Литий-ионный аккумулятор. Li-Ion или Li-Po: В Чем Различие и Что Выбрать

Читая "советы по эксплуатации" аккумуляторов на форумах невольно задумываешься - то ли люди физику с химией в школе прогуливали, то ли думают что правила эксплуатации свинцовых и ионных аккумуляторов одинаковые.
Начнем пожалуй с принципов работы Li-Ion аккумулятора. На пальцах все предельно просто - есть отрицательный электрод (сделаный обычно из меди), есть положительный (из алюминий), между ними находится пористое вещество (сепаратор), пропитанный электролитом (он предотвращает "самовольный" переход ионов лития между электродами):

Принцип работы основан на возможности ионов лития встраиваться в кристаллическую решетку различных материалов - обычно графита или оксида кремния - с образованием химических связей: соответственно при зарядке ионы встраиваются в кристаллическую решетку, тем самым накапливая заряд на одном электроде, при разрядке соответственно переходят обратно к другому элетроду, отдавая нужный нам электрон (кому интересно более точное объяснение происходящих процессов - гуглим интеркаляцию). В качестве электролита используются водосодержащие растворы, не содержащие свободного протона и устойчивые в широком диапазоне напряжений. Как видно в современных аккумуляторах все сделано достаточно безопасно - металлического лития нет, взрываться нечему, по сепаратору бегают только ионы.
Теперь, когда с принципом работы все стало более-менее понятно, перейдем к самым распростаренным мифам о Li-Ion аккумуляторах:

  1. Миф первый. Li-Ion аккумулятор в устройстве нельзя разряжать до нуля процентов.
    На деле все звучит правильно и согласуется с физикой - при разрядке до ~2.5 В Li-Ion аккумулятор начинает очень быстро деградировать, и даже одна такая разрядка может существенно (до 10%!) уменьшить его емкость. К тому же при разряде до такого напряжение штатным зарядником зарядить его уже не получится - при падении напряжения ячейки аккумулятора ниже ~3 В "умный" контроллер отключит ее как поврежденную, а если такие ячейки все - аккумулятор можно нести на помойку.
    Но тут есть одно очень важное но, о котором все забывают: в телефонах, планшетах и других мобильных устройствах рабочий диапазон напряжений на аккумуляторе это 3.5-4.2 В. При опускании напряжения ниже 3.5 В индикатор показывает ноль процентов заряда и аппарат выключается, но до "критических" 2.5 В еще очень далеко. Это подтверждается тем что если подсоединить к такому "разряженному" аккумулятору светодиод то он может гореть еще долгое время (может кто-то помнит что раньше продавались телефоны с фонариками, которые включались кнопкой независимо от системы. Так вот там лампочка продолжала гореть и после разрядки и выключения телефона). То есть как видно при штатном использовании разрядки до 2.5 В не происходит, а значит разряжать акум до нуля процентов вполне можно.
  2. Миф второй. При повреждении Li-Ion аккумуляторы взрываются.
    Все мы помним "взрывной" Samsung Galaxy Note 7. Однако это скорее исключение из правил - да, литий очень активный металл, и взорвать его в воздухе нетрудно (а в воде он и сам очень ярко горит). Однако в современных аккумуляторах используется не литий, а его ионы, которые куда менее активны. Так что чтобы произошел взрыв нужно сильно постараться - или повредить заряжающийся аккумулятор физически (устроить короткое замыкание), или заряжать очень высоким напряжением (тогда он сам повредится, однако скорее всего контроллер банально сгорит сам и не даст заряжать аккумулятор). Поэтому если у вас вдруг в руках оказался поврежденный или дымящийся аккумулятор - не стоит бросать его на стол и убегать из комнаты с криками "мы все умрем" - просто положите его в металлическую тару и вынесите на балкон (чтобы не дышать химией) - аккумулятор будет тлеть какое-то время и потом потухнет. Главное - не заливать водой, ионы конечно менее активные чем литий, но все же какое-то количество водорода при реакции с водой так же выделится (а он любит взрываться).
  3. Миф третий. При достижении на Li-Ion аккумуляторе 300(500/700/1000/100500) циклов он становится небезопасен и его нужно срочно менять.
    Миф, к счастью все меньше и меньше гуляющий по форумам и не имеющий под собой вообще никакого физического или химического объяснения. Да, во время эксплуатации электроды окисляются и коррозируют, что уменьшает емкость аккумулятора, но ничем кроме меньшего времени автономной работы и нестабильного поведения на 10-20% заряда это вам не грозит.
  4. Миф четвертый. С Li-Ion аккумуляторами нельзя работать на морозе.
    Это скорее рекомендация, чем запрет. Многие производители запрещают использовать телефоны при отрицательное температуре, да и многие сталкивались с быстрым разрядом и вообще отключением телефонов на холоде. Объяснение этому очень простое: электролит - это водосодержащий гель, а что происходит с водой при отрицательных температурах все знают (да, она замерзает если что), тем самым выводя некоторую область аккумулятора из работы. Это приводит к падениею напряжения, а контроллер начинает считать это разрядкой. Аккумулятору это не полезно, но и не смертельно (после нагрева емкость вернется), так что если вам позарез нужно пользоваться телефоном в мороз (именно пользоваться - достать из теплого кармана, посмотреть время и спрятать назад не считается) то лучше зарядите его на 100% и включите любой процесс, нагружающий процессор - так охлаждение будет происходить медленнее.
  5. Миф пятый. Вздувшийся Li-Ion аккумулятор опасен, его нужно срочно выкинуть.
    Это не совсем миф, скорее предосторожность - вздувшийся аккумулятор может банально лопнуть. С химической точки зрения все просто: при процессе интеркаляции происходит разложение электродов и электролита, в результате чего выделяется газ(так же он может выделяться и при перезарядке, но об этом чуть ниже). Но его выделяется крайне мало, и чтобы аккумулятор казался вздутым должно пройти несколько тсотен (если не тысяч) циклов перезарядки (если конечно он не бракованный). Проблем избавиться от газа нет - достаточно проткнуть клапан (в некоторых аккумуляторах он сам открывается при избыточном давлении) и стравить его (дышать им не рекомендую), после чего можно замазать дырку эпоксидной смолой. Конечно былую емкость это аккумулятору не вернет, но хотя бы теперь он точно не лопнет.
  6. Миф шестой. Li-Ion аккумуляторам вреден перезаряд.
    А вот это уже не миф, а суровая реальность - при перезарядке велик шанс что аккумулятор вздуется, лопнет и загорится - поверьте, мало удовольствия быть забрызганным кипящим электролитом. Поэтому во всех аккумуляторах стоят контроллеры, банально не дающие зарядить аккумулятор выше определенного напряжения. Но тут надо быть крайне осторожным в выборе аккумулятора - контроллеры китайских поделок зачастую могут сбоить, а фейерверк из телефона в 3 часа ночи думаю вас не обрадует. Разумеется, такая же проблема есть и в брендовых аккумуляторах, но во-первых там такое случается гораздо реже, а во-вторых вам по гарантии поменяют весь телефон. Обычно этот миф порождает следующий:
  7. Миф седьмой. При достижении 100% нужно снимать телефон с зарядки.
    Из шестого мифа это кажется разумным, но на деле нет смысла вставать посреди ночи и снимать устройство с зарядки: во-первых сбои контроллера крайне редки, а во-вторых даже при достижении 100% на индикаторе аккумулятор еще некоторое время дозаряжается до самого-самого максимума низкими токами, что добавляет еще 1-3% емкости. Так что на деле не стоит так сильно перестраховываться.
  8. Миф восемь. Заряжать устройство можно только оригинальным зарядником.
    Миф имеет место быть по причине некачественности китайских зарядников - при нормальном напряжении в 5 +- 5% вольт они могут выдавать и 6, и 7 - контроллер, конечно, какое-то время будет сглаживать такое напряжение, однако в будущем оно в лучшем случае приведет к сгоранию контроллера, в худшем - к взрыву и (или) выходу из строя материнской платы. Бывает и обратное - под нагрузкой китайский зарядник выдает 3-4 вольта: это приведет к тому что аккумулятор не сможет зарядиться полностью.
Как видно из целой кучи заблуждений далеко не все имеют под собой научное объяснение, и еще меньше реально ухудшают характеристики аккумуляторов. Но это не значит что после прочтения моей статьи нужно бежать сломя голову и покупать дешевые китайские аккумуляторы за пару баксов - все-же для долговечности лучше взять или оригинальные, или качественные копии оригинальных.

