Как работает алгоритм сжатия JPEG. Декодирование JPEG для чайников

«Реализация алгоритмов

JPEG и JPEG2000»

Выполнил:

студент группы 819

Угаров Дмитрий

Принципы работы алгоритмов JPEG и JPEG2000

1. Алгоритм JPEG

JPEG (англ. Joint Photographic Experts Group - объединённая группа экспертов в области фотографии) - является широко используемым методом сжатия фотоизображений. Формат файла, который содержит сжатые данные обычно также называют именем JPEG; наиболее распространённые расширения для таких файлов.jpeg, .jfif, .jpg, .JPG, или.JPE. Однако из них.jpg самое популярное расширение на всех платформах.

Алгоритм JPEG является алгоритмом сжатия с потерей качества .

Область применения

Формат является форматом сжатия с потерями, поэтому некорректно считать что JPEG хранит данные как 8 бит на канал (24 бит на пиксель). С другой стороны , так как данные, подвергающиеся компрессии по формату JPEG и декомпрессированные данные обычно представляются в формате 8 бит на канал, иногда используется эта терминология. Поддерживается также сжатие чёрно-белых полутоновых изображений.

При сохранении JPEG-файла можно указать степень качества, а значит и степень сжатия, которую обычно задают в некоторых условных единицах, например, от 1 до 100 или от 1 до 10. Большее число соответствует лучшему качеству, но при этом увеличивается размер файла. Обыкновенно, разница в качестве между 90 и 100 на глаз уже практически не воспринимается. Следует помнить , что побитно восстановленное изображение всегда отличается от оригинала. Распространённым заблуждением является мнение о том, что качество JPEG тождественно доле сохраняемой информации.

Этапы кодирования

Процесс сжатия по схеме JPEG включает ряд этапов:

1. Преобразование изображения в оптимальное цветовое пространство;

В случае применения цветового пространства яркость/цветность (YCbCr) достигается лучшая степень сжатия. На данном этапе кодирования с помощью соответствующих соотношений цветовая модель RGB преобразуется в YCbCr:

Y = 0.299*R + 0.587*G + 0.114*B

Cb = - 0.1687*R – 0.3313*G + 0.5*B

Cr = 0.5*R – 0.4187*G – 0.0813*B.
Во время декодирования можно использовать соответствующее обратное преобразование:
R = Y + 1.402*Cr

G = Y – 0.34414*Cb – 0.71414*Cr

B = Y + 1.772*Cb.
Примечание, связывающее Y,Cb,Cr в человеческой визуальной системе:

Глаз, особенно сетчатка, имеет как визуальные анализаторы два типа ячеек: ячейки для ночного видения, воспринимающие только оттенки серого (от ярко-белого до темно-черного) и ячейки дневного видения, которые воспринимают цветовой оттенок. Первые ячейки , дающие цвет RGB, обнаруживают уровень яркости, подобный величине Y. Другие ячейки, ответственные за восприятие цветового оттенка, - определяют величину, связанную с цветоразностью.


2. Субдискретизация компонентов цветности усреднением групп пикселей;

Большая часть визуальной информации, к которой наиболее чувствительный глаза человека , состоит из высокочастотных, полутоновых компонентов яркости (Y) цветового пространства YCbCr. Две другие составляющие цветности (Cb и Cr) содержат высокочастотную цветовую информацию, к которой глаз человека менее чувствителен. Поэтому определенная ее часть может быть отброшена и, тем самым, можно уменьшить количество учитываемых пикселей для каналов цветности.

1)тип 4:2:0 (когда изображение разбивается на квадраты 2х2 пикселей и в каждом из них все пиксели получают одинаковые значения каналов Cb и Cr, а яркость Y у остается у каждого своя)

2) тип 4:2:2 (объединение по компонентам цветности происходит только по горизонтали в группах по два пикселя).

3)тип 4: 4: 4 подразумевает, что каждому пикселю в каждой строке соответствует собственное уникальное значение компонентов Y, Cb и Cr. (рис.1 а)

4) тип 4:2:2. Выполнив субдискретизацию сигнала цветности с коэффициентом 2 по горизонтали, мы получим из потока 4: 4: 4 YCbCr поток 4: 2: 2 YCbCr. Запись «4: 2: 2» означает , что в отдельно взятой строке на 2 значения цветности приходятся 4 значения яркости (см. рис.1 б). Сигнал 4: 2: 2 YCbCr очень немного проигрывает по качеству изображения сигналу 4: 4: 4 YCbCr, зато требуемая ширина полосы сокращается на 33% от исходной.

3. Применение дискретных косинусных преобразований для уменьшения избыточности данных изображения;

Основным этапом работы алгоритма является дискретное косинусное преобразование (ДКП или DCT), представляющее собой разновидность преобразования Фурье. Оно применяется при работе с изображениями в различных целях, не только с целью сжатия. Переход к частотному представлению величин значений пикселей позволяет по-другому взглянуть на изображение, обработать его, ну, и, что интересно для нас, сжать. Более того , зная коэффициенты преобразования, мы всегда может произвести обратное действие - вернуть исходную картинку.

DCT непосредственно применяемый к блоку (в нашем случае 8х8 пикселей) изображения будет выглядеть так:

где х, y - пространственные координаты пикселя (0..7) ,

f(x,y) - значения пикселей исходного макроблока (допустим, яркость)

u,v - координаты пикселя в частотном представлении (0..7)

w(u) =1/SQRT(2) при u=0, в остальных случаях w(u)=1 (SQRT - квадратный корень)

w(v) =1/SQRT(2) при v=0, в остальных случаях w(v)=1

Или в матричной форме:

4. Квантование каждого блока коэффициентов ДКП с применением весовых функций , оптимизированных с учетом визуального восприятия человеком;

Дискретное косинусное преобразование подготавливает информацию для сжатия с потерями и округления. Для каждого элемента преобразуемой матрицы существует соответствующий элемент матрицы квантования. Результирующая матрица получается делением каждого элемента преобразуемой матрицы на соответствующий элемент матрицы квантования и последующим округлением результата до ближайшего целого числа. При составлении матрицы квантования большие ее элементы находятся в левом нижнем углу, чтобы при делении на них данные в этом углу после дискретного косинусного преобразования (как раз те, округление которых пройдет менее болезненно) округлялись более грубо. Соответственно потерянная информация менее важна для нас, чем оставшаяся.


5. Этап Вторичного Сжатия

Заключительной стадией работы кодера JPEG является кодирование полученной матрицы.

5.1 Зигзагообразная перестановка 64 DCT коэффициентов

Так, после того, как мы выполнили DCT-преобразование над блоком величин 8x8, у нас есть новый блок 8x8. Затем, этот блок 8x8 просматривается по зигзагу подобно этому:

(Числа в блоке 8x8 указывают порядок , в котором мы просматриваем 2-мерную матрицу 8x8)

0, 1, 5, 6,14,15,27,28,

2, 4, 7,13,16,26,29,42,

3, 8,12,17,25,30,41,43,

9,11,18,24,31,40,44,53,

10,19,23,32,39,45,52,54,

20,22,33,38,46,51,55,60,

21,34,37,47,50,56,59,61,

35,36,48,49,57,58,62,63

Как Вы видите, сначала - верхний левый угол (0,0), затем величина в (0,1), затем (1,0), затем (2,0), (1,1), (0,2), (0,3), (1,2), (2,1), (3,0) и т.п.

