Фильтрация цветного изображения. Графические фильтры на основе матрицы скручивания. Зашумление изображения. Модели шумов

Если функция дифференцируема в точке, то её приращение можно представить в виде суммы двух слагаемых

. Эти слагаемые являются бесконечно малыми функциями при
.Первое слагаемое линейно относительно
,второе является бесконечно малой более высокого порядка, чем
.Действительно,

.

Таким образом второе слагаемое при
быстрее стремится к нулю и при нахождении приращения функции
главную роль играет первое слагаемое
или (так как
)
.

Определение . Главная часть приращения функции
в точке , линейная относительно
,называется дифференциалом функции в этой точке и обозначается dy или df (x )

. (2)

Таким образом, можно сделать вывод: дифференциал независимой переменной совпадает с её приращением, то есть
.

Соотношение (2) теперь принимает вид

(3)

Замечание . Формулу (3) для краткости часто записывают в виде

(4)

Геометрический смысл дифференциала

Рассмотрим график дифференцируемой функции
. Точки
ипринадлежат графику функции. В точкеМ проведена касательная К к графику функции, угол которой с положительным направлением оси
обозначим через
. Проведем прямыеMN параллельно оси Ox и
параллельно осиOy . Приращение функции равно длине отрезка
. Из прямоугольного треугольника
, в котором
, получим

Изложенные выше рассуждения позволяют сделать вывод:

Дифференциал функции
в точке изображается приращением ординаты касательной к графику этой функции в соответствующей её точке
.

Связь дифференциала с производной

Рассмотрим формулу (4)

.

Разделим обе части этого равенства на dx , тогда

.

Таким образом, производная функции равна отношению её дифференциала к дифференциалу независимой переменной .

Часто это отношение рассматривается просто как символ, обозначающий производную функцииу по аргументу х .

Удобными обозначениями производной также являются:

,
и так далее.

Употребляются также записи

,
,

особенно удобные, когда берется производная от сложного выражения.

2. Дифференциал суммы, произведения и частного.

Так как дифференциал получается из производной умножением её на дифференциал независимой переменной, то, зная производные основных элементарных функций, а также правила для отыскания производных, можно прийти к аналогичным правилам для отыскания дифференциалов.

1 0 . Дифференциал постоянной равен нулю

.

2 0 . Дифференциал алгебраической суммы конечного числа дифференцируемых функций равен алгебраической сумме дифференциалов этих функций

3 0 . Дифференциал произведения двух дифференцируемых функций равен сумме произведений первой функции на дифференциал второй и второй функции на дифференциал первой

.

Следствие . Постоянный множитель можно выносить за знак дифференциала

.

Пример . Найти дифференциал функции .

Решение.Запишем данную функцию в виде

,

тогда получим

.

4. Функции, заданные параметрически, их дифференцирование.

Определение . Функция
называется заданной параметрически, если обе переменныех и у определяются каждая в отдельности как однозначные функции от одной и той же вспомогательной переменной – параметра t :


где t изменяется в пределах
.

Замечание . Параметрическое задание функций широко применяется в теоретической механике, где параметр t обозначает время, а уравнения
представляют собой законы изменения проекций движущейся точки
на оси
и
.

Замечание . Приведем параметрические уравнения окружности и эллипса.

а) Окружность с центром в начале координат и радиусом r имеет параметрические уравнения:

где
.

б) Запишем параметрические уравнения для эллипса:

где
.

Исключив параметр t из параметрических уравнений рассматриваемых линий, можно прийти к их каноническим уравнениям.

Теорема . Если функция у от аргумента х задана параметрически уравнениями
, где
и
дифференцируемые по
t функции и
, то

.

Пример . Найти производную функции у от х , заданной параметрическими уравнениями.

Решение.
.

Цифровые фильтры позволяют накладывать на изображение различные эффекты, например: размытие, резкость, деформацию, шум и т. д.

