Что такое постоянное запоминающее устройство. Использование жестких дисков в качестве ПЗУ

Постоянные запоминающие устройства (ПЗУ) предназначены для постоянного, энергонезависимого хранения информации.

По способу записи ПЗУ классифицируют следующим образом:

  1. однократно программируемые маской на предприятии-изготовителе;
  2. однократно программируемые пользователем с помощью специальных устройств, называемых программаторами - ППЗУ ;
  3. перепрограммируемые, или репрограммируемые ПЗУ - РПЗУ .

Масочные ПЗУ

Программирование масочных ПЗУ происходит в процессе изготовления БИС. Обычно на кристалле полупроводника вначале создаются все запоминающие элементы (ЗЭ) , а затем на заключительных технологических операциях с помощью фотошаблона слоя коммутации реализуются связи между линиями адреса, данных и собственно запоминающим элементом. Этот шаблон (маска) выполняется в соответствии с пожеланиями заказчика по картам заказа. Перечень возможных вариантов карт заказов приводится в технических условиях на ИМС ПЗУ . Такие ПЗУ изготавливаются на основе матриц диодов, биполярных или МОП-транзисторов.

Масочные ПЗУ на основе диодной матрицы

Схема такого ПЗУ представлена на рис. 12.1 . Здесь горизонтальные линии – адресные, а вертикальные – это линии данных, с них в данном случае снимаются 8-разрядные двоичные числа. В данной схеме ЗЭ – это условное пересечение линии адреса и линии данных. Выбор всей строки ЗЭ производится при подаче логического нуля на линию адреса ЛА i c соответствующего выхода дешифратора. В выбранный ЗЭ записывается логический 0 при наличии диода на пересечении линии D i и ЛА i , т.к. в этом случае замыкается цепь: + 5 В, диод, земля на адресной линии. Так, в данном ПЗУ при подаче адреса 11 2 активный нулевой сигнал появляется на адресной линии ЛА 3 , на ней будет уровень логического 0, на шине данных D 7 D 0 появится информация 01100011 2 .

Масочные ПЗУ на основе матрицы МОП-транзисторов

Пример схемы данного ПЗУ представлен на рис. 12.2 . Запись информации осуществляется подключением или неподключением МОП-транзистора в соответствующих точках БИС. При выборе определенного адреса на соответствующей адресной линии ЛА i появляется активный сигнал логической 1, т.е. потенциал, близкий к потенциалу источника питания + 5 В. Данная логическая 1 подается на затворы всех транзисторов строки и открывает их. Если сток транзистора металлизирован, на соответствующей линии данных D i появляется потенциал порядка 0,2 0,3 В, т.е. уровень логического 0. Если же сток транзистора не металлизирован, указанная цепь не реализована, на сопротивлении R i не будет падения напряжения, т.е. в точке D i будет потенциал +5 В, т.е. уровень логической 1. Например, если в показанном на рис. 12.2 ПЗУ на адрес подать код 01 2 , на линии адреса ЛА 1 будет активный уровень 1, а на шине данных D 3 D 0 будет код 0010 2 .

Масочные ПЗУ на основе матрицы биполярных транзисторов

Пример схемы данного ПЗУ представлен на рис. 12.3 . Запись информации осуществляется также металлизацией или неметаллизацей участка между базой и адресной линией. Для выбора строки ЗЭ на линию адреса ЛА i подается логическая 1. При металлизации она подается на базу транзистора, он открывается вследствие разницы потенциалов между эмиттером (земля) и базой (примерно + 5 В). При этом замыкается цепь: + 5 В; сопротивление R i ; открытый транзистор, земля на эмиттере транзистора. В точке D i при этом будет потенциал, соответствующий падению напряжения на открытом транзисторе – порядка 0,4 В, т.е. логический 0. Таким образом, в ЗЭ записан ноль. Если участок между линией адреса и базой транзистора не металлизован, указанная электрическая цепь не реализована, падения напряжения на сопротивлении R i нет, поэтому на соответствующей линии данных D i будет потенциал +5 В, т.е. логическая 1. При подаче, например, адреса 00 2 в приведенном на рис. 12.3 ПЗУ на ШД появится код 10 2 .

Примеры масочных ПЗУ приведены на рис. 12.4 , а в табл. 12.1 – их параметры .