После того, как мы прошли по зигзагу матрицу 8x8, мы имеем теперь вектор с 64 коэффициентами (0..63) Смысл этого зигзагообразного вектора – в том, что мы просматриваем коэффициенты 8x8 DCT в порядке повышения пространственных частот. Так, мы получаем вектор отсортированный критериями пространственной частоты: первая величина на векторе (индекс 0) соответствует самой низкой частоте в изображении – она обозначается термином DC. С увеличением индекса на векторе, мы получаем величины соответствующие высшим частотам (величина с индексом 63 соответствует амплитуде самой высокой частоте в блоке 8x8). Остальная часть коэффициентов DCT обозначается AC.

5.2 RunLength кодирование нулей (RLE)

Теперь у нас есть вектор с длинной последовательностью нулей. Мы можем использовать это, кодируя последовательные нули. ВАЖНО: Вы увидите позже почему, но здесь мы пропускаем кодировку первого коэффициента вектора (коэффициент DC), который закодирован по-другому. Рассмотрим исходный 64 вектор как 63 вектор (это - 64 вектор без первого коэффициента)

Допустим, мы имеем 57,45,0,0,0,0,23,0,-30,-16,0,0,1,0,0,0,0,0,0, только 0,...,0

Здесь - как RLC JPEG сжатие сделано для этого примера:

(0,57); (0,45); (4,23); (1,-30); (0,-16); (2,1); EOB

Как Вы видите, мы кодируем для каждой величины, отличающейся от 0 количество последовательных ПРЕДШЕСТВУЮЩИХ нулей перед величиной, затем мы добавляем величину. Другое примечание: EOB - короткая форма для Конца Блока , это - специальная кодированная величина (маркер). Если мы достигли в позиции на векторе, от которого мы имеем до конца только нули вектора, мы выделим эту позицию с EOB и завершим сжатие RLC квантованного вектора.

[Заметьте, что если квантованный вектор не оканчивается нулями (имеет последний элемент не 0), мы не будем иметь маркер EOB.]

(0,57); (0,45); (4,23); (1,-30); (0,-16); (2,1); (0,0)

Другая ОСНОВНАЯ вещь: Допустим, где-нибудь на квантованном векторе мы имеем:

57, восемнадцать нулей, 3, 0,0 ,0,0 2, тридцать-три нуля, 895, EOB

Кодирование Хаффмана JPG делает ограничение, по которому число предшествующих нулей должно кодироваться как 4-битовая величина - не может превысить 15.

Так, предшествующий пример должен быть закодирован как:

(0,57); (15,0) (2,3); (4,2); (15,0) (15,0) (1,895), (0,0)

(15,0) - специальная кодированная величина, которая указывает , что там следует за 16 последовательными нулями.

5.3 Конечный шаг - кодирование Хаффмана

Сначала ВАЖНОЕ примечание: Вместо хранения фактической величины, JPEG стандарт определяет, что мы храним минимальный размер в битах, в котором мы можем держать эту величину (это названо категория этой величины) и затем битно кодированное представление этой величины подобно этому:

7,..,-4,4,..,7 3 000,001,010,011,100,101,110,111

15,..,-8,8,..,15 4 0000,..,0111,1000,..,1111

31,..,-16,16,..,31 5 00000,..,01111,10000,..,11111

63,..,-32,32,..,63 6 .

127,..,-64,64,..,127 7 .

255,..,-128,128,..,255 8 .

511,..,-256,256,..,511 9 .

1023,..,-512,512,..,1023 10 .

2047,..,-1024,1024,..,2047 11 .

4095,..,-2048,2048,..,4095 12 .

8191,..,-4096,4096,..,8191 13 .

16383,..,-8192,8192,..,16383 14 .

32767,..,-16384,16384,..,32767 15 .

Впоследствии для предшествующего примера:

(0,57); (0,45); (4,23); (1,-30); (0,-8); (2,1); (0,0)

давайте закодируем только правую величину этих пар, кроме пар, которые являются специальными маркерами подобно (0,0) или (если мы должны иметь) (15,0)

45, аналогично , будет закодирован как (6,101101)

30 -> (5,00001)

И теперь, мы напишем снова строку пар:

(0,6), 111001; (0,6), 101101; (4,5), 10111; (1,5), 00001; (0,4), 0111; (2,1), 1; (0,0)

Пары 2 величин, заключенные в скобки, могут быть представлены в байте, так как фактически каждая из 2 величин может быть представлена в 4-битном кусочке (счетчик предшествующих нулей - всегда меньше, чем 15 и также как и категория [числа закодированные в файле JPG - в области -32767..32767]). В этом байте, старший кусочек представляет число предшествующих нулей, а младший кусочек - категорию новой величины, отличной от 0.

Конечный шаг кодировки состоит в кодировании Хаффмана этого байта, и затем записи в файле JPG , как поток из битов, кода Хаффмана этого байта, сопровождающийся битовым представлением этого числа.

Например, для байта 6 (эквивалент (0,6)) у нас есть код Хаффмана = 111000;

21 = (1,5) - 11111110110

4 = (0,4) - 1011

33 = (2,1) - 11011

0 = EOB= (0,0) - 1010

Конечный поток битов записанных в файле JPG на диск для предшествующего примера 63 коэффициентов (запомните, что мы пропустили первый коэффициент) -

111000 111001 111000 101101 1111111110011001 10111 11111110110 00001

1011 0111 11011 1 1010
Достоинства и недостатки

К недостаткам формата следует отнести то, что при сильных степенях сжатия дает знать о себе блочная структура данных, изображение «дробится на квадратики» (каждый размером 8x8 пикселей). Этот эффект особенно заметен на областях с низкой пространственной частотой (плавные переходы изображения, например, чистое небо). В областях с высокой пространственной частотой (например, контрастные границы изображения), возникают характерные «артефакты» - иррегулярная структура пикселей искаженного цвета и/или яркости. Кроме того, из изображения пропадают мелкие цветные детали. Не стоит также забывать и о том, что данный формат не поддерживает прозрачность.

Однако, несмотря на недостатки, JPEG получил очень широкое распространение из-за высокой степени сжатия, относительно существующих во время его появления альтернатив.

2. Алгоритм JPEG2000

Алгоритм JPEG-2000 разработан той же группой экспертов в области фотографии, что и JPEG. Формирование JPEG как международного стандарта было закончено в 1992 году. В 1997 стало ясно, что необходим новый, более гибкий и мощный стандарт, который и был доработан к зиме 2000 года.

Основные отличия алгоритма в JPEG 2000 от алгоритма в JPEG заключаются в следующем:

1)Лучшее качество изображения при сильной степени сжатия. Или, что то же самое , большая степень сжатия при том же качестве для высоких степеней сжатия. Фактически это означает заметное уменьшение размеров графики "Web-качества", используемой большинством сайтов.

2)Поддержка кодирования отдельных областей с лучшим качеством. Известно, что отдельные области изображения критичны для восприятия человеком (например, глаза на фотографии), в то время как качеством других можно пожертвовать (например, задний план). При "ручной" оптимизации увеличение степени сжатия проводится до тех пор, пока не будет потеряно качество в какой-то важной части изображения. Сейчас появляется возможность задать качество в критичных областях, сжав остальные области сильнее, т.е. мы получаем еще большую окончательную степень сжатия при субъективно равном качестве изображения.

3)Основной алгоритм сжатия заменен на wavelet. Помимо указанного повышения степени сжатия это позволило избавиться от 8-пиксельной блочности, возникающей при повышении степени сжатия. Кроме того, плавное проявление изображения теперь изначально заложено в стандарт (Progressive JPEG, активно применяемый в Интернет, появился много позднее JPEG).