Цифровой фильтр представляет собой алгоритм обработки изображения. Большая группа цифровых фильтров имеет один и тот же алгоритм, но эффект, накладываемый фильтром на изображение, зависит от коэффициентов, используемых в алгоритме.

Фильтрация изображений является одной из самых фундаментальных операций компьютерного зрения, распознавания образов и обработки изображений. Фактически, с той или иной фильтрации исходных изображений начинается работа подавляющего большинства методов.

Линейные фильтры

Линейные фильтры представляют собой семейство фильтров, имеющих очень простое математическое описание. Вместе с тем они позволяют добиться самых разнообразных эффектов. Будем считать, что задано исходное полутоновое изображение A , и обозначим интенсивности его пикселей A (x , y ). Линейный фильтр определяется вещественнозначной функцией F , заданной на растре. Данная функция называется ядром фильтра, а сама фильтрация производится при помощи операции дискретной свертки (взвешенного суммирования):

Результатом служит изображение B . В приведенной формуле не определены пределы суммирования. Обычно ядро фильтра отлично от нуля только в некоторой окрестности N точки (0, 0). За пределами этой окрестности F (i , j ) или в точности равно нулю, или очень близко к нему, так что можно им пренебречь. Поэтому суммирование производится по (i , j ) Є N , и значение каждого пикселя B (x , y ) определяется пикселями изображения A , которые лежат в окне N , центрированном в точке (x , y ) (обозначим это множество N (x , y )). Ядро фильтра, заданное на прямоугольной окрестности N , может рассматриваться как матрица m ×n , где длины сторон являются нечетными числами. При задании ядра матрицей M kl , ее следует центрировать:

Также нуждается в дополнительном прояснении ситуация, когда пиксель (x , y ) находится в окрестности краев изображения. В этом случае A (x +i , y +j ) может соответствовать пикселю A , лежащему за границами изображения A . Данную проблему можно разрешить несколькими способами:



§ не проводить фильтрацию для таких пикселей, обрезав изображение B по краям или закрасив их, к примеру, черным цветом;

§ не включать соответствующий пиксель в суммирование, распределив его вес F (i , j ) равномерно среди других пикселей окрестности N (x , y );

§ доопределить значения пикселей за границами изображения при помощи экстраполяции;

§ доопределить значения пикселей за границами изображения, при помощи зеркального отражения.

Выбор конкретного способа нужно производить с учетом конкретного фильтра и особенностей конкретного приложения. Разобрав общее определение линейных фильтров, перейдем к примерам.

Сглаживающие фильтры

Результатом применения сглаживающего фильтра является размытие изображения, устранение резких цветовых переходов. Простейший прямоугольный сглаживающий фильтр радиуса r задается при помощи матрицы размера (2r + 1) × (2r + 1), все значения которой равны:

,

а сумма по всем элементам матрицы равна, таким образом, единице. При фильтрации с данным ядром значение пикселя заменяется на усредненное значение пикселей в квадрате со стороной 2r +1 вокруг него. Пример фильтрации при помощи прямоугольного фильтра приведен на рис. 4.19.

а)
б)

Рис. 4.19. Пример использования сглаживающего фильтра

В этом случае на исходное изображение (рис. 4.19, а) наложен прямоугольный фильтр размером 3 на 3 пикселя. Ядро фильтра в этом случае выглядит следующим образом:


.

Результат фильтрации приведен на изображении справа (рис. 4.19, б). Отметим, что сумма всех элементов ядра фильтра дает в результате единицу. Потому можно сказать, что при использовании такого фильтра в целом яркость всего изображения не меняется. Однако, в следствии усреднения значений цветов пикселей, контрастность изображения уменьшается, что и видно на рис. 4.19.

Как видим из приведенного примера, сглаживающие фильтры могут применяться для устранения лестничного эффекта, а также для шумоподавления.