Таблица 12.1. Параметры масочных ПЗУ
Обозначение БИС Технология изготовления Информационная емкость, бит Время выборки, нс
505РЕ3 pМОП 512x8 1500
К555РE4 ТТЛШ 2Кx8 800
К568РЕ1 nМОП 2Кx8 120
К596РЕ1 ТТЛ 8Кx8 350

Программируемые ПЗУ

Программируемые ПЗУ (ППЗУ ) представляют собой такие же диодные или транзисторные матрицы, как и масочные ПЗУ, но с иным исполнением ЗЭ. Запоминающий элемент ППЗУ приведен на рис. 12.5 . Доступ к нему обеспечивается подачей логического 0 на линию адреса ЛА i . Запись в него производится в результате осаждения (расплавления) плавких вставок ПВ, включенных последовательно с диодами, эмиттерами биполярных транзисторов, стоками МОП-транзисторов. Плавкая вставка ПВ представляет собой небольшой участок металлизации, который разрушается (расплавляется) при программировании импульсами тока величиной 50 100 микроампер и длительностью порядка 2 миллисекунд. Если вставка сохранена, то в ЗЭ записан логический 0, поскольку реализована цепь между источником питания и землей на ЛА i через диод (в транзисторных матрицах – через открытый транзистор). Если вставка разрушена, то указанной цепинет и в ЗЭ записана логическая 1.

Постоянное запоминающее устройство (ПЗУ) – ЗУ, предназначенное для хранения неизменяемой информации (программ, констант, табличных функций). В процессе решения задач ПЗУ допускает только чтение информации. В качестве характерного примера применения ПЗУ можно указать БИС ПЗУ, используемые в РС для хранения BIOS (Basic Input Output System – базовой системы ввода-вывода).

В общем случае накопитель ПЗУ (массив его запоминающих ячеек) емкостью ЕПЗУ слов, длиною в r + 1 разрядов каждое, обычно представляет собой систему из ЕПЗУ горизонтальных (адресных) и r + 1 вертикальных (разрядных) проводников, которые в точках пересечения могут быть соединены элементами связи (рис. 1.46). Элементы связи (ЭС) – это плавкие вставки или p -n -переходы. Наличие элемента связи между j -м горизонтальным и i -м вертикальным проводниками означает, что в i -м разряде ячейки памяти номер j записана единица, отсутствие ЭС означает, что здесь записан нуль. Запись слова в ячейку номер j ПЗУ производится должной расстановкой элементов связи между разрядными проводниками и адресным проводом номер j . Чтение слова из ячейки номер j ПЗУ происходит так.

Рис. 1.46. Накопитель ПЗУ емкостью ЕПЗУ слов, длиною в r + 1 разрядов каждое

Код адреса A = j дешифрируется, и на горизонтальный проводник номер j накопителя подается напряжение от источника питания. Те из разрядных проводников, которые соединены с выбранным адресным проводником элементами связи, оказываются под напряжением U 1 уровня единицы, остальные разрядные проводники остаются под напряжением U 0 уровня нуля. Совокупность сигналов U 0 и U 1 на разрядных проводниках и образует содержимое ЯП номер j , а именно слово по адресу А .

В настоящее время ПЗУ строят из БИС ПЗУ, у которых используются полупроводниковые ЭС. БИС ПЗУ принято делить на три класса:

– масочные (МПЗУ);

– программируемые (ППЗУ);

– репрограммируемые (РПЗУ).

Масочные ПЗУ (ROM – от Read Only Memory) – ПЗУ, информация в которые записывается с фотошаблона в процессе выращивания кристалла. Например, БИС ПЗУ 555РЕ4 емкостью 2 кбайта представляет собою генератор символов по коду КОИ-8. Достоинством масочных ПЗУ является их высокая надежность, а недостатком – низкая технологичность.

Программируемые ПЗУ (PROM – Programmable ROM) – ПЗУ, информация в которые записывается пользователем при помощи специальных устройств – программаторов. Данные БИС изготавливаются с полным набором ЭС во всех точках пересечения адресных и разрядных проводников. Это повышает технологичность таких БИС, а значит, и массовость в производстве и применении. Запись (программирование) информации в ППЗУ производится пользователем по месту их применения. Делается это путем выжигания элементов связи в тех точках, в которых должны быть записаны нули. Укажем, например, на ТТЛШ-БИС ППЗУ 556РТ5 емкостью 0,5 кбайт. Надежность БИС ППЗУ ниже, чем у масочных БИС. Перед программированием их необходимо тестировать на наличие ЭС.