Который широко распространён в современной бытовой электронной технике и находит свое применение в качестве источника энергии в электромобилях и накопителях энергии в энергетических системах. Это самый популярный тип аккумуляторов в таких устройствах как сотовые телефоны , ноутбуки , электромобили , цифровые фотоаппараты и видеокамеры . Первый литий-ионный аккумулятор выпустила корпорация Sony в 1991 году .

Характеристики

В зависимости от электро-химической схемы литий-ионные аккумуляторы показывают следующие характеристики:

  • Напряжение единичного элемента 3,6 В.
  • Максимальное напряжение 4,2 В, минимальное 2,5–3,0 В. Устройства заряда поддерживают напряжение в диапазоне 4,05–4,2 В
  • Энергетическая плотность : 110 … 230 Вт*ч/кг
  • Внутреннее сопротивление : 5 … 15 мОм/1Ач
  • Число циклов заряд/разряд до потери 20 % ёмкости: 1000-5000
  • Время быстрого заряда: 15 мин - 1 час
  • Саморазряд при комнатной температуре: 3 % в месяц
  • Ток нагрузки относительно ёмкости (С):
    • постоянный - до 65С, импульсный - до 500С
    • наиболее приемлемый: до 1С
  • Диапазон рабочих температур: −0 ... +60 °C(при отрицательных температурах заряжание батарей невозможен)

Устройство

Литий-ионный аккумулятор состоит из электродов (катодного материала на алюминиевой фольге и анодного материала на медной фольге), разделенных пропитанными электролитом пористыми сепараторами. Пакет электродов помещен в герметичный корпус, катоды и аноды подсоединены к клеммам-токосъемникам. Корпус имеет предохранительный клапан, сбрасывающий внутреннее давление при аварийных ситуациях и нарушении условий эксплуатации. Литий-ионные аккумуляторы различаются по типу используемого катодного материала. Переносчиком тока в литий-ионном аккумуляторе является положительно заряженный ион лития, который имеет способность внедряться (интеркалироваться) в кристаллическую решетку других материалов (например, в графит, окислы и соли металлов) с образованием химической связи, например: в графит с образованием LiC6, окислы (LiMO 2) и соли (LiM R O N) металлов. Первоначально в качестве отрицательных пластин применялся металлический литий, затем - каменноугольный кокс. В дальнейшем стал применяться графит. В качестве положительных пластин до недавнего времени применяли оксиды лития с кобальтом или марганцем, но они все больше вытесняются литий-ферро-фосфатными, которые оказались безопасны, дешевы и нетоксичны и могут быть подвержены утилизации, безопасной для окружающей среды. Литий-ионные аккумуляторы применяются в комплекте с системой контроля и управления - СКУ или BMS (battery management system) и специальным устройством заряда/разряда. В настоящее время в массовом производстве литий-ионных аккумуляторов используются три класса катодных материалов: - кобальтат лития LiCoO 2 и твердые растворы на основе изоструктурного ему никелата лития - литий-марганцевая шпинель LiMn 2 O 4 - литий-феррофосфат LiFePO 4 . Электро-химические схемы литий-ионных аккумуляторов: литий-кобальтовые LiCoO2 + 6xC → Li1-xCoO2 + xLi+C6 литий-ферро-фосфатные LiFePO4 + 6xC → Li1-xFePO4 + xLi+C6

Благодаря низкому саморазряду и большому количеству циклов заряда-разряда, Li-ion-аккумуляторы наиболее предпочтительны для применения в альтернативной энергетике. При этом помимо системы BMS (СКУ) они укомплектовываются инверторами (преобразователи напряжения).