Шум – дефект на изображении, вносимый фотосенсорами и электроникой устройств, или возникающий при использовании аналоговых устройств. Шум на изображении проявляется в виде случайным образом расположенных элементов растра (точек), имеющих размеры близкие к размеру пикселя. Шум отличается от изображения более светлым или тёмным оттенком серого и цвета и/или по цвету. Причиной появления шумов на изображении является: зернистость плёнки, грязь, пыль, царапины, отслоение фотографической эмульсии. Если рассматривать цифровые устройства то причиной возникновения цифрового шума является: тепловой шум матрицы, шум переноса заряда, шум квантования АЦП, усиление сигналов в цифровом фотоаппарате, грязь, пыль на сенсоре.

Применение линейной фильтрации с прямоугольным ядром имеет существенный недостаток: пиксели на расстоянии r от обрабатываемого оказывают на результат тот же эффект, что и соседние. Более эффективное шумоподавление можно осуществить, если влияние пикселей друг на друга будет уменьшаться с расстоянием. Этим свойством обладает гауссовский фильтр с ядром:


Гауссовский фильтр имеет ненулевое ядро бесконечного размера. Однако ядро фильтра очень быстро убывает к нулю при удалении от точки (0, 0), и потому на практике можно ограничиться сверткой с окном небольшого размера вокруг (0, 0) (например, взяв радиус окна равным 3σ ).

Гауссовская фильтрация также является сглаживающей. Однако, в отличие от прямоугольного фильтра, образом точки при гауссовой фильтрации будет симметричное размытое пятно, с убыванием яркости от середины к краям, что гораздо ближе к реальному размытию от расфокусированных линз.

Множество подходов к улучшению изображений распадается на две категории: методы обработки в пространственной области (пространственные методы) и методы обработки в частотной области (частотные методы). К пространственной области относится совокупность пикселей, составляющих изображение. Функция предварительной обработки в пространственной области записывается в виде

где f (x , y ) – входное изображение,

g (x , y ) – выходное (обработанное) изображение,

h – оператор функции f , определенный в некоторой области (x , y ).

Операции такого вида относятся к общему классу операций над соседними элементами . Эти операции являются основным инструментарием принизкоуровневой обработке изображений илиобработке изображений в пространственной области .

Основным подходом при определении окрестности точки (x , y ) является использование квадратной или прямоугольной области части изображения с центром в точке (x , y ). Центр этой части изображения перемещается от пикселя к пикселю начиная, например, с левого верхнего угла. При этом для получения g (x , y ) оператор применяется для каждого положения (x , y ). Хотя используются иногда и другие формы окрестности (например, круг), квадратные формы более предпочтительны из-за простоты их реализации.

Один из наиболее применяемых методов пространственной области основан на использовании фильтров (масок свертки, шаблонов, окон). Обычно маска фильтра представляет собой небольшую (например, размерность 3*3) двумерную систему, коэффициенты которой выбираются таким образом, чтобы обнаружить заданное свойство изображения (рис. 1.5, а).

Рис. 1.5: а – маска фильтра; б – коэффициенты маски фильтра

Если величины w 1 ,w 2 ,…,w 9 представляют собой коэффициенты, маски пикселя (x , y ) и его восьми соседей (рис.1.5, б), то алгоритм можно представить как выполнение следующей операции на окрестности 3*3 точки (x , y ) :

Под задачей фильтрации изображений в широком смысле понимают любые процедуры обработки изображений, при которых на вход процедуры подается растровое изображение и на выходе формируется растровое изображение. Однако чаще под «фильтрацией» понимают так называемую помеховую фильтрацию . Главная цель помеховой фильтрации заключается в такой обработке изображений, при которой результат оказывается более подходящим с точки зрения конкретного применения. В общем случае можно выделить линейные фильтры (сглаживающие фильтры, контрастоповышающие фильтры, разностные фильтры) и нелинейные фильтры (медианный фильтр).

Приведем краткое описание наиболее распространенных методов фильтрации.

