Arduino программы. Установка и настройка Arduino IDE под Windows. Где можно скачать Arduino IDE

Для написания (редактирования) и загрузки (прошивки) программ (скетчей) в Arduino необходимо установить программу для программирования, как Arduino IDE, или воспользоваться on-line Web-редактором. Скачать (загрузить) программу Arduino IDE последней версии, или воспользоваться web-редактором можно из раздела Software сайта arduino.cc .

Скачивание (загрузка) Arduino IDE с официального сайта:

Зайдите на официальный сайт Arduino и выберите, из предложенного списка, операционную систему на которой работает Ваш компьютер. В данной статье мы рассмотрим установку Arduino IDE на операционную систему Windows. Выбрав первую строку «Windows Installer » Вы установите Arduino IDE (как устанавливаете любые другие программы), а выбрав вторую строку «Windows ZIP file for non admin install » Вы скачаете ZIP-архив с папкой программы, которую сможете запускать без установки (даже если у Вас нет прав администратора Вашего компьютера).

Вне зависимости от того, какую операционную систему Вы выберите, Вам будет предложено поблагодарить разработчиков, именно предложено, тут дело Ваше.


Если Вы просто хотите скачать программу, то нажмите на кнопку «JUST DOWNLOAD», если хотите скачать программу и поблагодарить разработчиков, способствуя дальнейшему развитию ПО, то нажмите на кнопку «CONTRIBUTE & DOWNLOAD».

Дождитесь завершения загрузки файла

После завершения загрузки, файл должен находиться в папке: « Этот компьютер > Загрузки » (если Вы не указали иное место для сохранения файла).

Запустите установочный файл

из папки: « Этот компьютер > Загрузки » (у Вас вместо символов X.X.X в названии файла будут цифры версии Arduino IDE).






  • 1 сообщение: ознакомляет Вас с лицензионным соглашением, нажмите на кнопку «I Agree», появится 2 сообщение.
  • 2 сообщение: предлагает Вам выбрать компоненты инсталляции, нажмите на кнопку «Next», появится 3 сообщение.
  • 3 сообщение: предлагает Вам выбрать путь для установки Arduino IDE, нажмите на кнопку «Install», появится 4 сообщение.
  • 4 сообщение: информирует Вас о ходе выполнения установки Arduino IDE, по окончании которой появится 5 сообщение.
  • 5 сообщение: информирует Вас об окончании установки Arduino IDE, нажмите на кнопку «Close».

В процессе установки, над окном 4 сообщения, могут появляться окна Windows запрашивающие у Вас разрешение на установку драйверов:


Разрешайте установку драйверов нажимая на кнопку «Установить», эти драйверы позволят определять и работать с платами Arduino подключёнными по шине USB.

На этом установка Arduino IDE завершена .

На Вашем рабочем столе должна появиться иконка программы:

Запуск Arduino IDE:

При первом запуске программы может появиться сообщение Брандмауэра Windows о блокировке доступа для некоторых сетевых функций Java Arduino IDE:


Разрешите доступ нажав на кнопку «Разрешить доступ». После чего, данное окно появляться не будет.

Откроется окно программы Arduino IDE:


На следующем рисунке указано назначение областей и функциональных кнопок программы:


Теперь можно написать скетч (код) и загрузить (залить/прошить) его в Arduino. Но перед этим, надо подключить плату Arduino к компьютеру и указать программе Arduino IDE, какую именно плату Arduino Вы подключили, и к какому порту...

Подключение платы Arduino:

После того как Вы подключите плату Arduino через USB порт к компьютеру, программе Arduino IDE нужно указать, какую именно плату Arduino Вы подключили. Для этого выберите нужную плату из списка в разделе меню « Инструменты > Плата > Название Вашей платы


Теперь нужно выбрать Com-порт к которому подключена Ваша плата Arduino. Для этого выберите нужный Com-порт из списка доступных Com-портов в разделе меню « Инструменты > Порт > Номер доступного порта », как это показано на следующем рисунке:


Если USB контроллер Вашей платы Arduino реализован на чипе FTDI или ему аналогичных, то в списке доступных Com-портов Вы не увидите название платы Arduino в скобках напротив Com-порта. В нашем случае Вы бы увидели просто «COM1» и «COM7», тогда возникает вопрос, а к какому из этих портов подключена плата Arduino?

Решается данный вопрос очень просто. Отключите плату Arduino от компьютера и откройте меню « Инструменты > Порт ». В списке Com-портов Вы увидите только доступные Com-порты, то есть в нашем случае только «COM1». Теперь подключите плату Arduino к компьютеру и опять откройте меню « Инструменты > Порт ». Теперь Вы увидите что список Com-портов увеличился на один (в нашем случае к «COM1» добавился «COM7»), именно к появившемуся Com-порту и подключена Ваша плата Arduino.

Если при подключении платы Arduino Вы не увидели появление нового Com-порта, значит USB контроллер Вашей платы Arduino реализован на чипах сторонних производителей и для него требуется установить дополнительный драйвер. Как, например, драйвер для чипа CH340G .

Загрузка скетча из программы Arduino IDE в плату Arduino:

После того, как Вы указали тип платы Arduino, выбрали Com-порт и написали свой скетч (код программы), скетч можно загрузить (залить/прошить) в контроллер платы Arduino. Для этого выберите пункт меню « » или нажмите на кнопку в виде круга со стрелкой:


Если Вы написали скетч в новом окне и не сохраняли его в файл, то перед его загрузкой в плату Arduino, программ Arduino IDE предложит Вам его сохранить. Введите название, под которым Вы желаете сохранить скетч в файл и нажмите на кнопку «Сохранить».