Преимущества

  • Высокая энергетическая плотность.
  • Низкий саморазряд.
  • Отсутствие эффекта памяти .
  • Не требуют обслуживания.

Недостатки

Аккумуляторы Li-ion первого поколения были подвержены взрывному эффекту. Это объяснялось тем, что в них использовался анод из металлического лития, на котором в процессе многократных циклов зарядки/разрядки возникали пространственные образования (дендриты), приводящие к замыканию электродов и, как следствие, возгоранию или взрыву. Эту проблему удалось окончательно решить заменой материала анода на графит. Подобные процессы происходили и на катодах литий-ионных аккумуляторов на основе оксида кобальта при нарушении условий эксплуатации (перезарядке). Литий-ферро-фосфатные аккумуляторы полностью лишены этих недостатков. Кроме того, все современные литий-ионные аккумуляторы снабжаются встроенной электронной схемой, которая предотвращает перезаряд и перегрев вследствие слишком интенсивного заряда.

Аккумуляторы Li-ion при неконтролируемом разряде могут иметь более короткий жизненный цикл в сравнении с другими типами аккумуляторов. При полном разряде литий-ионные аккумуляторы теряют возможность заряжаться при подключении зарядного напряжения. Эта проблема решаема путем приложения импульса более высокого напряжения, но это отрицательно сказывается на дальнейших характеристиках литий-ионных аккумуляторов. Максимальный срок «жизни» Li-ion аккумулятора достигается при ограничении заряда сверху на уровне 95 % и разряда 15–20 %. Такой режим эксплуатации поддерживается системой контроля и управления BMS (СКУ), которая входит в комплект любого литий-ионного аккумулятора.

Оптимальные условия хранения Li-ion-аккумуляторов достигаются при заряде на уровне 40–70 % от ёмкости аккумулятора и температуре около 5 °C. При этом низкая температура является более важным фактором для малых потерь ёмкости при долговременном хранении. Средний срок хранения (службы) литий-ионного АКБ составляет в среднем 36 месяцев, хотя может колебаться в интервале от 24 до 60 месяцев.

Потеря ёмкости при хранении :

температура с 40 % зарядом со 100 % зарядом
0 ⁰C 2 % за год 6 % за год
25 ⁰C 4 % за год 20 % за год
40 ⁰C 15 % за год 35 % за год
60 ⁰C 25 % за год 40 % за три месяца

Согласно всем действующим регламентам хранения и эксплуатации литий-ионных аккумуляторов, для обеспечения длительного хранения необходимо подзаряжать их до уровня 70 % ёмкости 1 раз в 6–9 месяцев.

См. также

Примечания

Литература

  • Хрусталёв Д. А. Аккумуляторы. М: Изумруд, 2003.
  • Юрий Филипповский Мобильное питание. Часть 2. (RU). КомпьютерраLab (26 мая 2009). - Подробная статья о Li-ion аккумуляторах.. Проверено 26 мая 2009.

Ссылки

  • ГОСТ 15596-82 Термины и определения.
  • ГОСТ 61960-2007 Аккумуляторы и аккумуляторные батареи литиевые
  • Литий-ионные и литий-полимерные аккумуляторы. iXBT (2001 г.)
  • Литий-ионные аккумуляторные батареи отечественного производства

Когда говорят о литиевых батарейках или аккумуляторах, то чаще всего даже не догадываются, что их в последние пару лет появилось чуть ли не десяток , каждая из которых представляет из себя литий с различными добавками других химических элементов, в итоге существенно отличающихся друг от друга.

Давайте разберёмся в их типах и начнём с классики:

Литий-ионные аккумуляторы - это классические перезаряжаемые аккумуляторов, в которой ионы лития перемещаются от отрицательного электрода к положительному электроду во время разряда и обратно при зарядке. Литий-ионные АКБ широко распространены в бытовой электронике. Они являются одним из самых популярных типов аккумуляторных батарей для портативной электроники, с одной из лучших энергетической плотностью, отсутствие эффекта памяти и медленной потери заряда, когда он не используется (низкий саморазряд).

Эта серия охватывает цилиндрические и призматические типоразмеры аккумуляторов. Li-ion имеет наивысшую плотность мощности среди любого аккумулятора старого типа. Очень легкий вес и большой цикл жизни делает его идеальным продуктом для многих решений.

Литий-титанат (титанат лития) - это относительно новый класс литий-ионных АКБ - (подробнее ). Он характеризуется очень длинным жизненным циклом, который измеряется в тысячах циклов. Литий-титанат свинца является также очень безопасным и сравним в этом плане с фосфатом железа. Энергетическая плотность ниже, чем у других литий-ионных источников тока и его номинальное напряжение 2.4 В.

Эта технология отличается очень быстрой зарядкой, низким внутренним сопротивлением, очень высоким жизненным циклом и отличной выносливостью (также безопасностью). LTO нашел свое применение в основном в электромобилях и наручных часах. В последнее время она начинает находить применение в мобильных медицинских устройствах, благодаря своей высокой безопасности. Одна из особенностей технологии заключается в том, что используются нанокристаллы на аноде вместо углерода, что обеспечивает гораздо более эффективную площадь поверхности. К сожалению, эта батарея имеет более низкие напряжения, чем другие типы литиевых АКБ.

Особенности:

  • Удельная энергия: около 30-110Wh/кг
  • Плотность энергии: 177 Вт * ч/л
  • Удельная мощность: 3,000-5,100 Вт/кг
  • Разряд КПД: примерно 85%; зарядки эффективность более 95%
  • Энергия-цена: 0.5 Вт/доллар
  • Срок годности: >10 лет
  • Саморазряд: 2-5 %/месяц
  • Долговечность: 6000 циклов до 90% емкости
  • Номинальное напряжение: от 1,9 до 2,4 В
  • Температура: от -40 до +55°C
  • Метод зарядки: используется стабильный постоянный ток, затем постоянное напряжение до тех пор, пока не достигнет порога.