4)Для повышения степени сжатия в алгоритме используется арифметическое сжатие. Изначально в стандарте JPEG также было заложено арифметическое сжатие, однако позднее оно было заменено менее эффективным сжатием по Хаффману, поскольку арифметическое сжатие было защищено патентами. Сейчас срок действия основного патента истек , и появилась возможность улучшить алгоритм.

5)Поддержка сжатия без потерь. Помимо привычного сжатия с потерями новый JPEG теперь будет поддерживать и сжатие без потерь. Таким образом, становится возможным использование JPEG для сжатия медицинских изображений, в полиграфии, при сохранении текста под распознавание OCR системами и т.д.

6)Поддержка сжатия однобитных (2-цветных) изображений. Для сохранения однобитных изображений (рисунки тушью, отсканированный текст и т.п.) ранее повсеместно рекомендовался формат GIF, поскольку сжатие с использованием ДКП весьма неэффективно к изображениям с резкими переходами цветов. В JPEG при сжатии 1-битная картинка приводилась к 8-битной, т.е. увеличивалась в 8 раз, после чего делалась попытка сжимать, нередко менее чем в 8 раз. Сейчас можно рекомендовать JPEG 2000 как универсальный алгоритм.

7)На уровне формата поддерживается прозрачность. Плавно накладывать фон при создании WWW страниц теперь можно будет не только в GIF, но и в JPEG 2000. Кроме того, поддерживается не только 1 бит прозрачности (пиксель прозрачен/непрозрачен), а отдельный канал , что позволит задавать плавный переход от непрозрачного изображения к прозрачному фону.

Кроме того, на уровне формата поддерживаются включение в изображение информации о копирайте, поддержка устойчивости к битовым ошибкам при передаче и широковещании, можно запрашивать для декомпрессии или обработки внешние средства (plug-ins), можно включать в изображение его описание, информацию для поиска и т.д.

Этапы кодирования

Процесс сжатия по схеме JPEG2000 включает ряд этапов:

1. Преобразование изображения в оптимальное цветовое пространство.
На данном этапе кодирования с помощью соответствующих соотношений цветовая модель RGB преобразуется в YUV:

При декомпрессии применяется соответствующее обратное преобразование:

2. Дискретное вейвлет преобразование.

Дискретное wavelet преобразование (DWT) также может быть двух видов - для случая сжатия с потерями и для сжатия без потерь.

Это преобразование в одномерном случае представляет собой скалярное произведение соответствующих коэффициентов на строку значений. Но т.к. многие коэффициенты нулевые, то прямое и обратное вейвлет преобразование можно записать следующими формулами (для преобразования крайних элементов строки используется ее расширение на 2 пикселя в каждую сторону, значения которых симметричны с значениями элементов строки относительно ее крайних пикселей):
y(2*n + 1) = x(2*n + 1) - (int)(x(2*n) + x(2*n + 2)) / 2

y(2*n) = x(2*n) + (int)(y(2*n - 1) + y(2*n + 1) + 2) / 4

и обратное

x(2*n) = y(2*n) - (int)(y(2*n - 1) + y(2*n + 1) + 2) / 4

x(2*n + 1) = y(2*n + 1) + (int)(x(2*n) + x(2*n + 2)) / 2.

3. Квантование коэффициентов.

Так же как и в алгоритме JPEG , при кодировании изображения в формат JPEG2000 используется квантование. Дискретное вейвлет преобразование, так же как и его аналог, сортирует коэффициенты по частотности. Но, в отличие от JPEG, в новом формате матрица квантования одна на все изображение.


4. Этап Вторичного Сжатия

. Как и в JPEG, в новом формате последним этапом алгоритма сжатия является кодирование без потерь. Но, в отличие от предыдущего формата, в JPEG2000 используется алгоритм арифметического сжатия.

Программная реализация

В данной работе реализованы алгоритмы JPEG и JPEG2000. В обоих алгоритмах реализовано прямое и обратное кодирование (отсутствует последний этап вторичного сжатия). Расчет JPEG происходит довольно долго (порядка 30 секунд) в связи «прямым» высчитыванием DCT. Если потребуется увеличить скорость работы , следует изначально вычислить матрицу DCT(изменения производить в классе DCT).

Перейдем к рассмотрению программы:


  1. После запуска выводится окно, где

и сможете его сохранить , нажав кнопку (2) и введя желаемое название в диалоговом окне.

  • При достаточно большом Quality Factor изображение сильно измениться. Если это JPEG алгоритм то будут ярко выражены блоки размера 8x8.(в случае алгоритма JPEG2000, блочного деления не будет)
  • До:

    После:



    (произносится «джейпег» Joint Photographic Experts Group, по названию организации-разработчика) - один из популярных графических форматов, применяемый для хранения фотоизображений и подобных им изображений. Файлы, содержащие данные JPEG, обычно имеют расширения.jpeg, .jfif, .jpg, .JPG, или.JPE. Однако из них.jpg самое популярное расширение на всех платформах.

    1. Объединенная группа экспертов в области фотографии;

    2. Разработанный данной группой метод сжатия изображений и соответствующий графический формат, часто используемый в WWW. Характерен компактностью файлов и, соответственно, быстрой передачей, а также «потерей» качества изображения. Используется преимущественно для фотографий, поскольку для них потеря качества менее критична. Сохраняет параметры цвета в цветовой модели RGB.

    JPEG (произносится «джейпег », англ. Joint Photographic Experts Group , по названию организации-разработчика) - один из популярных графических форматов, применяемый для хранения фотоизображений и подобных им изображений. Файлы, содержащие данные JPEG, обычно имеют расширения .jpeg , .jfif , .jpg , .JPG , или .JPE . Однако из них .jpg самое популярное расширение на всех платформах. MIME-типом является image/jpeg.

    Алгоритм JPEG является алгоритмом сжатия данных с потерями.

    Область применения

    Алгоритм JPEG в наибольшей степени пригоден для сжатия фотографий и картин, содержащих реалистичные сцены с плавными переходами яркости и цвета. Наибольшее распространение JPEG получил в цифровой фотографии и для хранения и передачи изображений с использованием сети Интернет.

    С другой стороны, JPEG малопригоден для сжатия чертежей, текстовой и знаковой графики, где резкий контраст между соседними пикселами приводит к появлению заметных артефактов. Такие изображения целесообразно сохранять в форматах без потерь, таких как TIFF, GIF, PNG или RAW.

    JPEG (как и другие методы искажающего сжатия) не подходит для сжатия изображений при многоступенчатой обработке, так как искажения в изображения будут вноситься каждый раз при сохранении промежуточных результатов обработки.

    JPEG не должен использоваться и в тех случаях, когда недопустимы даже минимальные потери, например, при сжатии астрономических или медицинских изображений. В таких случаях может быть рекомендован предусмотренный стандартом JPEG режим сжатия Lossless JPEG (который, к сожалению, не поддерживается большинством популярных кодеков) или стандарт сжатия JPEG-LS.

    Сжатие

    При сжатии изображение преобразуется из цветового пространства RGB в YCbCr (YUV). Следует отметить, что стандарт JPEG (ISO/IEC 10918-1) никак не регламентирует выбор именно YCbCr, допуская и другие виды преобразования (например, с числом компонентов, отличным от трёх), и сжатие без преобразования (непосредственно в RGB), однако спецификация JFIF (JPEG File Interchange Format, предложенная в 1991 году специалистами компании C-Cube Microsystems, и ставшая в настоящее время стандартом де-факто) предполагает использование преобразования RGB->YCbCr.

