нет, то желательно загрузить UEFI вашего компьютера (более известный как BIOS) и сбросить все настройки по умолчанию. Перезагружаем компьютер, нажимаем «DEL» или соответствующую кнопку, которая указана на вашем экране «POST» (на экране с логотипом производителя материнской платы и проверки всех основных систем). Обычно это «Delete» , «Escape» , «F1» или «F12» в зависимости от производителя.


    Где-то в настройках «UEFI / BIOS» должна быть опция, чтобы вернуть все значения по умолчанию. На нашей тестовой машине с материнской платой от «ASUS» , нужная нам опция находится в меню «Сохранить и выйти» и обозначена как «Load Optimized Defaults» (Загрузить оптимизированные стандартные настройки). Выберите этот вариант, нажмите клавишу «Enter» и сохраните настройки, затем выйдите из «UEFI / BIOS» и перезагрузите ПК.

    Есть еще несколько изменений, которые вам может понадобиться сделать до разгона. На новых процессорах от компании «Intel» , чтобы получить более стабильные и прогнозируемые результаты тестов, вам нужно будет отключить опцию «Intel Turbo Boost» для каждого из ядер. Это встроенный стабильный полуразгон от «Intel» , который повышает тактовую частоту процессора при интенсивных нагрузках. Это удобная функция, если вы никогда не используете собственных разгон, но в данном случае его лучше отключить, потому что мы надеемся получить увеличение мощности больше, чем может предоставить функция «Turbo Boost» . В данным момент мы будем самостоятельно управлять этим процессом.

    В зависимости от вашего процессора вы можете отключить опцию «C State» или другие энергосберегающие функции, которые призваны уменьшать производительность процессора, когда его полная мощность не нужна. Однако вы сможете включить их после разгона, и они продолжат работать в штатном режиме. Некоторые сообщения в интернете свидетельствовали о том, что функции энергосбережения не работают после разгона, но в других сообщениях говориться, что они работают нормально.

    После того как, все настройки сброшены по умолчанию, а дополнительные функции задушены, загрузитесь в свою основную операционную систему (мы используем ОС Windows, но многие из этих программ также должны работать и с «Linux» ). Перед тем, как начать разгон, необходимо провести стандартный стресс-тест своей системы, а полученные результаты будут служить ориентиром и отправной точкой для сравнения увеличения производительности ПК. Для этого вам понадобится специальное программное обеспечение, которое запускает сверх трудоёмкие процессы, и нагружает центральный процессор и другие устройства на максимальном уровне производительности. По сути, оно имитирует наиболее интенсивное использование компьютера, чтобы увидеть, вызовет ли это ошибки и сбои в работе компьютера. То есть проведя этот тест после разгона, мы сможет увидеть на сколько быстрее ПК справился с теми же задачами, и соответственно, на сколько выросла производительность всей системы.

    Я буду использовать для стресс-тестов утилиту , потому что она крайне проста в использовании, является свободно распространяемой и доступна на трех основных настольных операционных системах. Другие популярные альтернативы включают , «LinX» и «IntelBurnTest» . Любая из них справиться со своими функциями, также вы можете использовать комбинацию из двух или нескольких утилит на ваше усмотрение. Если вы хотите быть полностью уверены в стабильность работы системы после разгона процессора, то вам действительно следует использовать несколько утилит, для пущей уверенности (я буду использовать как основную программу для тестов, а также дополнительно проверю систему с помощью ).


    Какой вариант бы вы ни выбрали, скачайте ПО из интернета, установите его и запустите. Позвольте ему выполнить свой первоначальный тест, а затем повторите проверку несколько раз, чтобы убедиться, что ваш процессор может обрабатывать расширенные прогоны на 100% и не превышает разрешённую максимальную температуру. Вы даже можете услышать, как вентилятор на вашем кулере процессора поднимает обороты до максимальной скорости, чтобы справиться с повышенной нагрузкой.