Химическая формула: Li4Ti5O12 + 6LiCoO2 < > Li7Ti5O12 + 6Li0.5CoO2 (Е=2,1 В)

Литий-полимер имеет бОльшую плотность энергии в плане веса, чем литий-ионные АКБ. В очень тонких ячейках (до 5 мм) литий-полимер обеспечивает высокую объемную плотность энергии. Великолепная стабильность в перенапряжениях и высоких температурах.

Эта серия аккумуляторов может производиться в диапазоне от 30 до 23000 мА/ч, корпуса призматического и цилиндрического типов. Литий-полимерные аккумуляторы имеют ряд преимуществ: большую плотность энергии по объему, гибкость в размерах ячеек и более широкий запас прочности, с превосходной стабильностью напряжения даже на высокой температуре. Основные области применения: портативные плееры, Bluetooth, беспроводные устройства, КПК и цифровые камеры, электрические велосипеды, GPS навигаторы, ноутбуки, электронные книги.

Особенности:

  • Номинальное напряжение: 3,7 В
  • Зарядное напряжение: 4,2±0,05 В
  • Ток заряда, скорость: 0.2-10С
  • Предельное напряжение разряда: 2.5 В
  • Скорость разряда: до 50С
  • Выносливость в циклах: 400 циклов

Литий-фосфат железа имеет хорошие характеристики безопасности, длительный срок службы (до 2000 циклов), и невысокую стоимость производства. LiFePO4 батареи хорошо подходят для высоких токов разрядки, например военной техники, электроинструментов, электровелосипедов, мобильных компьютеров, ИБП и солнечных энергетических систем.

В качестве нового анодного материала для литий-ионных аккумуляторов, lifepo4 был впервые представлен в 1997 году и постоянно совершенствуется до настоящего времени. Он привлек внимание экспертов благодаря его надежной безопасности, долговечности, низкого воздействия на окружающую среду при утилизации, и удобных зарядно-разрядных характеристик. Многие специалисты утверждают, что lifepo4 аккумуляторы являются на сегодняшний день лучшим вариантом для автономного питания электроники.

Литий диоксид серы (батарея Li и SO2) - эти батареи имеют высокую плотность энергии и хорошую устойчивость к разряду на высокой мощности. Такие элементы используются в основном в военке, метеорологии и космонавтике.

Аккумуляторы на базе литий диоксида серы с металлическим литиевым анодом (самый легкий из всех металлов) и жидким катодом, содержащим пористый углеродный токосъемник с наполнением диоксида серы (SO2) выдают напряжение 2.9 В и имеют цилиндрическую форму.

Особенности:

  • Высокое рабочее напряжение, стабильное на протяжении большей части разряда
  • Чрезвычайно низкий саморазряд
  • Работоспособность в экстремальных условиях
  • Широкий рабочий температурный диапазон (-55°C до +65°С)

Литий-диоксид марганца (батарея Li-MnO2) - такие аккумуляторы обладают легким металлическим литиевым анодом и твердым катодом из диоксида марганца, погруженный в неагрессивный, нетоксичный органический электролит. Этот тип батареи соответствуют RoHS ЕС и характеризуется большой емкостью, высокой допустимой разрядкой и длинной продолжительностью службы.

Li-MnO2 широко используется в резервных источниках питания, аварийных радиобуях, пожарных сигнализациях, электронных системах контроля доступа, цифровых фотоаппаратах, медицинском оборудовании.

Особенности:

  • Высокая плотность энергии
  • Очень стабильное напряжение разрядки
  • Более чем 10-ти летний срок хранения
  • Рабочая температура: -40 до +60°С

Хлорида тионил лития (литий-SOCl2) батареи обладают легким металлическим литиевым анодом и жидким катодом, содержащий пористый углеродный токосъемник наполненный тионилхлоридом (SOCl2). Батарея Li-SOCL2 идеально подходят для автомобильных устройств, медицинской техники, а также военных и аэрокосмических устройств. Они имеют самый широкий диапазон рабочих температур от -60 до + 150°С.

Особенности:

  • Высокая плотность энергии
  • Долгий срок годности при хранении
  • Широкий температурный диапазон
  • Хорошая герметизация
  • Стабильное разрядное напряжение

Li-FeS2 батареи

Аккумуляторы и батареи Li-FeS2 расшифровываются как литий-железодисульфидные. Информация про них будет добавлена позже.

Батарея литиевая является безопасным и энергоемким устройством. Ее главное преимущество — работа без зарядки на протяжении долгого времени. Она может функционировать при действии даже самых низких температур. Из-за своей способности сохранять энергию батарея литиевая превосходит другие виды. Именно поэтому с каждым годом их производство увеличивается. Они могут быть двух форм: цилиндрической и призматической.

Применение

Они широко применяются в компьютерной технике, мобильных телефонах и другой технике. Зарядные устройства литиевых батарей обладают рабочим напряжением 4 В. Важнейшие преимущество - работа при большом диапазоне температур, что находятся в пределах от -20 °С до +60 °С. На сегодняшний день существуют такие батареи, которые способны функционировать при температуре ниже -30 °С. С каждым годом разработчики пытаются увеличить как положительный, так и отрицательный диапазон температур.

В первое время батарея литиевая теряет порядка 5 % своей емкости, и с каждым месяцем эта цифра увеличивается. Данный показатель лучше, чем у других представителей батарей. В зависимости от зарядного напряжения они могут прослужить от 500 до 1000 циклов.

Типы литиевых батарей

Существуют такие виды литиевых аккумуляторов, которые встречаются в разных сферах бытового и промышленного хозяйства:

  • литий-ионный — для основного или резервного электроснабжения, транспорта, электроинструмента;
  • никель-солевой — автомобильный и железнодорожный транспорт;
  • никель-кадмиевый — судостроение и авиастроение;
  • железо-никелевый — электропитание;
  • никель-водородный — космос;
  • никель-цинковый — фотоаппараты;
  • серебряно-цинковый — военная отрасль и т. д.

Основным видом являются литиево-ионные батареи. Они используются в сферах электроснабжения, производства электроинструмента, телефонов и т. д. Батареи могут функционировать при температуре от -20 ºС до +40 ºС, но ведутся разработки по увеличению данных диапазонов.