    После преобразования RGB->YCbCr для каналов изображения Cb и Cr, отвечающих за цвет, может выполняться «прореживание» (subsampling), которое заключается в том, что каждому блоку из 4 пикселов (2х2) яркостного канала Y ставятся в соответствие усреднённые значения Cb и Cr (схема прореживания «4:2:0»). При этом для каждого блока 2х2 вместо 12 значений (4 Y, 4 Cb и 4 Cr) используется всего 6 (4 Y и по одному усреднённому Cb и Cr). Если к качеству восстановленного после сжатия изображения предъявляются повышенные требования, прореживание может выполняться лишь в каком-то одном направлении - по вертикали (схема «4:4:0») или по горизонтали («4:2:2»), или не выполняться вовсе («4:4:4»).

    Стандарт допускает также прореживание с усреднением Cb и Cr не для блока 2х2, а для четырёх расположенных последовательно (по вертикали или по горизонтали) пикселов, то есть для блоков 1х4, 4х1 (схема «4:1:1»), а также 2х4 и 4х2. Допускается также использование различных типов прореживания для Cb и Cr, но на практике такие схемы применяются исключительно редко.

    Далее, яркостный компонент Y и отвечающие за цвет компоненты Cb и Cr разбиваются на блоки 8х8 пикселов. Каждый такой блок подвергается дискретному косинусному преобразованию (ДКП). Полученные коэффициенты ДКП квантуются (для Y, Cb и Cr в общем случае используются разные матрицы квантования) и пакуются с использованием кодов Хаффмана. Стандарт JPEG допускает также использование значительно более эффективного арифметического кодирования, однако, из-за патентных ограничений (патент на описанный в стандарте JPEG арифметический QM-кодер принадлежит IBM) на практике оно не используется.

    Матрицы, используемые для квантования коэффициентов ДКП, хранятся в заголовочной части JPEG-файла. Обычно они строятся так, что высокочастотные коэффициенты подвергаются более сильному квантованию, чем низкочастотные. Это приводит к огрублению мелких деталей на изображении. Чем выше степень сжатия, тем более сильному квантованию подвергаются все коэффициенты.

    При сохранении изображения в JPEG-файле указывается параметр качества, задаваемый в некоторых условных единицах, например, от 1 до 100 или от 1 до 10. Большее число обычно соответствует лучшему качеству (и большему размеру сжатого файла). Однако, даже при использовании наивысшего качества (соответствующего матрице квантования, состоящей из одних только единиц) восстановленное изображение не будет в точности совпадать с исходным, что связано как с конечной точностью выполнения ДКП, так и с необходимостью округления значений Y, Cb, Cr и коэффициентов ДКП до ближайшего целого. Режим сжатия Lossless JPEG, не использующий ДКП, обеспечивает точное совпадение восстановленного и исходного изображений, однако, его малая эффективность (коэффициент сжатия редко превышает 2) и отсутствие поддержки со стороны разработчиков программного обеспечения не способствовали популярности Lossless JPEG.

    Разновидности схем сжатия JPEG

    Стандарт JPEG предусматривает два основных способа представления кодируемых данных.

    Наиболее распространённым, поддерживаемым большинством доступных кодеков, является последовательное (sequential JPEG) представление данных, предполагающее последовательный обход кодируемого изображения поблочно слева направо, сверху вниз. Над каждым кодируемым блоком изображения осуществляются описанные выше операции, а результаты кодирования помещаются в выходной поток в виде единственного «скана», т.е. массива кодированных данных, соответствующего последовательно пройденному («просканированному») изображению. Основной или «базовый» (baseline) режим кодирования допускает только такое представление. Расширенный (extended) режим наряду с последовательным допускает также прогрессивное (progressive JPEG) представление данных.

    В случае progressive JPEG сжатые данные записываются в выходной поток в виде набора сканов, каждый из которых описывает изображение полностью с всё большей степенью детализации. Это достигается либо путём записи в каждый скан не полного набора коэффициентов ДКП, а лишь какой-то их части: сначала - низкочастотных, в следующих сканах - высокочастотных (метод «spectral selection» т.е. спектральных выборок), либо путём последовательного, от скана к скану, уточнения коэффициентов ДКП (метод «successive approximation», т.е. последовательных приближений). Такое прогрессивное представление данных оказывается особенно полезным при передаче сжатых изображений с использованием низкоскоростных каналов связи, поскольку позволяет получить представление обо всём изображении уже после передачи незначительной части JPEG-файла.

    Обе описанные схемы (и sequential, и progressive JPEG) базируются на ДКП и принципиально не позволяют получить восстановленное изображение абсолютно идентичным исходному. Однако, стандарт допускает также сжатие, не использующее ДКП, а построенное на основе линейного предсказателя (lossless, т.е. «без потерь», JPEG), гарантирующее полное, бит-в-бит, совпадение исходного и восстановленного изображений. При этом коэффициент сжатия для фотографических изображений редко достигает 2, но гарантированное отсутствие искажений в некоторых случаях оказывается востребованным. Заметно большие степени сжатия могут быть получены при использовании не имеющего, несмотря на сходство в названиях, непосредственного отношения к стандарту JPEG ISO/IEC 10918-1 (ITU T.81 Recommendation) метода сжатия JPEG-LS, описываемого стандартом ISO/IEC 14495-1 (ITU T.87 Recommendation).

    Синтаксис и структура формата JPEG

    Файл JPEG содержит последовательность маркеров , каждый из которых начинается с байта 0xFF, свидетельствующего о начале маркера, и байта - идентификатора. Некоторые маркеры состоят только из этой пары байтов, другие же содержат дополнительные данные, состоящие из двухбайтового поля с длиной информационной части маркера (включая длину этого поля, но за вычетом двух байтов начала маркера т.е. 0xFF и идентификатора) и собственно данных.

    Основные маркеры JPEG
    Маркер Байты Длина Назначение
    Старый добрый JPEG, несмотря на массу неоспоримых достоинств, все же имеет и существенные ограничения. Снять их был призван новый метод сжатия изображений, разработки которого велись уже давно. Теперь, когда JPEG2000 стал официально признанным форматом, это должно послужить началу его активной поддержки различными производителями ПО.

    Наверняка многих работающих с графикой на компьютере интересует вопрос: а как удается изображение, занимающее весьма впечатляющий объем в памяти ПК, втиснуть в гораздо меньший размер на диске? Помнится, на заре своей издательской деятельности слово «компрессия» для меня было таким загадочным и удивительным… В самом деле, каким образом происходит сжатие изображений — ведь без него сейчас немыслимо представить ни Сеть, ни цифровую фотографию, ни цветную полиграфию?

    Итак, сжатие. Оно может как приводить к потере качества, так и не приводить. Последний случай — это такие методы, как RLE (Run Length Encoding, кодирование длин серий, в результате которого образуются пары типа (skip , value , где skip — это число подряд идущих нулей, а value — следующее за ними значение) и LZW (компрессия методом Lempel-Ziff-Welch), реализованные в форматах PSD, GIF и TIFF. Широко используются они и архиваторами типа RAR и ZIP. Средняя степень компрессии сжатия без потерь — 2-3 раза.