В МПЗУ и ППЗУ невозможно изменять содержимое их ЯП. Репрограммируемые ПЗУ (РПЗУ) допускают многократную смену хранимой в них информации. Фактически РПЗУ – это ОЗУ, у которых t ЗП>>t ЧТ. Замена содержимого РПЗУ начинается со стирания хранившейся в нем информации. Выпускаются РПЗУ с электрическим (EЕPROM) и ультрафиолетовым (UVEPROM) стиранием информации. Например, БИС РПЗУ с электрическим стиранием КМ1609РР2А емкостью 8 кбайт может перепрограммироваться не менее 104 раз, хранит информацию не менее 15000 ч (около двух лет) во включенном состоянии и не менее 10 лет – в выключенном. БИС РПЗУ с ультрафиолетовым стиранием К573РФ4А емкостью 8 кбайт допускает не менее 25 циклов перезаписи, хранит информацию во включенном состоянии не менее 25000 ч, а в выключенном – не менее 100000 ч.

Основное назначение РПЗУ – использование их вместо ПЗУ в системах разработки и отладки программного обеспечения, микропроцессорных системах и других, когда приходится время от времени вносить изменения в программы.

Работу ПЗУ можно рассматривать как однозначное преобразование N -разрядного кода адреса А в n -разрядный код считываемого из него слова, т.е. ПЗУ является преобразователем кода (цифровым автоматом без памяти).

На рис. 1.47 показано ус­ловное изображение ПЗУ на схемах.

Рис. 1.47. Условное изображении ПЗУ

Функциональная схе­ма ПЗУ приведена на рис. 1.48.

Рис. 1.48. Функциональная схема ПЗУ

По принятой в среде специалистов по запоми­нающим устройствам терминологии входной код называется адресом, 2n вертикальных шин – числовыми линейками, m выходов – разрядами храни-мого слова. При поступлении на вход ПЗУ любого двоичного кода всегда выбирается одна из числовых линеек. При этом на выходе тех элементов ИЛИ, связь которых с данной чис­ловой линейкой не разрушена, появляется 1. Это значит, что в данном разряде выбранного слова (или числовой ли­нейки) записана 1. На выходах тех разрядов, связь кото­рых с выбранной числовой линейкой выжжена, останутся нули. Закон программирования может быть и инверсным.

Таким образом, ПЗУ – это функциональный узел с n входами и m выходами, хранящий 2n m -разрядных слов, которые при работе цифрового устройства не изменяются. При подаче на вход ПЗУ адреса на выходе появляется со­ответствующее ему слово. При логическом проектировании постоянное ЗУ рассматривают или как память с фиксиро­ванным набором слов, или как кодовый преобразователь.

На схемах (см. рис. 1.47) ПЗУ обозначается как ROM. Постоян­ные запоминающие устройства обычно имеют вход разре­шения Е. При активном уровне на входе Е ПЗУ выполняет свои функции. При отсутствии разрешения выходы микро­схемы неактивны. Разрешающих входов может быть не­сколько, тогда микросхема отпирается по совпадению сиг­налов на этих входах. В ПЗУ сигнал Е часто называют чте­нием ЧТ (read), выбором микросхемы ВМ, выбором кристалла ВК (chip select – CS).

Микросхемы ПЗУ приспособлены для наращивания. Чтобы увеличить число разрядов хранимых слов, все входы микросхем включают параллельно (рис. 1.49, а ), а с увеличившегося суммарного числа выходов снимается выход­ное слово соответственно увеличенной разрядности.

Для уве­личения числа самих хранимых слов (рис. 1.49, б ) адресные входы микросхем включают параллельно и рассматривают как младшие разряды нового, расширенного адреса. Добав­ленные старшие разряды нового адреса поступают на де­кодер, который по входам Е выбирает одну из микросхем. При малом числе микросхем дешифрацию старших разря­дов можно делать на конъюнкции разрешающих входов са­мих ПЗУ. Выходы одноименных разрядов при увеличении числа хранимых слов должны объединяться с помощью функций ИЛИ. Специальных элементов ИЛИ не требуется, если выходы микросхем ПЗУ выполнены или по схеме от­крытого коллектора для объединения методом монтажного ИЛИ, или по схеме буфера с тремя состояниями, допуска­ющего непосредственное физическое объединение выходов.

Выходы микросхем ПЗУ обычно инверсные, инверсным часто бывает и вход Е. Наращивание ПЗУ может потребовать введения буферных усилителей для увеличе­ния нагрузочной способности некоторых источников сигна­лов, учета вносимых этими усилителями дополнительных задержек, но в общем при сравнительно небольших объемах памяти, что типично для многих ЦУ (например устройств автоматики), наращива­ние ПЗУ обычно не порождает принципиальных проблем.