При напряжении всего 4 В выделяется достаточное количество удельного тепла.

Они подразделяются на разные подтипы, которые отличаются между собой составом катода. Он изменяется путем замены графита или добавлением к нему специальных веществ.

Литиевые батареи: устройство

Как правило, такие устройства производятся призматической формы, но встречаются модели и в цилиндрическом корпусе. Внутренняя часть состоит электродов или сепараторов. Для изготовления корпуса используют сталь или алюминий. Контакты выводятся на крышку аккумулятора, причем они должны быть изолированными. батареи призматического типа содержат определенное количество пластин. Они уложены друг на друга. Чтобы обеспечить дополнительную безопасность, батарея литиевая имеет специальное устройство. Оно находится внутри и служит для контроля рабочего процесса.

В случае возникновения опасных ситуаций прибор отключает аккумулятор. Кроме того, оборудование обеспечивается внешней защитой. Корпус абсолютно герметичный, поэтому не происходит вытекания электролита, а также попадания воды внутрь. Электрический заряд появляется за счет ионов лития, которые взаимодействуют с кристаллической решеткой других элементов.

Шуруповерт с литиевой батареей

В нем могут быть установлены три вида аккумуляторов, которые отличаются по своему катодному составу:

  • кобальта-литиевые;
  • литий-феррофосфатные;
  • литий-марганцовые.

Шуруповерт с литиевой батареей отличается от других низким уровнем саморазрядки. Еще одно важное преимущество — не требует обслуживания. При поломке литиевого аккумулятора его можно выбросить, так как он не наносит вреда человеку и окружающей среде. Единственный минус — низкая зарядка литиевых батарей, а также высокие требования к безопасности. Тяжело выполнить его зарядку при отрицательных температурах.

Основные характеристики

Именно от технических характеристик зависит работа шуруповерта, состояние его мощности, время возможного функционирования. Среди остальных технических показателей выделяют:

  • напряжение одного аккумулятора в приборе может находиться в пределах от 3 до 5 В;
  • показатель максимальной энергоемкости доходит до 400 Вт-ч/л;
  • потеря собственного заряда на 5 %, а со временем на 20 %;
  • комплексный режим зарядки;
  • полная зарядка батареи происходит за 2 часа;
  • сопротивление от 5 до 15 мОм/А-ч;
  • количество циклов — 1000 раз;
  • срок службы — от 3 до 5 лет;
  • использование разных видов тока при определенных емкостях аккумулятора, например, емкость 65 ºС — используется постоянный ток.

Производство

Большинство производителей стремятся сделать электрические инструменты более совершенными и отвечающими современным технологиям.

Для этого необходимо предусмотреть в конструкции хорошие аккумуляторы. Наиболее популярными фирмами-производителями являются:

  1. Фирма Bosh. Литиевая аккумуляторная батарея изготавливается по новой технологии ECP. Именно она контролирует разряд устройства. Еще одним ее полезным свойством является защита от перегрева. При высокой мощности специальное устройство понижает температуру. В конструкции батареи предусмотрены отверстия, которые служат в качестве вентиляции и охлаждают аккумулятор. Еще одна технология — Charge, благодаря которой зарядка происходит намного быстрее. Кроме того, компания Bosh производит аккумуляторы для различных электрических инструментов. Многие пользователи оставляют хорошие отзывы о данной фирме.
  2. Компания Makita. Она производит собственные микросхемы, которые контролируют все рабочие показатели и процессы в аккумуляторе, например, температура, содержание зарядки. Благодаря этому можно подобрать режим зарядки и время ее проведения. Такие микросхемы увеличивают срок эксплуатации. Батареи изготовляются с достаточно мощным корпусом, поэтому они не подвергаются механическим воздействиям.
  3. Фирма Hitachi. Благодаря ее новейшим технологиям вес и габаритные размеры аккумулятора уменьшаются. Именно поэтому электрический инструмент становится легким и мобильным.

Особенности эксплуатации

При использовании аккумулятора необходимо придерживаться таких правил:

  1. Не нужно использовать литиевую батарею для отдельных незащищенных элементов, и покупать дешевые китайские детали. Такое устройство не будет безопасным, так как будет отсутствовать система, защищающая от короткого замыкания и повышенных температур. То есть при значительном перегреве батарея может взорваться, и срок ее службы будет гораздо меньше.
  2. Нельзя нагревать аккумулятор. При возрастании температуры внутри устройства повышается давление. Эти действия приведут к взрыву. Поэтому не нужно открывать верхнюю крышку батареи и ставить ее в места, подвергающиеся воздействию солнечных лучей. Такие действия сократят срок эксплуатации.
  3. Нельзя подносить к контактам, находящимся вверху крышки, дополнительные источники электричества, так как может возникнуть короткое замыкание. Встроенные системы защиты не всегда помогут в данном вопросе.
  4. Заряжать аккумулятор необходимо с соблюдением всех правил. При зарядке следует использовать такие которые равномерно распределяют ток.
  5. Процедуру зарядки аккумулятора проводят при положительной температуре.
  6. Если возникла необходимость подключения нескольких литиевых батарей, то нужно использовать модели одного и того же производителя, и схожие по техническим характеристикам.
  7. Хранить литиевые батареи следует в сухом месте, которое не подвергается солнечным лучам с температурой более 5 ºС. При воздействии на оборудование высоких температур заряд будет снижаться. Перед хранением в зимний период года аккумулятор заряжают на 50 % своей емкости. Следует следить, чтобы батарея полностью не разрядилась. Если это произошло — срочно зарядить ее. При возникновении на корпусе механических повреждений, а также признаков ржавчины, прибор использовать нельзя.
  8. Если при работе возникает значительный перегрев батареи, появление дыма, то следует немедленно прекратить ее использование. После этого переместить поврежденное устройство в безопасное место. Если из корпуса выделяется вещество, то нужно не допустить его попадание на кожу или другие органы.
  9. Запрещается выкидывать и сжигать литиевые аккумуляторы. Их утилизация происходит при механических повреждениях корпуса, взрывах или попадании внутрь воды или пара.