    Если нужно сжать изображение сильнее, без потери качества не обойтись. Каковы принципы? Во-первых, любое изображение содержит определенную избыточность, удаление которой не приведет к заметному изменению качества картинки. Во-вторых, человеческий глаз более восприимчив к изменениям яркости, нежели цвета. Поэтому для разных каналов изображения применяются различные степени сжатия — информация теряется, но визуально это не заметно. Кроме того, чувствительность глаза к мелким элементам изображения невелика, что позволяет без ущерба для качества их удалить. Так можно сжимать изображение (даже если ухудшение качества становится уже заметным) вплоть до приемлемого порога. Степень деградации качества определяется для каждого конкретного случая. Для полиграфии допустимы лишь минимальные искажения, а для размещения в Интернете (в зависимости от предназначения) — гораздо большие.

    Наибольшую популярность среди методов компрессии с потерями получил JPEG, который даже при тридцатикратном сжатии сохраняет достаточное качество картинки. Кстати, в большинстве современных методов сжатия данных (например, Layer-4, известный как mp3, а также MPEG) реализованы механизмы, аналогичные JPEG. Давайте познакомимся поближе с этим форматом, тем более что не так давно была окончательно утверждена его новейшая реализация JPEG2000, в которую вошли все дополнения, внесенные в JPEG/MPEG за десять лет его развития.

    JPEG

    Название алгоритма компрессии — аббревиатура от Joint Photographic Expert Group, инициативной группы, образованной из экспертов ITU (International Telecommunication Union) и ISO (International Organization for Standartization). Именно поэтому в ее названии присутствует приставка Joint. В 1992 г. JPEG был объявлен международным стандартом в области графических изображений.

    При компрессии методом JPEG качество теряется всегда. При этом всегда есть выбор: отдать предпочтение качеству в ущерб объему (размер файла сожмется приблизительно в три раза) или же наоборот, добиться минимального размера изображения, при котором оно еще останется узнаваемым (степень компрессии может достигать 100). Сжатие, при котором различие в качестве между получающимся изображением и оригиналом еще остается незаметным, дает 10-20-кратное сокращение размера файла.

    Область применения

    JPEG лучше всего компрессирует полноцветные и монохромные изображения фотографического качества. Если же требуется сохранить картинку с индексной палитрой, то сначала она конвертируется в полноцветную. При компрессии методом JPEG нужно иметь в виду, что все зависит от характера изображений: гораздо меньший объем будут занимать те, где изменения цвета незначительны и нет резких цветовых переходов. JPEG применяется всюду, где нужно хранить фотоизображения: в цифровых фотоаппаратах, полиграфии (EPS DCS 2.0), немыслим без него и Интернет.

    Существует несколько разновидностей JPEG-компрессии, мы же рассмотрим только две из них, использующиеся в стандартном пакете для работы с растровыми изображениями Adobe Photoshop, — baseline и progressive . Два других способа — ariphmetic и loseless — экзотика, в силу ряда причин не получившая широкого распространения.

    Как происходит сжатие

    1. Первый этап заключается в конвертировании цветовой модели изображения (обычно RGB) в модель, где яркостная и цветовая составляющие разнесены (например, YCbCr или YUV), что позволяет оптимально подойти к выбору степеней компрессии для каждого канала (с учетом особенностей восприятия глазом). Преобразование происходит следующим образом:

    Y = 0,299xR+0,587*G+0,114xB Cb = (B-Y)/0,866/2+128 Cr = (R-Y)/0,701/2+128

    2. На следующем этапе происходит т. н. префильтрация , при которой соседние пиксели отдельно в каждом из каналов Cb и Cr группируются попарно в горизонтальном и вертикальном направлениях, а яркостный канал Y оставляется без изменений. После этого вся группа из четырех пикселов получает усредненное значение соответствующих компонент Cb и Cr. Для краткости такую схему можно обозначить как 4:1:1 (такая же форма представления принята в DRAW — окно экспорта в jpeg). С учетом того, что каждый пиксел кодируется 3 байтами (по 256 уровней для каждого из трех каналов), в результате объем данных автоматически сокращается в 2 раза (вместо 12 байт для передачи 4 пикселов достаточно передать всего 4+1+1 = 6 байт). С точки зрения математики такое преобразование приводит к существенной потере информации, но человеческий глаз потери не воспринимает, поскольку в обычных фотографических изображениях присутствует существенная избыточность.

    3. Полученная информация, прошедшая стадию первичной «очистки», отдельно в каждом канале снова группируется в блоки, но уже размером 8x8, после чего для них применяется основное сжатие — т. н. дискретное косинусное преобразование , для краткости — DCT (discrete cosine transform). В результате информация о распределении яркости пикселов преобразуется в другой вид, где она описывается распределением, основанном на частоте появления той или иной яркости пикселов. DCT имеет ряд преимуществ перед другими преобразованиями (например, перед преобразованием Фурье), обеспечивая лучшее восстановление информации.

    Вместо массива из 64 значений (8x8 пикселов) для каждого блока, из которых состоит изображение, мы получаем массив из 64 частот. Рассмотрим работу DCT на примере. Допустим, яркость пикселов в одном блоке нашего изображения имеет вид, представленный на рис. 1 слева, тогда результат преобразования будет таким, как показано справа.

    1

    Несмотря на значительную точность, некоторая потеря информации на данном этапе все же происходит — именно поэтому JPEG всегда приводит к потере качества. Основная цель преобразования — выяснить общую картину распределения крупных (на рисунке — сверху слева) и мелких (внизу справа) объектов, что пригодится потом, при устранении малозначимой информации.

    4. Следующий этап — удаление малозаметной глазу информации из блока, или квантование (quantization). Все составляющие делятся на различные коэффициенты, определяющие значимость каждой из них для качественного восстановления исходного изображения, и результат округляется до целого значения. Именно эта процедура вносит наибольшие потери качества, снижая конечный объем изображения. Высокочастотные составляющие квантуются грубо, а низкочастотные — точнее, поскольку наиболее заметны. Дабы несколько сгладить понижение качества, в канале яркости используются меньшие коэффициенты деления, чем в каналах цветности. Но чаще (это делается для ускорения расчетов) вместо специально подобранных значений берется всего одно — то, которое вводит пользователь при выборе степени компрессии.

    Вот, например, как выглядит окно Photoshop при сохранении изображения c помощью операции Save for web, где параметр Quality (вернее, производная от него) — тот самый коэффициент округления (рис. 2).

    В результате квантования получается набор составляющих, по которым исходное изображение восстанавливается с заданной точностью (рис. 3).

    4

    На рис. 4 показан результат восстановления черно-белого квадрата соответственно одной, четырьмя и пятнадцатью составляющими.

    5. После выполнения основной работы по сжатию изображения дальнейшие преобразования сводятся к второстепенным задачам: оставшиеся составляющие собираются в последовательность таким образом, чтобы сначала располагались отвечающие за крупные детали, а потом — за все более мелкие. Если посмотреть на рисунок, то движение кодировщика похоже на зигзагообразную линию. Этап так и называется — ZigZag (рис. 5).

    5

    Затем получившаяся последовательность сжимается: сначала обычным RLE, затем методом Хаффмана.

    6. И наконец, чисто техническая стадия — данные заключаются в оболочку, снабжаются заголовком, в котором указываются все параметры компрессии с тем, чтобы изображение можно было восстановить. Впрочем, иногда в заголовки не включают эту информацию, что дает дополнительный выигрыш в компрессии, однако в этом случае нужно быть уверенным, что приложение, которое будет читать файл, о них знает.