Рис. 1.49. Увеличение числа разрядов хранимых слов при параллельном включении входов микросхем и увеличении числа хранимых слов при включении параллельно адресных входов микросхем

Данная статья расскажем вам о том, что такое ОЗУ и ПЗУ, а также из различия.

Навигация

Данная статья расскажет вам о том, что такое ОЗУ и ПЗУ на телефоне , а также способы, которые помогут очистить ОЗУ вашего смартфона на платформе Андроид.

В мире технологий сложилось так, что имеются два источника памяти, назначение которых одинаково, но принцип их работы совершенно разный. Поэтому при покупке планшета или телефона стоит понимать, что такое внутренняя память устройства и оперативное запоминающее устройство (ОЗУ).

Чем отличается ОЗУ от ПЗУ?

Главным различием между двумя видами памяти является лишь их назначение .

Оперативное запоминающее устройство (ОЗУ) – данное устройство предназначается для временного хранения памяти, которыми выступают запущенные фоновые процессоры, то есть программы, игры, браузер и т.д. Форматирование ОЗУ происходит тогда, когда вы выключаете ваш смартфон или планшет. Поэтому при покупке смартфона следует обращать большое внимание на объем памяти ОЗУ.

Постоянное запоминающее устройство (ПЗУ) – память, которая предназначена для хранения операционной системы вашего смартфона или планшета. Устройством памяти обычно выступает элемент триггер. Стоит отметить, что данная память является нестираемой. Ведь как известно, если произойдет отказ работы ПЗУ, то произойдет крах всей системы вашего устройства, по причине которого ваше устройство придется отдать на ремонт.

Что такое внутренняя память устройства?

Внутренней памятью устройства подразумевают встроенную карту памяти, которая чипована на плате вашего устройства. Она предназначается для того, чтобы на неё скачивались приложения, игры и прочие .apk файлы, но и не только это, вы также можете скачать на неё семейные фото и видеозаписи, а также музыкальные треки.

Что такое внешняя память устройства?

Внешней памятью устройства называют съемный отдел для карт памяти Micro SD, который находится обычно под батарейкой, либо же на ободке вашего телефона.

В свою очередь карты памяти позволяют расширить общую память телефона наряду с внутренней памятью вашего устройства. Благодаря большому объему памяти на вашем устройстве, вы получаете больше возможностей, к примеру можете скачать больше фильмов или музыкальных треков.

Но к выбору карты памяти Micro SD необходимо подходить бдительнее и не экономить деньги на неё. Ведь поймите одно, что если вы купите дешевую карту памяти, то безусловно сэкономите на ней, но когда вы потеряете фотографии с семейного альбома, то вы очень сильно пожалеете о том, что сэкономили каких-то денег.

Как очистить память ОЗУ на Андроид-устройстве?

Способов как почистить память оперативного запоминающего устройства, либо так называемого ОЗУ, довольно-таки много, и сейчас мы перечислим наиболее эффективные из них.

Использование внутреннего инструмента для чистки системы.

На сегодняшний день многие производители по умолчанию встраивают функцию чистки ОЗУ, для того, чтобы обеспечить пользователю максимальный комфорт и удобство. Ведь именно «встраиваемые утилиты» наиболее эффективные и их действие производится с помощью одного проведения пальцем по смартфону, после которого вы заметите, что телефон стал быстрее работать, так как были закрыты фоновые приложения и процессы.

Чистка ОЗУ через меню настройки

Данный способ позволяет более эффективнее очистить память ОЗУ.

Для этого просто необходимо зайти в «Меню» , а затем «Настройки» и выбрать там «Управление приложениями» , где необходимо перейти на вкладку «Работающие»

Снизу вы увидите память ОЗУ , а также на сколько она занята и освобождена. В данной вкладке приведены программы, которые в данный момент работают в фоновом процессе. Поэтому, если вы остановите их работу, то заметите, что память ОЗУ начнет освобождаться, и телефон станет работать шустрее.

Clean Master – оптимизация системы.

Данная программа довольно-таки популярная в Google Play, об этом повествует только то, что если вы введете слово «очистка» , то программа Clean Master будет стоять на первом месте. И кстати лидерство данная программа, заслуживает вполне справедливо, ведь она способна очистить не только ОЗУ, но и произвести форматирование операционной системы от шлака и ненужного мусора на вашем устройстве.