Низкочастотный фильтр – ослабляет высокочастотные компоненты и усиливает роль низкочастотных. Частота в применении к изображениям отражает количество имеющихся в изображении деталей. Резкие перепады яркости, помехи и шумы являются примером высокочастотных элементов в изображении. Сглаживание изображения реализуется с помощью следующих ядер:

,

,

.

Высокочастотный фильтр – ослабляет низкочастотные компоненты в изображении и усиливает роль высокочастотных. Фильтры высокой частоты применяются для выделения таких деталей, как контуры, границы или для повышения резкости изображения. Каждый скачок яркости и каждый контур представляют собой интенсивные детали, связанные с повышенными частотами. Выделение высокочастотных компонент осуществляется с помощью следующих ядер:

,

,

.

Оператор Робертса. Оператор Робертса является примером нелинейного фильтра. Преобразование каждого пикселя перекрёстным оператором Робертса может показать производную изображения вдоль ненулевой диагонали, и комбинация этих преобразованных изображений может также рассматриваться как градиент от двух верхних пикселов к двум нижним. Оператор Робертса используется ради быстроты вычислений, но проигрывает в сравнении с альтернативами из-за значительной проблемы чувствительности к шуму. Он даёт линии тоньше, чем другие методы выделения границ.

В обработке участвуют четыре пикселя, расположенные следующим образом (рис. 1.6).

Рис. 1.6. Пиксели, участвующие в обработке оператором Робертса

Отклик оператора Робертса:

Ядра свертки в данном случае будут выглядеть таким образом:

,

.

Свертка для каждого ядра вычисляется отдельно. В качестве отклика данного фильтра выступает величина

, (1.17)

где P и Q – отклик ядер H 1 и H 2 .

Иногда в качестве оператора Робертса берется величина
.

Оператор Собеля. Оператор Собеля применяют в алгоритмах выделения границ. Это дискретный дифференциальный оператор, вычисляющий приближенное значение градиента яркости изображения. Результатом применения оператора Собеля в каждой точке изображения является либо вектор градиента яркости в этой точке, либо его норма. Метод усиления края с помощью оператора Собеля рассматривает два различных ядра свертки:

Исходя из этих сверток вычисляется величина и направление краев. Свертка для каждого ядра вычисляется отдельно. В качестве отклика данного фильтра выступает величина

, (1.19)

где P и Q – отклик ядер H 1 и H 2 .

Иногда в качестве оператора Собеля берется величина
.

Оператор Превитта. Аналогично оператору Собеля действует оператор Превитта. Детектор границ Превитта является подходящим способом для оценки величины и ориентации границы. В то время как детектор с дифференциальным градиентом нуждается в трудоёмком вычислении оценки ориентации по величинам в вертикальном и горизонтальном направлениях, детектор границ Превитта даёт направление прямо из ядра с максимальным результатом. Метод усиления края с помощью оператора Превитта рассматривает два различных ядра свертки:

Результат работы оператора Превитта есть

, (1.21)

где P и Q – отклик ядер H 1 и H 2 .

Оператор Лапласа. Дискретный оператор Лапласа часто используется в обработке изображений, например в задаче выделения границ или в приложениях оценки движения. Дискретный лапласиан определяется как сумма вторых производных и вычисляется как сумма перепадов на соседях центрального пикселя. Метод усиления края по Лапласу рассматривает целый ряд различных ядер свертки. Приведем некоторые их них:

Как видно, сумма элементов матриц равна нулю, поэтому отклик фильтра может быть отрицательным. В этом случае значение отклика берется по модулю. В результате обработки области с постоянной или линейно возрастающей интенсивностью становятся черными, а области быстро изменяющихся значений интенсивности ярко высвечиваются.

Ниже приведем некоторые пространственные процессы, которые не подпадают под категорию свертки и могут применяться для устранения различного вида шума.

Фильтр «гармоническое среднее» . Гармоническое среднее ряда
вычисляется по формуле

. (1.23)

В процессе фильтрации значение текущего пикселя изображения заменяется на
множества значений девяти пикселей, включая текущий и соседние.