    Вот, в общем, и все преобразования. А теперь давайте подсчитаем, какая компрессия была достигнута в нашем примере. Мы получили 7 значений, по которым восстановится первоначальное изображение размером 8x8. Итак, компрессия от применения DCT-преобразования в обоих каналах цветности составила 8x8/7 ≈ 9 раз. Отведем на канал яркости не семь, а 11 коэффициентов, что даст 8x8/11 ≈ 6. Для всех трех каналов получится (9+9+6)/3=8 раз. Снижение качества при «прореживании» изображения, произошедшего на второй стадии, дает дополнительно двойной прирост (схема 4-1-1, учитывающая особенности кодирования яркостной составляющей), что даст итоговый результат — 16 раз. Это грубый подсчет, не учитывающий некоторых аспектов, но отражающий реальную картину. Чтобы получить тридцатикратное сокращение размера файла, нужно оставить всего 3-4 составляющие.

    Процесс восстановления изображения протекает в обратном порядке: сначала составляющие умножаются на значения из таблицы квантования, и получаются приблизительные коэффициенты для обратного косинусного преобразования. Чем лучшее качество выбрано при компрессии, тем степень приближения к оригинальным коэффициентам выше, а значит, изображение восстановится более точно. Остается добавить лишь одно действие: перед самым завершением внести некоторые корректировки (шум) в граничные пиксели из соседних блоков, чтобы убрать резкие перепады между ними.

    Недостатки JPEG

    1. Невозможность достичь высоких степеней сжатия за счет ограничения на размер блока (только 8x8).
    2. Блочность структуры на высоких степенях компрессии.
    3. Закругление острых углов и размывание тонких элементов в изображении.
    4. Поддерживаются только RGB-изображения (использовать JPEG для CMYK-изображений можно только в формате EPS через DCS).
    5. Изображение нельзя отобразить до тех пор, пока оно не загрузится полностью.

    С тех пор, как JPEG был утвержден в качестве стандарта, прошло уже десять лет. За это время группы исследователей предложили ряд существенных дополнений в первоначальный вариант, которые вылились в конце прошлого года в появление нового стандарта.

    JPEG2000

    С 1997 г. были начаты работы, направленные на создание универсальной системы кодирования, которая снимала бы все ограничения, накладываемые JPEG, и могла эффективно работать со всеми типами изображений: черно-белыми, в градациях серого, полноцветными и многокомпонентными, причем независимо от содержания (будут ли это фотографии, достаточно мелкий текст или даже чертежи). В его разработке принимали участие наряду с международными стандартизирующими организациями такие гранды промышленности, как Agfa, Canon, Fujifilm, Hewlett-Packard, Kodak, LuraTech, Motorola, Ricoh, Sony и др.

    Поскольку новый алгоритм претендовал на универсальный, ему дополнительно ставилась задача использования различных способов передачи данных (в реальном режиме времени и при узкой полосе пропускания), что особенно критично в мультимедийных приложениях, например, в реал-трансляциях через Интернет.

    Основные требования, предъявляемые к формату JPEG2000:

    1. Достижение повышенной по сравнению с JPEG степени компрессии.
    2. Поддержка монохромных изображений, что позволит применять его для компрессии изображений с текстом.
    3. Возможность сжатия вообще без потерь.
    4. Вывод изображений с постепенным улучшением детализации (как в progressive GIF).
    5. Использование в изображении приоритетных областей, для которых качество может устанавливаться выше, чем в остальной части изображения.
    6. Декодирование в реальном режиме времени (без задержек).

    Принцип сжатия

    В качестве основного механизма компрессии в JPEG2000, в отличие от JPEG, используется волновое (wavelet) преобразование — система фильтров, применяемых ко всему изображению. Не вдаваясь в детали компрессии, отметим лишь основные моменты.

    6
    Сначала точно так же, как и для JPEG, происходит конвертирование изображения в систему YCrCb, после чего — первичное удаление избыточной информации (путем уже известного объединения соседних пикселей в блоки 2x2). Затем все изображение делится на части одинакового размера (tile), над каждой из которых независимо от других и будут происходить дальнейшие преобразования (это снижает требования к объему памяти и вычислительным ресурсам). Далее каждый канал проходит фильтрацию низкочастотным и высокочастотным фильтрами отдельно по строкам и по рядам, в результате чего после первого прохода в каждой части формируются четыре более мелких изображения (subband). Все они несут информацию об исходном изображении, но их информативность сильно отличается (рис. 6).

    Например, изображение, полученное после низкочастотной фильтрации по строкам и рядам (вверху слева), несет наибольшее количество информации, а полученное после высокочастотной — минимальное. Информативность у изображений, полученных после НЧ-фильтрации строк и ВЧ для столбцов (и наоборот), средняя. Наиболее информативное изображение опять подвергается фильтрации, а полученные составляющие, как и при jpeg-компрессии, квантуются. Так происходит несколько раз: для сжатия без потерь цикл обычно повторяется 3 раза, с потерями — разумным компромиссом между размером, качеством и скоростью декомпрессии считается 10 итераций. В результате получается одно маленькое изображение и набор картинок с мелкими деталями, последовательно и с определенной точностью восстанавливающих его до нормального размера. Очевидно, что наибольшая степень компрессии получается на крупных изображениях, поскольку можно установить большее количество циклов.

    Практическая реализация

    С тех пор, как были заложены основы компрессии методом JPEG2000, ряд компаний разработал достаточно эффективные алгоритмы ее реализации.

    Среди крупных разработчиков ПО можно отметить Corel (кстати, она одна из первых внедрила в свои пакеты поддержку формата wi, основанного на волновых преобразованиях, за что ей честь и хвала) — все изображения, поставляемые на компакт-дисках с пакетом CorelDRAW вплоть до девятой версии, сжимались именно таким способом.

    Позже к ней подтянулась и Adobe. Часть идей, заложенных в JPEG2000, была применена разработчиками Photoshop 6 в виде продвинутых опций при сохранении изображения в формате JPEG (обычном, основанном на косинусном преобразовании). Среди них — прогрессивный JPEG (параметр Progressive в окне Save for Web). Этот алгоритм предназначен, главным образом, для систем реального времени и работает точно так же, как и прогрессивный GIF. Сначала появляется грубая копия изображения, состоящая всего из нескольких блоков большого размера, а со временем, когда подгружаются остальные данные, структура начинает просматриваться все четче, пока, наконец, конечное изображение не восстановится полностью. В отличие от GIF, такой алгоритм создает большую нагрузку на просмотрщик, поскольку ему придется полностью выполнять весь цикл преобразований для каждой передаваемой версии.

    Из других дополнений отметим включение в файл нескольких JPEG-сжатых изображений с разной степенью компрессии, разрешением и даже цветовыми моделями. Соответственно, в Photoshop 6 появилась возможность выделять в изображении отдельные области и применять для них другие установки компрессии (Region-Of-Interest , впервые такой механизм был предложен еще в 1995 г.), используя более низкие значения в таблице квантования. Для этого задается требуемая область (например, в виде нового канала в изображении) и нажимается пиктограмма маски возле пункта Quality (Качество). В появившемся окне можно экспериментировать с изображением, передвигая ползунки, — готовый результат отображается на экране, позволяя быстро находить необходимый компромисс между качеством и размером.

    Специализированные конверторы и просмотрщики

    Поскольку стандартом не оговариваются конкретные реализации методов компрессии/декомпрессии, это дает простор сторонним разработчикам алгоритмов сжатия. В самом деле, можно использовать либо упрощенный алгоритм волнового преобразования и тем самым ускорить процесс компрессии или же, наоборот, применить более сложный и, соответственно, требующий больших системных ресурсов.