Эта программа позволяет также определить объем памяти ОЗУ на вашем устройстве. Очистку ОЗУ можно произвести с помощью нажатия кнопки «Ускорить»

Стоит отметить, что наиболее эффективным методом по чистке ОЗУ является программа Clean Master. Но если вы не имеете возможность выхода в интернет со смартфона, то вам вполне подойдут и встроенные утилиты для очистки памяти ОЗУ, либо же, если вы разбираетесь в назначении каждой из запущенных программ, то можете вручную почистить память ОЗУ, но будьте бдительны, что если вы по случайности закроете важную для работы смартфона программу, то вы можете ожидать некорректную работу платформы.

В конце данной статьи хотелось бы подчеркнуть, что очистка ОЗУ на смартфоне под управлением Android во многом играет роль того, как он будет себя вести, и каково будет его быстродействие.

Ведь для того, чтобы взаимодействие было оптимальным и достаточным для работы, память необходимо чистить после каждого использования смартфона.

Видео: Как освободить память ОЗУ на смартфоне?

Все постоянные запоминающие устройства (ПЗУ) можно разделить на следующие группы:

● программируемые при изготовлении (обозначают как ПЗУ или ROM);

● с однократным программированием, позволяющим пользователю однократно изменить состояние матрицы памяти электрическим путем по заданной программе (обозначают как ППЗУ или PROM);

● перепрограммируемые (репрограммируемые), с возможностью многократного электрического перепрограммирования, с электрическим или ультрафиолетовым стиранием информации (обозначают как РПЗУ или RPROM).

Для обеспечения возможности объединения по выходу при наращивании памяти все ПЗУ имеют выходы с тремя состояниями или открытые коллекторные выходы.

{xtypo_quote}В ППЗУ накопитель построен на запоминающих ячейках с плавкими перемычками, изготовленными из нихрома или других тугоплавких материалов. Процесс записи состоит в избирательном пережигании плавких перемычек. {/xtypo_quote}
В РПЗУ запоминающие ячейки строятся на основе МОП-технологий. Используются различные физические явления хранения заряда на границе между двумя различными диэлектрическими средами или проводящей и диэлектрической средой.

В первом случае диэлектрик под затвором МОП-транзистора делают из двух слоев: нитрида кремния и двуокиси кремния (SiN 4 — SiO 2). Было обнаружено, что в сложной структуре SiN 4 — SiO 2 при изменении электрического напряжения возникает гистерезис заряда на границе раздела двух слоев, что и позволяет создавать запоминающие ячейки.

Во втором случае основой запоминающей ячейки является лавинно-инжекционный МОП-транзистор с плавающим затвором (ЛИПЗ МОП). Упрощенная структура такого транзистора приведена на рис. 3.77.
В лавинно-инжекционном транзисторе с плавающим затвором при достаточно большом напряжении на стоке происходит обратимый лавинный пробой диэлектрика, и в область плавающего затвора инжектируются носители заряда. Поскольку плавающий затвор окружен диэлектриком, то ток утечки мал и хранение информации обеспечивается в течение длительного промежутка времени (десятки лет). При подаче напряжения на основной затвор происходит рассасывание заряда за счет туннельного эффекта, т.е. стирание информации.

Приведем некоторые характеристики ПЗУ (табл. 3.1).

Промышленность выпускает большое количество микросхем ПЗУ. Приведем в качестве примера две микросхемы ПЗУ (рис. 3.78).



На схемах использованы следующие обозначения: A i — адресные входы; D i — информационные выходы; CS — выбор микросхемы; СЕ — разрешение выхода.

Микросхема К573РФ5 — это репрограммируемое ПЗУ (РПЗУ) с ультрафиолетовым стиранием, имеющее структуру 2Кх8. По входу и выходу эта микросхема совместима с ТТЛ-структурами. Микросхема К556РТ5 — это однократно программируемая ПЗУ, выполнена на основе ТТЛШ-структур, по входу и выходу совместима с ТТЛ-структурами, имеющая структуру 512бит х8.

Типы ПЗУ

ПЗУ – расшифровывается как постоянное запоминающее устройство, обеспечивающее энергонезависимое хранение информации на каком-либо физическом носителе. По способу хранения информации ПЗУ можно разделить на три типа:

1. ПЗУ, основанные на магнитном принципе хранения информации.