О возгорании

Если случилось возгорание литиевого аккумулятора, то его нельзя тушить водой и огнетушителем — углекислота и вода может вступать в реакцию с литием. Чтобы потушить его, следует использовать песок, соль, а также с помощью плотной ткани.

Процесс зарядки

Литиевая батарея, зарядное от которой подключается к постоянному току, заряжается при напряжении от 5 В и выше.

При этом существует минус — они неустойчивы к перезаряду. Повышение температуры внутри корпуса приводит к его повреждениям.

В инструкции к эксплуатации указан специальный уровень. При его достижении следует производить его зарядку. Если повышать напряжение при зарядке свойства литиевого аккумулятора существенно снизятся.

Как говорилось ранее, батареи составляет 3 года. Чтобы сохранить данный срок, необходимо придерживаться условий эксплуатации, зарядки и хранения. Кроме того, они должны постоянно функционировать, а не храниться.

Перезаряд

В конструкции батареи предусмотрена система перезаряда, поэтому зарядное устройство можно не отключать и не бояться, что состав внутри закипит, как это случается с автомобильными АКБ.

Если оборудование будет храниться более одного месяца, его необходимо полностью разрядить. Это существенно продлит срок эксплуатации.

Стоимость

Цена литий-ионной батареи зависит от емкости и технических характеристик.

В среднем она варьируется в пределах от 100 до 500 рублей. Несмотря на такую стоимость, многие пользователи оставляют положительные отзывы. Среди положительных сторон выделяют большой диапазон рабочих температур, высокую мощность и способность работы более чем на 1000 циклов (порядка 3 лет интенсивного пользования). Устройства широко используются в разных сферах, поэтому их пользу может оценить каждый человек.

Итак, мы выяснили, что представляют собой литиевые батареи.

Категория: Поддержка по аккумуляторным батареям Опубликовано 30.03.2016 23:38

Разные подвиды литий-ионной электрохимической системы именуются по типу своего активного вещества, и могут обозначаться как полностью словами, так и в укороченном виде - химическими формулами. Объединяется литиевые аккумуляторы то, что все они относятся к герметичным необслуживаемым аккумуляторам . Такие формулы не очень удобны для прочтения или запоминания ввиду своей сложности, поэтому и они упрощаются - к буквенной аббревиатуре.

Например, кобальтит лития, один из самых распространенных материалов для литий-ионных аккумуляторов, имеет химическую формулу LiCoO2 и аббревиатуру LCO. Из соображений простоты также может использоваться короткая словесная форма - “литий-кобальт”. Кобальт является основным активным веществом и именно по нему характеризуется тип батареи. Другие типы литий-ионной электрохимической системы также аналогично сводятся к краткой форме. В данном разделе перечислены шесть наиболее распространенных типов Li-ion.

1. Литий-кобальтовый аккумулятор (LiCoO2)

Высокий показатель удельной энергоемкости делает литий-кобальтовый аккумулятор популярным выбором для мобильных телефонов, ноутбуков и цифровых камер. Аккумулятор состоит из графитового анода и катода из оксида кобальта. Катод имеет слоистую структуру и во время разряда ионы лития перемещаются к нему от анода. При зарядке направление меняется на противополжное. Недостатком литий-кобальтовых аккумуляторов является относительно короткий срок службы, низкая термическая стабильность и ограниченные возможности нагрузки (удельная мощность). На рисунке 1 показана структура такого аккумулятора.

Рисунок 1: Структура литий-кобальтового аккумулятора. Во время разряда ионы лития перемещаются от анода к катоду, при зарядке - от катода к аноду.

Литий-кобальтовый аккумулятор не может заряжаться или разряжаться при силе тока выше его С-рейтинга . Это означает, что ячейка типоразмера 18650 емкостью 2400 мАч может заряжаться или разряжаться силой тока не превышающей 2400 мА. Принудительный быстрый заряд или подключение нагрузки, требующей больше чем 2400 мА, приведет к чрезмерному стрессу и перегреву. Для быстрой зарядки производители рекомендуют С-рейтинг 0,8С или около 2000 мА. При использовании системы защиты аккумулятора она автоматически ограничивает заряд и разряд до безопасного уровня - около 1С.

Рисунок 2: Оценка усредненного литий-кобальтового аккумулятора. Литий-кобальтовая электрохимическая система выделяется высокой удельной энергоемкостью, но предлагает средние показатели удельной мощности, безопасности и срока службы.

Таблица характеристик

Кобальтит лития: LiCoO2 катод (~60% кобальта), графитовый анод
Сокращенное обозначение: LCO или Li-кобальт
Разработан в 1991 году
Напряжение 3,60 В номинальное; стандартный рабочий диапазон - 3,0-4,2 В
Удельная энергоемкость 150-200 Вт*ч/кг; специализированные модели обеспечивают до 240 Вт*ч/кг
С-рейтинг зарядки 0,7-1С, напряжение зарядки 4,20 В (большинство моделей); процесс зарядки обычно занимает 3 часа; зарядка силой тока больше 1С сокращает срок службы батареи
С-рейтинг разряда 1С; при напряжении ниже 2,50 В срабатывает отсекатель; разряд силой тока выше 1С сокращает срок службы батареи
500-1000, зависит от глубины разрядов, нагрузки, температур
Тепловой пробой Обычно при 150°С. Полный заряд способствует тепловому пробою
Области применения Мобильные телефоны, планшеты, ноутбуки, фотоаппараты
Комментарий Очень высокая удельная энергоемкость, ограниченная удельная мощность. Высокая стоимость кобальта. Служит в областях, где требуется большая емкость. Имеет стабильный спрос на рынке.

Таблица 3: Характеристики литий-кобальтового аккумулятора.