    Специализированные решения от других компаний доступны в виде коммерческих разработок. Одни реализованы в виде отдельных программ (JPEG 2000 разработки Aware), другие — в виде дополнительных модулей для наиболее распространенных растровых редакторов (ImagePress JPEG2000 разработки Pegasus Imaging и модуль LEAD JPEG2000 от LEAD Technologies). На их фоне выделяется компания LuraTech, давно занимающаяся этим вопросом. Она продвигает свою технологию LuraWave в самодостаточном продукте LuraWave SmartCompress (доступна уже третья версия) и предлагает модули для Photoshop, Paintshop, Photopaint. Отличительная особенность — более высокая скорость работы (практически мгновенное преобразование) даже с картинками размером в несколько мегабайт. Соответственно и цена этого модуля самая высокая — 79 долл.

    Чтобы просматривать JPEG2000-изображения браузерами, необходимо установить специальный модуль-просмотрщик (все разработчики предлагают его бесплатно). Вставка изображения в html-документ, как и любого plug-in, сводится к использованию конструкции EMBED (с дополнительными параметрами). Например, означает, что будет использоваться прогрессивный метод переда- чи изображения. То есть в нашем примере (файл размером 139 Кбайт) сначала передаются только 250 байт, на основании которых будет построено грубое изображение, затем, после дозагрузки 500 байт, изображение обновляется (так продолжается до достижения значения LIMIT).

    Если вы захотите получить более качественное изображение, нужно выбрать пункт Improve из меню, всплывающего по правой кнопке (рис. 9). За четыре докачки все изображение будет загружено полностью.

    9

    Выводы

    Итак, JPEG2000 объективно показывает лучшие результаты, чем JPEG только на высоких степенях сжатия. При компрессии в 10-20 раз особой разницы не заметно. Сможет ли он вытеснить или просто составить конкуренцию широко распространенному формату? В ближайшее время — вряд ли, в большинстве случаев соотношение качество/размер, обеспечиваемое JPEG, вполне приемлемо. А те 10-20% дополнительной компрессии, которые дает JPEG2000 при визуально одинаковом качестве, вряд ли приведут к росту его популярности.

    Зато к новому формату проявляют пристальный интерес компании-производители цифро- вых камер, поскольку размеры светочувствительных матриц с каждым годом неуклонно увеличиваются, и помещать изображения в память становится все труднее. И вот тогда новый формат получит большее распространение, и кто знает, возможно, через какое-то время JPEG2000 сравняется с JPEG. Во всяком случае, Analog Micro Devices недавно выпустила специализированный чип, в котором компрессия/декомпрессия по новой технологии реализованы на аппаратном уровне, а министерство обороны США уже сейчас активно использует новый формат для записи фотоснимков, полученных со спутников-шпионов.

    Факты и домыслы

    1. JPEG теряет качество при открытии и повторном сохранении файла.

    Неправда. Качество теряется только тогда, когда выбирается степень компрессии, меньшая, чем та, с которой изображение было сохранено.

    2. JPEG теряет качество при редактировании файла.

    Правда. При сохранении измененного файла все преобразования выполняются вновь — поэтому избегайте частого редактирования изображений. Это относится только к случаю, когда файл закрывается: если же файл остается открытым, причин для беспокойства нет.

    3. Результат компрессии с одинаковыми параметрами в разных программах будет одинаков.

    Неправда. Разные программы по-разному трактуют вводимые пользователем значения. Например, в одной программе указывается качество сохраняемого изображения (как, например, в Photoshop), в другой — степень его компрессии (обратная величина).

    4. При установке максимального качества изображение сохраняется без каких-либо потерь качества.

    Неправда. JPEG сжимает с потерями всегда. Но установка, например, 90% качества вместо 100% дает сокращение размера файла большее, чем воспринимаемое глазом ухудшение качества.

    5. Любой файл JPEG можно открыть в любом редакторе, понимающем формат JPEG.

    Неправда. Такую разновидность JPEG, как прогрессивный (progressive JPEG), некоторые редакторы не понимают.

    6. JPEG не поддерживает прозрачность.

    Правда. Иногда может казаться, что какая-то часть изображения прозрачна, но на самом деле ее цвет просто подобран так, чтобы он совпадал с цветом фона в html-странице.

    7. JPEG сжимает лучше, чем GIF.

    Неправда. У них разная область применения. В общем случае, типичная «гифовская» картинка после конвертирования в JPEG будет иметь больший объем.

    JPEG2000 против JPEG

    7
    1. При двадцати-тридцатикратном сжатии JPEG2000 и JPEG дают приблизительно одинаковое качество (кстати говоря, Photoshop не может сжать обычную фотографию больше этого предела).

    2. При большем сжатии качество JPEG2000 существенно выше, чем у JPEG, что позволяет без особых потерь сжимать до 50 раз, а с некоторыми потерями (речь идет об изображениях для Интернет) — до 100 и даже до 200.

    3. При больших степенях компрессии в тех областях, где происходит плавное изменение цвета, изображение не приобретает характерную для простого JPEG блочную структуру. JPEG2000 также несколько размазывает и закругляет острые контуры — см. фотографии (рис. 7 и 8).

    На нем представлены результаты компрессии тестового файла с разными степенями компрессии (слева — сохраненные в Photoshop в формате JPG, справа — в формате JPEG2000). Для изображения на рис. 7 были выбраны степени компрессии 20, 40, 70 и 145 (их можно явно указывать при сохранении в JPEG2000), степень сжатия JPG выбиралась из того расчета, чтобы размер файла был таким же, как после сжатия по JPEG2000. Как говорится, результаты налицо. Для чистоты был проведен второй эксперимент на изображении с более четкими деталями (со степенями компрессии 10, 20, 40 и 80). Преимущество опять же на стороне JPEG2000 (рис. 8).

    8

    4. Поскольку, по сути, в одном JPEG2000-файле хранятся копии с разным разрешени

    ем, для тех, кто делает галереи изображений в Интернете, отпадает необходимость создавать для них thumbnails.

    5. Особый интерес представляет компрессия без искажений (режим loseless). Так, тестовый файл при LZW-сжатии из Photoshop занял 827 Кбайт, а сжатый JPEG2000 — 473 Кбайт.

    6. По сравнению с JPEG его более продвинутый тезка потребляет значительно больше системных ресурсов. Но существенно возросшая за последние пару лет мощь компьютеров позволяет успешно решать задачи сжатия изображений новым методом.

    7. Отсутствие поддержки JPEG2000 в браузерах. Чтобы просматривать такие изображения, нужно скачать довольно большой дополнительный модуль (1,2 Мбайта).

    8. Отсутствие бесплатного ПО для сохранения изображений в новом формате.

    Журналов в свободном доступе.

    На ту же тему:


    Алгоритм преобразования графического изображения JPEG состоит из нескольких этапов, выполняемых над изображением последовательно, один за другим:

    – преобразования цветового пространства,

    – субдискретизации,

    – дискретного косинусного преобразования (ДКП),

    – квантования,

    – кодирования.

    На этапе преобразования цветового пространства осуществляется преобразование изображения из цветового пространства RGB в YCbCr (где Y - яркость, а Cb и Cr - цветоразностные компоненты точки изображения):

    Применение пространства YCbCr вместо привычного RGB объясняется физиологическими особенностями человеческого зрения, а именно тем, что нервная система человека обладает значительно большей чувствительностью к яркости (Y ) , чем к цветоразностным составляющим (в данном случае Cb и Cr ). Обратное преобразование цветового пространства (из YCrCb в RGB ) имеет вид:

    Алгоритм сжатия JPEG позволяет сжимать изображения с различными размерами цветовых плоскостей. Обозначим через x i и y i ширину и высоту i -й цветовой плоскости изображения. Пусть X = max (x i ), Y = max (y i ), определим для каждой плоскости коэффициенты H i = X / x i и V i = Y / y i . Наибольшее значение для X и Y согласно алгоритму JPEGравно 2 16 , а для H i и V i – 2 2 . Таким образом, ширина и высота цветовых плоскостей может быть от 1 до 4 раз меньше, размеров наибольшей плоскости. Для обычных RGB изображений размеры всех цветовых плоскостей равны.