Min – фильтр. В процессе фильтрации значение текущего пикселя заменяется на минимальное значение соседних пикселей. Так, например, для ядра размерности 3 будем иметь:

Max – фильтр. В процессе фильтрации значение текущего пикселя заменяется на максимальное значение соседних пикселей (по аналогии с предыдущим фильтром).

Min - Max –фильтр. В процессе фильтрации значение текущего пикселя изображения сначала заменяется на минимальное значение соседних пикселей, а при повторном проходе на максимальное.

Медианный фильтр. Усредненное фильтрование использует значения элементов, содержащихся в области примыкания, для определения нового значения. Фильтр располагает элементы области примыкания в отсортированном порядке и отбирает среднее значение. Так, например, для ядра размерности 3 медианное значение будет пятым:

С помощью методов пространственной обработки изображений можно получить ряд интересных эффектов. Приведем некоторые из них.

Эффект тиснения. С помощью операции свертки можно реализовать преобразование, дающее эффект тиснения на изображении.

(1.24)

Бинарное «псевдополутоновое» изображение. Исходное изображение обрабатывается при помощи маски D2 или D4: если значение пикселя меньше пропорционального значения соответствующего ему элемента маски, то он обнуляется, иначе ему присваивается 255. Маска накладывается на изображение без перекрытия. Маски D2 и D4:

,

.

При использовании пространственных процессов могут возникнуть следующие вопросы, связанные с особенностями обработки пикселей:

    Устранение краевых эффектов;

    Значение отклика выходит за пределы .

Для первого вопроса возможны следующие пути решения:

    Исключить из преобразования граничные пиксели изображения

в этом случае выходное изображение будет иметь меньшие размеры, либо закрасить граничные пиксели, например черным цветом;

    Не включать соответствующий пиксель в суммирование, равномерно распределив его вес среди других пикселей окрестности;

    Дополнить (достроить) исходное изображение, добавив необходимое количество пикселей по границе. Количество достраиваемых строки столбцов, как правило, зависит от размера ядра. Здесь возможны два варианта:

    • Доопределить значения пикселей за границами изображения при помощи экстраполяции. Например, считать постоянным значение интенсивности вблизи границы или считать постоянным градиент интенсивности вблизи границы;

      Доопределить значения пикселей за границами изображения при помощи зеркального отражения.

Для решения проблем, связанных с выходом значения за пределы , возможны следующие действия:

    Масштабировать полученные значения при положительных откликах фильтра;

    При отрицательном отклике фильтра брать либо абсолютное значение (по модулю), либо приводить к нулю.

Также в данном разделе стоит привести возможную «классификацию» шума на изображении:

    Шум «соль и перец» – случайные белые и черные пиксели;

    Импульсный шум – случайные белые пиксели;

    Гауссов шум – колебания интенсивности, распределенные по нормальному закону.

Под фильтрацией изображений понимают операцию, имеющую своим результатом изображение того же размера, полученное из исходного по некоторым правилам. Обычно интенсивность (цвет) каждого пикселя результирующего изображения обусловлен интенсивностями (цветами) пикселей, расположенных в некоторой его окрестности в исходном изображении.

Правила фильтрации могут быть самыми разнообразными. Фильтрация изображений является одной из самых фундаментальных операций компьютерного зрения, распознавания образов и обработки изображений. С той или иной фильтрации исходных изображений начинается работа подавляющего большинства методов обработки изображений.