    В то время как стресс-тесты выполняются, самое время загрузить некоторые другие дополнительные утилиты, которые мы будем использовать немного позже: утилита, предоставляющая информацию о процессоре, чтобы держать вас в курсе ваших изменяющихся значений и программа-монитор температуры процессора для определения насколько высокая температура в данный момент времени. Для ОС Windows мы рекомендуем «CPU-Z» и «RealTemp» соответственно. Загрузите их из интернета и запустите, теперь можно отследить как повышается температура вашего процессора под вашим стресс-тестом.


    Показатели температуры будут иметь решающее значение для процесса разгона. При проведении стресс-теста в условиях настроек по умолчанию на нашем процессоре «Intel i7-2600K» мы увидели, что температура на внутренних датчиках колеблется от 49 до 75 градусов по Цельсию. Ваши показатели будут отличаться от моих, потому что вы можете использовать более или менее эффективную систему охлаждения. Звучит жарко, но пока не о чем беспокоиться. Процессоры предназначены для работы при таких высоких температурах с помощью систем охлаждения ПК. Максимальная допустимая температура нашего процессора до того, как он автоматически уменьшит напряжение или отключится (функции «Tmax» или «Tjunction» ), составляет 100 градусов Цельсия. При разгоне, нашей целью будет увеличение производительности процессора до такой степени, когда его температура все еще останется на достаточно безопасном уровне, ниже 100 градусов Цельсия, и при этом система продолжит стабильно работать.

    Если вы выполнили несколько тестов подряд, с использованием процессора на 100%, и его температура находится в безопасном диапазоне (до 100 градусов), система осталась стабильной, то самое время приняться за разгон.

    Шаг третий: поднимите процессорный множитель (CPU Clock Ratio)

    Теперь пришло время начать разгон. Перезагрузите компьютер и войдите в «UEFI (BIOS)» . Найдите нужную категорию, она может называться как «Overclock Settings» . В зависимости от производителя вашей материнской платы, эта категория может называться «CPU Booster» или ещё как-то.

    В этом разделе найдите параметр «CPU Clock Ratio» («CPU Multiplier» , «CPU Clock Multiplier» , «Multiplier Factor» , «Adjust CPU Ratio» ), также при наведении курсора на этот параметр справа будет показана подсказка.

    «CPU Clock Ratio» переводится как множитель процессора. В настоящее время, на материнских платах частота на которой работает процессор определяется с помощью умножения частоты системной шины и специального параметра (собственно этого множителя).

    В «UEFI (BIOS)» нашей материнской платы этот параметр можно найти на вкладке «Advanced Frequency Settings» и далее в «Advanced CPU Core Settings» .

    Тактовая частота определяется двумя параметрами: скоростью шины (100 МГц в нашем случае) и множителем (в нашем случае 34). Умножьте эти два значения между собой, и вы получите тактовую частоту процессора (в нашем случае – 3.4 ГГц).

    Чтобы разогнать систему, мы будем увеличивать множитель, что, в свою очередь, увеличивает тактовую частоту. (Скорость шины оставляем по умолчанию).

    Я установлю значение параметра «CPU Clock Ratio» на 35, всего на один шаг, чтобы увеличить максимальную частоту до 3,5 ГГц. Возможно, вам придется разрешить системе вносить изменения в «UEFI (BIOS)» , чтобы «UEFI (BIOS)» позволил изменять множитель.

    Как только это будет сделано, сохраните настройки «UEFI (BIOS)» и выйдите, а затем перезагрузитесь в операционную систему. После этого запускаем программу «CPU-Z» , чтобы проверить и убедиться, что ваши изменения сохранились и показатель «CPU Multiplier» имеет значение 35, и более высокую частоту.

    Примечание : если вы обнаружили более низкие значения для полей «Core Speed» ​​и «Multiplier» , то вам может потребоваться запустить стресс-тест заново, чтобы максимально нагрузить процессор и проверить введённые параметры, или, возможно до сих пор работает функция энергосбережения.

    Вернитесь назад, ко второму шагу и снова проведите стресс-тесты. Если работа вашей системы осталась стабильной на новой более высокой частоте процессора, то можете повторить третий шаг и ещё увеличить множитель. Также можно просто установить значения, которые написаны в обзорах в интернете, у людей с похожей конфигурацией ПК, но медленные и устойчивые изменения – более безопасный и более точный способ достижения желаемых результатов.