    Субдискретизация состоит в уменьшении размеров плоскостей Cr и Cb . Наиболее распространено уменьшение в 2 раза по ширине и в 2 раза по высоте (см. рисунок 1). Для этого Cr и Cb плоскости изображения разбиваются на блоки с размером 2 на 2 точки, и блок заменяется одним отсчетом цветоразностных компонент (на место имевшихся 4 отсчетов ставится их среднее арифметическое для каждого блока, что позволяет уменьшить размер исходного изображения в 2 раза).

    Рисунок 1 – Распространенные типы субдискретизации

    Затем, отдельно для каждого компонента цветового пространства Y , Cb и Cr , осуществляется прямое дискретное косинусное преобразование. Для этого изображение делится на блоки с размером 8 на 8 точек и каждый блок преобразуется согласно формуле:

    Применение дискретного косинусного преобразования позволяет перейти от пространственного представления изображения к спектральному. Обратное дискретное косинусное преобразование имеет вид:

    После этого можно переходить к квантованию полученной информации. Идея квантования состоит в отбрасывании некоторого объема информации. Известно, что глаз человека менее восприимчив к высоким частотам (особенно к высоким частотам цветоразностных компонент), большинство фотографических изображений содержит мало высокочастотных составляющих. Кроме того, появление высоких частот является следствием процесса оцифровки, т.е. вследствие появления сопутствующих дискретизации и квантования шумов. На этом этапе используются так называемые таблицы квантования - матрицы состоящие из целых положительных чисел с размером 8 на 8, на элементы которых делятся соответствующие частоты блоков изображения, результат округляется до целого числа:



    .

    В процессе деквантования используются те же таблицы, что и при квантовании. Деквантование состоит в умножении квантованных частот на соответствующие элементы таблицы квантования:

    Таким образом, при увеличении коэффициента квантования увеличивается объем отбрасываемой информации. Рассмотрим это подробнее на примере.

    Блок до квантования:

    3862, –22, –162, –111, –414, 12, 717, 490,

    383, 902, 913, 234, –555, 18, –189, 236,

    229, 707, –708, 775, 423, –411, –66, –685,

    231, 34, –928, 34, –1221, 647, 98, –824,

    –394, 128, –307, 757, 10, –21, 431, 427,

    324, –874, –367, –103, –308, 74, –1017, 1502,

    208, –90, 114, –363, 478, 330, 52, 558,

    577, 1094, 62, 19, –810, –157, –979, –98

    Таблица квантования (качество 90):

    24, 16, 16, 24, 40, 64, 80, 96,

    16, 16, 24, 32, 40, 96, 96, 88,

    24, 24, 24, 40, 64, 88, 112, 88,

    24, 24, 32, 48, 80, 136, 128, 96,

    32, 32, 56, 88, 112, 176, 168, 120,

    40, 56, 88, 104, 128, 168, 184, 144,

    80, 104, 128, 136, 168, 192, 192, 160,

    112, 144, 152, 160, 176, 160, 168, 160

    Блок после квантования:

    161, –1, –10, –5, –10, 0, 9, 5,

    24, 56, 38, 7, –14, 0, –2, 3,

    10, 29, –30, 19, 7, –5, –1, –8,

    10, 1, –29, 1, –15, 5, 1, –9,

    –12, 4, –5, 9, 0, 0, 3, 4,

    8, –16, –4, –1, –2, 0, –6, 10,

    3, –1, 1, –3, 3, 2, 0, 3,

    5, 8, 0, 0, –5, –1, –6, –1

    3864, –16, –160, –120, –400, 0, 720, 480,

    384, 896, 912, 224, –560, 0, –192, 264,

    240, 696, –720, 760, 448, –440, –112, –704,

    240, 24, –928, 48,–1200, 680, 128, –864,

    –384, 128, –280, 792, 0, 0, 504, 480,

    320, –896, –352, –104, –256, 0,–1104, 1440,

    240, –104, 128, –408, 504, 384, 0, 480,

    560, 1152, 0, 0, –880, –160,–1008, –160

    Таблица квантования (качество 45):

    144, 96, 88, 144, 216, 352, 456, 544,

    104, 104, 128, 168, 232, 512, 536, 488,

    128, 112, 144, 216, 352, 504, 616, 496,

    128, 152, 192, 256, 456, 776, 712, 552,

    160, 192, 328, 496, 600, 968, 912, 680,

    216, 312, 488, 568, 720, 920, 1000, 816,

    432, 568, 696, 776, 912, 1072, 1064, 896,

    640, 816, 840, 872, 992, 888, 912, 880

    Блок после квантования:

    27, 0, –2, –1, –2, 0, 2, 1,

    4, 9, 7, 1, –2, 0, 0, 0,

    2, 6, –5, 4, 1, –1, 0, –1,

    2, 0, –5, 0, –3, 1, 0, –1,

    –2, 1, –1, 2, 0, 0, 0, 1,

    2, –3, –1, 0, 0, 0, –1, 2,

    0, 0, 0, 0, 1, 0, 0, 1,

    1, 1, 0, 0, –1, 0, –1, 0

    Блок после обратного преобразования:

    3888, 0, –176, –144, –432, 0, 912, 544,

    416, 936, 896, 168, –464, 0, 0, 0,

    256, 672, –720, 864, 352, –504, 0, –496,

    256, 0, –960, 0,–1368, 776, 0, –552,

    –320, 192, –328, 992, 0, 0, 0, 680,

    432, –936, –488, 0, 0, 0,–1000, 1632,

    0, 0, 0, 0, 912, 0, 0, 896,

    640, 816, 0, 0, –992, 0, –912, 0

    Как видно, в первом случае изменение DC коэффициента в результате сжатия равно 2, а во втором 26, при этом квантованный DC коэффициент во втором случае в 6 раз меньше чем в первом.

    Кодирование является заключительным этапом сжатия, во время него блоки изображения преобразуются в векторную форму по правилу, задаваемому блоками вида:

    0, 1, 5, 6, 14, 15, 27, 28,

    2, 4, 7, 13, 16, 26, 29, 42,

    3, 8, 12, 17, 25, 30, 41, 43,

    9, 11, 18, 24, 31, 40, 44, 53,

    10, 19, 23, 32, 39, 45, 52, 54,

    20, 22, 33, 38, 46, 51, 55, 60,

    21, 34, 37, 47, 50, 56, 59, 61,

    35, 36, 48, 49, 57, 58, 62, 63

    где в качестве элементов блока указаны векторные индексы соответствующих компонентов матрицы. При этом нулевой элемент кодируется как разница с нулевым элементом предыдущего блока. Нулевые элементы обозначают DC , в них содержится постоянная составляющая блока (все остальные АС элементы принято обозначать AC ).

    Затем полученные данные сжимаются с использованием арифметического кодирования или модификации алгоритма Хаффмана. Этот этап не представляет большого интереса с точки зрения стеганографии в графических изображениях, поэтому он выходит за рамки нашего рассмотрения.



    
    Top