Линейные фильтры имеют очень простое математическое описание. Будем считать, что задано исходное полутоновое изображение A, и обозначим интенсивности его пикселей A(x, y). Линейный фильтр определяется вещественнозначной функцией h (ядром фильтра), заданной на растре. Сама фильтрация производится при помощи операции дискретной свертки (взвешенного суммирования):

B(x, y) = h(i, j) ③③A(x, y) = h(i, j) A(x-i, y-j). (17.3.1)

Результатом служит изображение B. Обычно ядро фильтра отлично от нуля только в некоторой окрестности N точки (0, 0). За пределами этой окрестности h(i, j) равно нулю, или очень близко к нему и им можно пренебречь. Суммирование производится по (i, j)  N, и значение каждого пикселя B(x, y) определяется пикселями изображения A, которые лежат в окне N, центрированном в точке (x, y) (обозначение - множество N(x, y)). Ядро фильтра, заданное на прямоугольной окрестности N, может рассматриваться как матрица m на n, где длины сторон являются нечетными числами. При задании ядра матрицей ее следует центрировать. Если пиксель (x, y) находится в окрестности краев изображения, то координаты A(x-i, y-j) для определенных (i, j) могут соответствовать несуществующим пикселям A за пределами изображения. Данную проблему можно разрешить несколькими способами.

Не проводить фильтрацию для таких пикселей, обрезав изображение B по краям, или применив для их значений исходные значения изображения А.

Не включать отсутствующий пиксель в суммирование, распределив его вес h(i, j) равномерно среди других пикселей окрестности N(x, y).

Доопределить значения пикселей за границами изображения при помощи экстраполяции.

Доопределить значения пикселей за границами изображения, при помощи зеркального продолжения изображения.

Выбор способа производится с учетом конкретного фильтра и особенностей изображения.

Сглаживающие фильтры. Простейший прямоугольный сглаживающий фильтр радиуса r задается при помощи матрицы размера (2r+1) × (2r+1), все значения которой равны 1/(2r+1) 2 , а сумма значений равна единице. Это двумерный аналог низкочастотного одномерного П-образного фильтра скользящего среднего. При фильтрации с таким ядром значение пикселя заменяется усредненным значением пикселей в квадрате со стороной 2r+1 вокруг него. Пример маски фильтра 3× 3:

.

Одним из применений фильтров является шумоподавление. Шум меняется независимо от пикселя к пикселю и, при условии, что математическое ожидание значения шума равно нулю, шумы соседних пикселей при суммировании будут компенсировать друг друга. Чем больше окно фильтрации, тем меньше будет усредненная интенсивность шума, однако при этом будет происходить и соответствующее размытие значащих деталей изображения. Образом белой точки на черном фоне при фильтрации (реакция на единичный импульс) будет равномерно серый квадрат.

Шумоподавление при помощи прямоугольного фильтра имеет существенный недостаток: все пиксели в маске фильтра на любом расстоянии от обрабатываемого оказывают на результат одинаковый эффект. Несколько лучший результат получается при модификации фильтра с увеличением веса центральной точки:

.

Более эффективное шумоподавление можно осуществить, если влияние пикселей на результат будет уменьшаться с увеличением расстояния от обрабатываемого. Этим свойством обладает гауссовский фильтр с ядром: h(i, j) = (1/2 2) exp(-(i 2 +j 2)/2   Гауссовский фильтр имеет ненулевое ядро бесконечного размера. Однако значения ядра фильтра очень быстро убывает к нулю при удалении от точки (0, 0), и потому на практике можно ограничиться сверткой с окном небольшого размера вокруг (0, 0), например, взяв радиус окна равным 3σ.

Гауссовская фильтрация также является сглаживающей. Однако, в отличие от прямоугольного фильтра, образом точки при гауссовой фильтрации будет симметричное размытое пятно, с убыванием яркости от середины к краям. Степень размытия изображений определяются параметром σ.

Контрастоповышающие фильтры . Если сглаживающие фильтры снижают локальную контрастность изображения, размывая его, то контрастоповышающие фильтры производят обратный эффект и, по существу, являются фильтрами высоких пространственных частот. Ядро контрастоповышающего фильтра в точке (0, 0) имеет значение, большее 1, при общей сумме значений, равной 1. Например, контрастоповышающими фильтрами являются фильтры с ядром, задаваемым матрицами:

. .