2. Литий-марганцевый аккумулятор (LiMn2O4)

Устройство литий-ионного аккумулятора с марганцевой шпинелью было впервые опубликовано в журнале “Materials Research Bulletin” в 1983 году. В 1996 году компания Moli Energy коммерциализировала литий-ионную ячейку с литий-марганцевой шпинелью в качестве материала катода. Трехмерная структура шпинели улучшает поток ионов на электроде, что приводит к уменьшению внутреннего сопротивления и улучшению обработки тока. Еще одним преимуществом шпинели является высокая термическая стабильность, но срок жизни и количество циклов ограничены.

Низкое внутреннее сопротивление такой ячейки обеспечивает быструю зарядку и высокое возможное значение силы тока разряда. В типоразмере 18650 литий-марганцевый аккумулятор может разряжаться силой тока в 20-30 А с умеренным теплообразованием. Кроме того, он способен выдерживать импульсы до 50 А в течение одной-двух секунд. Непрерывная же нагрузка в 50 А приведет к нагреву аккумулятора, который не должен превышать 80°С во избежание деградации. Литий-марганцевые аккумуляторы используются для мощных инструментов, медицинского оборудования, а также в гибридном и электротранспорте.

На рисунке 4 представлена графическая иллюстрация трехмерного кристаллического каркаса материала катода. Этим материалом является шпинель, у которой начальная ромбовидная решеточная структура трансформируется в трехмерную.

Рисунок 4: Структура литий-марганцевого аккумулятора. Катод из кристаллической литий-марганцевой шпинели имеет трехмерную каркасную структуру, которая появляется после начального формирования. Шпинель обеспечивает низкое сопротивление, но имеет более умеренную удельную энергоемкость чем кобальт.

Емкость литий-марганцевого аккумулятора примерно на треть меньше емкости литий-кобальтового. Гибкость конструкции позволяет оптимизировать батарею под разные задачи и создавать модели с улучшенными показателями долговечности, удельной мощности или удельной энергоемкости. Например, версия в типоразмере 18650 с улучшенными показателями мощности имеет емкость только 1100 мАч, в то время как оптимизированная под емкость - 1500 мАч.

На рисунке 5 показан гексагональный график типичного литий-марганцевого аккумулятора. Характеристики могут казаться не особо впечатлительными, но последние разработки имеют улучшенные показатели удельной мощности, безопасности и продолжительности жизни.

Рисунок 5: Характеристики обычной литий-марганцевого аккумулятора. Несмотря на умеренную общую производительность, новые модели демонстрируют улучшенную удельную мощность, безопасность и продолжительность жизни.

Большинство литий-марганцевых аккумуляторов комбинируются с литий-никель-марганец-кобальтовыми (NMC) для повышения удельной энергоемкости и продления срока службы. Этот союз позволяет использовать сильные стороны обеих систем и называется LMO (NMC). Именно эти комбинированные аккумуляторы используются в большинстве электромобилей, таких как Nissan Leaf, Chevy Volt и BMW i3. LMO – часть такого аккумулятора, которая составляет около 30 %, обеспечивает высокие ускорительные возможности электродвигателя, а NMC часть отвечает за размер автономного пробега.

Исследования в литий-ионной системе в значительной степени тяготеют к объединению литий-марганцевых ячеек с никель-марганец-кобальтовыми. Эти три активных металла могут легко комбинироваться для получения необходимого результата, будь то повышение удельной мощности, нагрузочных характеристик или долговечности аккумулятора. Этот широкий диапазон возможностей необходим для удовлетворения единым технологическим подходом и рынка потребительских аккумуляторов, где на первом месте стоит емкость; и промышленности, где необходимы аккумуляторные системы с хорошими нагрузочными характеристиками, с длительным сроком службы и с надежной безопасной эксплуатацией.

Таблица характеристик

Литий-марганцевая шпинель: LiMn2O4 катод, графитовый анод
Сокращенное обозначение: LNO или Li-марганцевый (шпинельная структура)
Разработан в 1996 году
Напряжение 3,70 В (3,80 В) номинальное; стандартный рабочий диапазон - 3.0-4.2 В
Удельная энергоемкость 100-150 Вт*ч/кг
С-рейтинг зарядки Стандарт 0,7-1С; 3С максимум; зарядка до 4,20 В (большинство батарей)
С-рейтинг разряда Стандарт 1С; существуют модели с 10С; импульсный режим работы (до 5 секунд) - 50С; при 2,50 В срабатывает отсекатель
Количество циклов заряда/разряда 300-700 (зависит от глубины разрядов и температуры)
Тепловой пробой Обычно при 250°С. Полный заряд способствует тепловому пробою
Области применения Электроинструмент, медицинское оборудование, электрические силовые агрегаты
Комментарий Высокая мощность, но умеренная емкость; безопаснее литий-кобальтовых; обычно используется вместе с NMC

Таблица 6: Характеристики литий-марганцевого аккумулятора.

3. Литий-никель-марганец-кобальт-оксидный аккумулятор (LiNiMnCoO2 или NMC)

Одним из наиболее успешных вариантов исполнения литий-ионной электрохимической системы является сочетание никеля, марганца и кобальта (NMC) в катоде. По аналогии с литий-марганцевыми, эти системы могут быть оптимизированы под емкость или мощность. Например, NMC аккумулятор в типоразмере ячейки 18650 для умеренной нагрузки имеет емкость 2800 мАч и может обеспечивать силу тока в 4-5 А; а версия в том же типоразмере, но оптимизированная под мощностные показатели имеет емкость только 2000 мАч, но максимальная сила тока разряда у нее - 20 А. Показатель емкости можно увеличить и до 4000 мАч, если добавить кремний в состав анода. Но с другой стороны, это значительно уменьшит нагрузочные характеристики и долговечность такого аккумулятора. Столь неоднозначные свойства кремния появляются из-за его расширения и уменьшения при зарядке и разрядке, что приводит к механической неустойчивости конструкции аккумулятора.

Секрет технологии NMC заключается в сочетании никеля и марганца. Аналогией может служить обыкновенная поваренная соль, где по отдельности ее компоненты, натрий и хлор, весьма токсичны, но их соединение образует полезное пищевое вещество. Никель известен своей высокой удельной энергоемкостью, но низкой стабильностью; марганец же имеет преимущество в виде шпинельной структуры, которая обеспечивает низкое внутреннее сопротивление, но и приводит к недостатку - низкой удельной энергоемкости. Сочетание же этих металлов позволяет компенсировать недостатки друг друга и в полной мере использовать сильные стороны.