    В какой-то момент вы достигнете определённой точки, при которой компьютер, во время прохождения стресс-теста закончит работу с ошибкой. Либо вы достигнете максимальной температуры процессора, превышать которую не имеет смысла (например, на 10-15 градусов меньше значения использования функции отключения процессора).

    Если вы столкнулись с провалом стресс-теста, то перейдите к следующему шагу, но если достигли максимума температуры, то перейдите сразу к пятому шагу.

    Шаг четвертый: повторяйте до отказа системы, затем повысьте напряжение

    Если ваш стресс-тест потерпел неудачу или вызвал сбой компьютера, но показатели температуры все еще не доходят до максимальных значений, то вы можете продолжить разгон процессора, увеличив напряжение. Увеличение напряжения, которое материнская плата передаёт на центральный процессор через блок питания, должно обеспечить стабилизацию на более высоких скоростях, хотя это также значительно повысит его температуру.

    Перезагружаем компьютер в «UEFI (BIOS)» , находим раздел «Advanced Voltage Settings» и далее «CPU Core Voltage Control» . Опять же, у вас названия и значения этих параметров будут отличаться, это зависит от производителя материнской платы и версии «UEFI (BIOS)» , информацию об этих параметрах можно найти в мануале к материнской плате или на сайте её разработчика.

    Здесь выполняем почти те же самые действия, немного увеличиваем напряжение, потом повторяем шаги два и три, пока ваш компьютер не завершит работу с ошибкой, а затем снова увеличиваем напряжение. Рекомендуемый шаг – 0,05 вольта, опять же крайне мелкие шажки занимают больше времени, но вы получите гораздо более надежные результаты.

    В течении процесса выполнения, постоянно следите за температурными показателями, напомню, чем больше вы повышаете напряжение, тем больше будет увеличиваться температура процессора. Если проведённые вами тесты терпят неудачу даже при +2 вольта, то возможно вы просто не сможете увеличить напряжение и добиться стабильной работы системы. Вспомните про «кремниевую лотерею» – возможно, что ваш конкретный процессор не будет вести себя точно так же, как другие с тем же номером модели.

    Повторяйте шаги три и четыре: увеличиваем множитель, проводим стресс-тест, если терпим неудачу, то увеличиваем напряжение. В конце концов, вы достигнете определённой точки, в которой температура процессора будет приближаться к максимальным значениям, с которым вам комфортно работать, или стресс-тесты последовательно выходят из строя и приводят к сбою компьютера. Когда это произойдет, верните показатели к последнему удачному, стабильному разгону.

    В моём случае, я вообще не смог поднять напряжение – самый высокий стабильный разгон составлял 3,7 ГГц.

    Шаг пятый: Большой всеобъемлющий тест

    Теперь, когда вы достигли максимальной точки разгона, в которой ваша система работает более-менее стабильно, пришло время завершить этот процесс и провести самый строгий тест. Его целью является проверка, может ли ваш компьютер работать на этой более высокой тактовой частоте и при максимальном напряжении в течение нескольких часов подряд.

    Заново включите функции энергосбережения и настройте программу стресс-тестирования для проведения непрерывного теста несколько часов подряд. Утилита выполнит это автоматически, для других программ может потребоваться дополнительная настройка параметров времени. Несколько часов, по крайней мере, будем достаточно для достижения самой максимальной температуры процессора при максимальной нагрузке. (Кроме того, если вы живете в широтах с высокой температурой, и у вас не установлено дополнительное охлаждение комнаты, в которой находится ваш ПК, то имейте в виду, что температура окружающей среды также повлияет на максимальный порог разгона в течение лета.) Если ПК завершает работу с ошибкой, или после теста температура процессора опасно приближается к максимально допустимому значению, значит тест провален. Вам потребуется уменьшить значения множителя, напряжения на процессоре и повторить попытку заново, пока тест не окажется пройденным.



  • 
    Top