Пример применения фильтра приведен на рис. 17.3.1. Эффект повышения контраста достигается за счет того, что фильтр подчеркивает разницу между интенсивностями соседних пикселей, удаляя эти интенсивности друг от друга. Этот эффект будет тем сильней, чем больше значение центрального члена ядра. Характерным артефактом линейной контрастоповышающей фильтрации являются заметные светлые и менее заметные темные ореолы вокруг границ.

Разностные фильтры – это линейные фильтры, задаваемые дискретными аппроксимациями дифференциальных операторов (по методу конечных разностей). Данные фильтры играют важнейшую роль во многих приложениях, например, для задач поиска границ на изображении.

Простейшим дифференциальным оператором является взятие производной по x-координате d/dx, который определен для непрерывных функций. Распространенными вариантами аналогичных операторов для дискретных изображений являются фильтры Прюита (Prewitt) и Собеля (Sobel):

. .

Фильтры, приближающие оператор производной по y-координате d/dy, получаются путем транспонирования матриц.

Простейший алгоритм вычисления нормы градиента по трем смежным точкам:

G(x, y) =
.

Применяется также упрощенная формула вычислений:

Вычисление нормы градиента по четырем смежным точкам (оператор Робертса):

В алгоритме Собеля используется восемь отсчетов яркости в окрестностях центральной точки:

G(x, y) =
, G(x, y) 
,

Gx x , y = [ A x -1, y -1 +2 A x -1, y + A x -1, y +1 ] - [ A x +1, y -1 +2 A x +1, y + A x +1, y +1 ],

Gy x,y = - .

Наряду с более точным определением нормы градиента алгоритм Собеля позволяет определять и направление вектора градиента в плоскости анализа изображения в видеугла  между вектором градиента и направлением строк матрицы:

(x, y) = argtg(Gy x,y /Gx x,y).

В отличие от сглаживающих и контрастоповышающих фильтров, не меняющих среднюю интенсивность изображения, в результате применения разностных операторов получается, как правило, изображение со средним значением пикселя близким к нулю. Вертикальным перепадам (границам) исходного изображения соответствуют пиксели с большими по модулю значениями на результирующем изображении. Поэтому разностные фильтры называют также фильтрами выделения границы объектов.

Аналогично вышеприведенным фильтрам, по методу конечных разностей можно составить фильтры для других дифференциальных операторов. В частности, важный для многих приложений дифференциальный оператор Лапласа (лапласиан) = 𝝏 2 /𝝏x 2 + 𝝏 2 /𝝏y 2 можно приблизить для дискретных изображений фильтром с матрицей (один из вариантов):

.

Как видно на рис. 17.3.2, в результате применения дискретного лапласиана большие по модулю значения соответствуют как вертикальным, так и горизонтальным перепадам яркости. Фильтр является, таким образом, фильтром, находящим границы любой ориентации. Нахождение границ на изображении может производиться путем применения этого фильтра и взятия всех пикселей, модуль значения которых превосходит некоторый порог.

Однако такой алгоритм имеет существенные недостатки. Главный из них - неопределенность в выборе величины порога. Для разных частей изображения приемлемый результат обычно получается при существенно разных пороговых значениях. Кроме того, разностные фильтры очень чувствительны к шумам изображения.

Двумерная циклическая свертка. Как и для одномерных сигналов, двумерная свертка может выполняться в области пространственных частот с использованием алгоритмов быстрого преобразования Фурье и перемножением двумерных спектров изображения и ядра фильтра. Она также является циклической, и выполняется обычно в скользящем варианте. С учетом цикличности, для вычисления постоянного шаблона спектра ядра размеры маски фильтра ядра удваиваются по осям и дополняются нулями, и эти же размеры маски используются для выделения скользящего по изображению окна, в пределах которого и выполняется БПФ. Реализация КИХ фильтра с помощью БПФ особенно эффективна, если фильтр имеет большую опорную область.