NMC аккумуляторы используются для мощных инструментов, электровелосипедов и других силовых агрегатов. Состав катода, как правило, сочетает никель, марганец и кобальт в равных частях, то есть каждый металл занимает треть от общего объема. Такое распределение также известно как 1-1-1. Сочетание в таком соотношении выгодно своей стоимостью, так как содержание дорогого кобальта по сравнению с другими версиями батареи относительно невелико. Еще одна успешная комбинация NMC содержит 5 частей никеля, 3 части кобальта и 2 части марганца. Эксперименты по поиску удачных комбинаций этих активных веществ продолжаются и сейчас. На рисунке 7 продемонстрированы характеристики NMC аккумулятора.

Рисунок 7: Оценка характеристик NMC аккумулятора. NMC имеет хорошую общую производительность и отличную удельную энергоемкость. Данная аккумуляторная батарея является предпочтительным выбором для электротранспорта и имеет самый низкий уровень самонагрева.

В последнее время именно NMC семейство литий-ионных аккумуляторов становится наиболее популярным, так как благодаря возможности комбинации активных веществ стало можно сконструировать экономичную батарею с хорошей производительностью. Никель, марганец и кобальт могут быть легко смешаны, чтобы удовлетворить широкий спектр требований для электротранспорта или систем аккумулирования энергии, специфика которых предполагает регулярную циклическую работу. Семейство NMC аккумуляторов активно развивается в своем многообразии.

Таблица характеристик

Литий-никель-марганец-кобальт-оксид: LiNiMnCoO2 катод, графитовый анод
Сокращенное обозначение: NMC (NCM, CMN, CNM, MNC, MCN аналогично комбинации металлов)
Разработан в 2008 году
Напряжение 3,60-3,70 В номинальное; стандартный рабочий диапазон - 3,0-4,2 В на ячейку, или выше
Удельная энергоемкость 150-220 Вт*ч/кг
С-рейтинг зарядки 0,7-1С, зарядка до 4,20 В, в некоторых моделях до 4,30 В; процесс зарядки обычно занимает 3 часа; зарядка силой тока больше 1С сокращает срок службы батареи
С-рейтинг разряда 1С; некоторые модели поддерживают 2С; при 2,50 В срабатывает отсекатель
Количество циклов заряда/разряда
Тепловой пробой Обычно при 210°С. Полный заряд способствует тепловому пробою
Области применения Электровелосипеды, медицинское оборудование, электроавтомобили, промышленность
Комментарий Обеспечивают высокую емкость и мощность. Широкий спектр практического применения, доля рынка стремительно растет

Таблица 8: Характеристики литий-никель-марганец-кобальт-оксидного (NMC) аккумулятора.

4. Литий-железо-фосфатный аккумулятор (LiFePO4)

В 1996 году в Университете Техаса были проведены исследования, в результате которых был открыт новый материал для катода литий-ионного аккумулятора - фосфат железа. Литий-фосфатная система обладает хорошими электрохимическими свойствами и низким внутренним сопротивлением. Основными преимуществами таких аккумуляторов являются высокие показатели силы тока и длительный срок службы, к тому же они обладают хорошей термической стабильностью, повышенной безопасностью и стойкостью к неправильному использованию.

Литий-фосфатные аккумуляторы более стойкие к перезаряду; если в случае длительного времени к ним приложено высокое напряжение, то деградационные последствия будут заметно меньше в сравнении с другими литий-ионными аккумуляторами. Но напряжение ячейки в 3.20 В снижает показатель удельной энергоемкости до уровня, даже меньшего, чем у литий-марганцевого аккумулятора. Для большинства электрических батарей холодная температура снижает производительность, а жаркая - сокращает срок службы, литий-фосфатная система не является исключением. У нее также более высокий показатель саморазряда в сравнении с другими литий-ионными аккумуляторами. На рисунке 9 показаны характеристики литий-фосфатного аккумулятора.

Литий-фосфатные аккумуляторы часто используются в качестве замены стартерным свинцово-кислотным. Четыре ячейки такой батареи обеспечат напряжение в 12,8 В - аналогично напряжению шести двухвольтовых ячеек свинцово-кислотного. Генератор транспортного средства подзаряжает свинцово-кислотный аккумулятор до 14,40 В (2,40 В на ячейку). Для четырех литий-фосфатных ячеек предельное напряжение будет 3,60 В, после подзарядку следует отключить, чего не происходит в обычном транспортном средстве. Литий-фосфатные аккумуляторы стойкие к перезаряду, но даже они при длительном сохранении повышенного напряжения деградируют. Низкие температуры также могут стать проблемой при использовании литий-фосфатного аккумулятора в качестве замены обычному стартерному.

Рисунок 9: Оценка характеристик литий-фосфатного аккумулятора. Литий-фосфатная электрохимическая система обеспечивает отличную безопасность и долгий срок службы, но удельная энергоемкость имеет умеренные показатели, также стоит отметить высокий саморазряд.

Таблица характеристик

Литий-феррофосфат: LiFePO4 катод, графитовый анод
Сокращенное обозначение: LFP или Li-фосфат
Напряжение 3,20, 3,30 В номинальное; стандартный рабочий диапазон - 2,5-3,65 В на ячейку
Удельная энергоемкость 90-120 Вт*ч/кг
С-рейтинг зарядки 1С стандарт, зарядка до 3,65 В; процесс зарядки обычно занимает 3 часа
С-рейтинг разряда 1С; в некоторых версиях до 25С; 40 А импульсные токи (до 2 секунд); при 2,50 В срабатывает отсекатель (напряжение ниже 2 В наносит вред)
Количество циклов заряда/разряда 1000-2000 (зависит от глубины разрядов и температуры)
Тепловой пробой 270°С. Безопасный даже при полном заряде
Области применения Портативные и стационарные устройства, где необходимы высокие токи нагрузки и выносливость



Top