Принцип работы этих устройств основан на изменении направления вектора намагниченности участков ферромагнетика под воздействием переменного магнитного поля в соответствии со значениями битов записываемой информации.

Ферромагнетик – вещество, способное при температуре ниже определенного порога (точки Кюри) обладать намагниченностью при отсутствии внешнего магнитного поля.

Считывание записываемых данных в таких устройствах основано на эффекте электромагнитной индукции или магниторезистивного эффекта. Этот принцип реализуется в устройствах с подвижным носителем в виде диска или ленты.

Электромагнитной индукцией называется эффект возникновения электрического тока в замкнутом контуре при изменении магнитного потока проходящего через него.

Магниторезистивный эффект основан на изменении электрического сопротивления твердотельного проводника под действием внешнего магнитного поля.

Основное преимущество данного типа – большой объем хранимой информации и низкая стоимость единицы хранимой информации. Основной недостаток – наличие подвижных частей, большие габариты, низкая надежность и чувствительность к внешним воздействиям (вибрация, удары, перемещения и т.д.)

2. ПЗУ, основанные на оптическом принципе хранения информации.

Принцип работы этих устройств основан на изменении оптических свойств участка носителя, например, за счет изменения степени прозрачности или коэффициента отражения. Примером ПЗУ, основанном на оптическом принципе хранения информации, могут служит CD -, DVD-, BluRay - диски.

Основное достоинство данного типа ПЗУ – низкая стоимость носителя, удобство транспортирования и возможность тиражирования. Недостатки – низкая скорость чтения/записи, ограниченное количество перезаписей, потребность в считывающем устройстве.

3. ПЗУ, основанные на электрическом принципе хранения информации.

Принцип работы этих устройств основан на пороговых эффектах в полупроводниковых структурах – возможности хранения и регистрации наличия заряда в изолированной области.

Этот принцип используется в твердотельной памяти – памяти, не требующей использование подвижных частей для чтения/записи данных. Примером ПЗУ, основанном на электрическом принципе хранения информации, может служить flash – память.

Основное достоинство данного типа ПЗУ – высокая скорость чтения/записи, компактность, надежность, экономичность. Недостатки – ограниченное число перезаписи.

На данный момент существуют или находятся на этапе разработки и другие, «экзотические» типы постоянной памяти, такие как:

Магнитно-оптическая память – память, сочетающая свойства оптических и магнитных накопителей. Запись на такой диск осуществляется путем нагрева ячейки лазером до температуры около 200 о С. Разогретая ячейка теряет магнитный заряд. Далее ячейку можно остудить, что будет означать, что в ячейку записан логический ноль, либо зарядить заново магнитной головкой, что будет означать, что в ячейку записана логическая единица.

После охлаждения магнитный заряд ячейки изменить нельзя. Считывание производится лазерным лучом меньшей интенсивности. Если в ячейки содержится магнитный заряд, то лазерный луч поляризуется, а считывающее устройство определяет, является ли лазерный луч поляризованным. За счет «закрепления» магнитного заряда при охлаждении магнитно-оптические обладают высокой надежностью хранения информации и теоретически могут иметь плотность записи большую, чем ПЗУ основанное только на магнитном принципе хранения информации. Однако заменить «жесткие» диски они не могут из-за очень низкой скорости записи, обусловленную необходимостью высокого нагрева ячеек.

Широкого распространения магнитно-оптическая память не получила и используется очень редко.

Молекулярная память – память, основанная на технологии атомной туннельной микроскопии, позволяющей изымать или добавлять в молекулы отдельные атомы, наличие которых затем может считываться специальными чувствительными головками. Данная технология была представлена в середине 1999 года компанией Nanochip, и теоретически позволяла достичь плотности упаковки около 40 Гбит/см 2 , что в десятки раз превосходит существующие серийные образцы «Жестких» дисков, однако слишком низкая скорость записи и надёжность технологии не позволяет говорить о практическом использовании молекулярной памяти в обозримом будущем.

Голографическая память – отличается от существующих наиболее распространенных типов постоянной памяти, использующих для записи один или два поверхностных слоя, возможностью записывать данных по «всему» объему памяти с помощью различных углов наклона лазера. Наиболее вероятно применение такого типа памяти в ПЗУ на базе оптического хранения информации, где уже не в новинку оптические диски с несколькими информационными слоями.

Существуют и другие, совсем уж экзотические типы постоянной памяти, но они даже в лабораторных условиях балансируют на грани научной фантастики, поэтому упоминать о них не буду, поживем – увидим.





Top