Нелинейные фильтры . В цифровой обработке изображений широко применяются нелинейные алгоритмы на основе ранговой статистики для восстановления изображений, поврежденных различными моделями шумов. Они позволяют избежать дополнительного искажения изображения при удалении шума, а также значительно улучшить результаты работы фильтров на изображениях с высокой степенью зашумленности.

Введем понятие M-окрестности элемента изображения A(x, y), который является для этой окрестности центральным. В простейшем случае M-окрестность содержит N-пикселей – точки, попадающие в маску фильтра, включая (или не включая) центральный. Значения этих N-элементов можно расположит в вариационном ряду V(r), ранжированном по возрастанию (или убыванию), и вычислить определенные моменты этого ряда, например, среднее значение яркости m N и дисперсии d N . Вычисление выходного значения фильтра, которым заменяется центральный отсчет, выполняется по формуле:

B(x, y) = А(x, y) + (1-)m N . (17.3.2)

Значение коэффициента  связывается определенной зависимостью со статистикой отсчетов в окне фильтра, например:

d N /(d N + k d S), (17.3.3)

где d S – дисперсия шумов по изображению в целом или по S-окрестности при S > M и MS, k - константа доверия дисперсии S-окрестностей. Как следует из этой формулы, при k=1 и d N  d S имеет место   0.5, а значение B(x, y) = (А(x, y) + m N)/2, т.е. складываются в равной степени от значений центрального отсчета и среднего значения пикселей его M-окрестности. При увеличении значений d N происходит увеличение вклада в результат значения центрального отсчета, при уменьшении – значения m N . Весомость вклада средних значений по M-окрестности можно изменять значением коэффициента k.

Выбор статистической функции и характер зависимости от нее коэффициента  может быть достаточно многообразным (например, по дисперсиям разностей отсчетов в М-окрестности с центральным отсчетом), и зависит как от размеров апертуры фильтра, так и от характера изображений и шумов. По существу, значение коэффициента  должно задавать степень поврежденности центрального отсчета и, соответственно, функцию заимствования для его исправления отсчетов из М-окрестности.

Наиболее простыми и распространенными типами нелинейных фильтров для обработки изображений являются пороговые и медианные фильтры.

Пороговая фильтрация задается, например, следующим образом:

B(x, y) =

Величина p является порогом фильтрации. Если величина центральной точки фильтра превышает среднее значение отсчетов m N в ее М-окрестности на величину порога, то она заменяется средним значением. Значение порога может быть как константой, так и функционально зависимым от величины центральной точки.

Медианная фильтрация определяется следующим образом:

B(x, y) = med {M(x, y)},

т.е. результат фильтрации есть медианное значение пикселей окрестности, форма которой определяется маской фильтра. Медианная фильтрация способна эффективно удалять из изображения помехи, независимо воздействующие на отдельные пиксели. Например, такими помехами являются "битые" пиксели при цифровой съемке, "снеговой" шум, когда часть пикселей заменяется на пиксели с максимальной интенсивностью, и т.п. Преимущество медианной фильтрации заключается в том, что "горячий" пиксель на темном фоне будет заменен темным, а не "размазан" по окрестности.

Медианная фильтрация обладает выраженной избирательностью по отношению к элементам массива, представляющим собой немонотонную составляющую последовательности чисел в пределах апертуры фильтра. В то же время монотонную составляющую последовательности медианный фильтр оставляет без изменений. Благодаря этой особенности, медианные фильтры при оптимально выбранной апертуре сохраняют без искажений резкие границы объектов, подавляя некоррелированные или слабо коррелированные помехи и малоразмерные детали.

Фильтры экстремумов определяются по правилам:

B min (x, y) = min {M(x, y)},

B max (x, y) = max {M(x, y)},

т.е. результат фильтрации есть минимальное и максимальное значения пикселей в маске фильтра. Применяются такие фильтры, как правило, для бинарных изображений.




Top