Во время загрузки Вы увидите строку состояния которая будет отображать ход выполнения компиляции и загрузки скетча. Если в скетче нет ошибок и он успешно загружен, то в области уведомлений появится информация о количестве использованной и доступной памяти Arduino, а над областью уведомлений появится надпись «Загрузка завершена.».


Небольшой скетч приведённый выше (на картинке) заставит мигать светодиод на плате Arduino. Многие скетчи упрощаются и сокращаются при использовании библиотек. О том что такое библиотеки и как их устанавливать, Вы можете узнать в разделе .

Все, кто начинает изучать Arduino, знакомы со средой разработки Arduino IDE. Оно позволяет писать скетчи, проверять корректность и загружать их в Ардуино. Но единственная ли это среда для разработки программ для Arduino? Вовсе нет! Давайте посмотрим, какие ещё есть варианты.

В данной статье мы рассмотрим 4 самые популярные среды разработки:

1 Среда разработки Arduino IDE

Конечно же, эта среда разработки знакома каждому, кто хоть раз программировал для Arduino.

В ней имеется весь необходимый минимум для разработки программ: написание кода, проверка кода, компиляция, загрузка скетча в Ардуино, монитор последовательного порта. Все, кто работал в серьёзных «взрослых» средах разработки типа JetBrains IDEA, Microsoft Visual Studio или Quartus, наверняка отметят, что среда Arduino IDE довольно аскетична: ничего лишнего, и особых удобств она не предлагает.

2 Среда разработки Programino

Рассмотрим среду разработки PROGRAMINO . Это платная среда разработки, но её можно опробовать в течение 14-ти дней бесплатно. Programino, как и другие среды разработки, требует, однако, чтобы у вас была установлена Arduino IDE. При первом запуске программы следует в настройках указать путь к исполняемому файлу arduino.exe. Для этого идём в меню настройки: Options Editor Settings . Появится окно, в котором нужно будет указать пути к директории с Arduino IDE и сопутствующими библиотеками. Теперь мы готовы писать программы в Programino.

Язык, который используется в данной среде разработки - такой же, как и в оригинальной Arduino IDE - Си. То есть, по сути, если вы уже пишете скетчи в Arduino IDE, то вам не придётся изучать новый язык программирования, что является большим плюсом данной среды разработки.

Однако помимо этого, данная IDE предлагает такой удобный способ быстрой разработки как автодополнение кода. То есть, вам не придётся постоянно лазить в справочник по командам и методам Arduino. Вы начинаете набирать код, и среда разработки предложит вам выбрать из доступных вариантов тот, который вам нужен. Например, вы набираете "digi" и IDE предлагает вам варианты: "digitalRead", "digitalWrite" и другие возможные.


Давайте напишем простой скетч, в котором будем постоянно опрашивать один из аналоговых выводов Arduino и выводить считанные показания в последовательный порт.

Постарайтесь набирать скетч вручную, а не копировать и вставлять, чтобы прочувствовать удобство автодополнения кода Programino.

Const int pinA = A5; void setup() { pinMode(pinA, INPUT); Serial.begin(19200); } void loop() { int r = analogRead(pinA); Serial.println(r); delay(100); }

Что ещё интересного предлагает Programino IDE? В данной среде разработки имеются несколько дополнительных полезных инструментов, доступных через меню Tools . Например: блокнот, дизайнер LCD символов, преобразователь между DEC-BIN-HEX, терминал последовательного порта, аналоговый плоттер и другие.


Остановимся подробнее на инструменте Analog Plotter . Это средство позволяет визуализировать вам то, что приходит в COM-порт от Arduino.

Для работы плоттера в скетче нужно активизировать последовательный порт на скорости 19200 кб/сек. Аналоговые данные выводятся на плоттер с помощью команды Serial.println() .

Запустим аналоговый плоттер. Нажмём кнопку Connect для подключения к порту, к которому у нас подключён Arduino.


Этот инструмент может быть полезным, например, для отображения показаний во времени каких-нибудь аналоговых датчиков: температуры, влажности, давления, освещённости и других.

Перед записью скетча в память Arduino, следует указать тип используемой платы и порт, к которому она подключена через меню Hardware .



Для загрузки скетча в память Arduino нажмите в верхнем меню иконку с изображением загрузки. Programino загрузит скетч и в нижнем окне журнала покажет данные о размере скетча и оставшихся свободных ресурсах платы Ардуино.

3 Среда разработки B4R (Basic for Arduino)

Ещё одна интересная альтернатива Arduino IDE - B4R, или "Basic for Arduino" . Эта среда разработки уникальна тем, что использует язык Basic, а не Си. Она также поддерживает функцию автодополнения кода. Кроме того, она полностью бесплатна.

При первом запуске среда B4R также требует указать путь к директории с Arduino IDE и, при необходимости, дополнительным нестандартным библиотекам и общим модулям. Эти настройки можно задать и позже через меню Tools Configure Paths .


А также выбрать плату: Tools Board Selector :

Давайте напишем вот такой скетч и заодно немного ближе познакомимся со средой разработки.


В центральной части находится поле для редактирования кода. В правой - область вкладок и сами вкладки: доступных библиотек, модулей скетча, журнала и поиска. На приведённый фотографии открыта вкладка с журналом. Видно, что сюда выводятся сообщения, которые в программе задаются командой Log() . В данной среде разработки можно ставить точки останова, что весьма полезно в процессе отладки, а также использовать закладки для более быстрой навигации по коду.

Вы не сможете сразу начать программировать в этой среде разработки, т.к. она использует другой, более объектно-ориентированный язык, чем классическая Arduino IDE, с другим синтаксисом. Тем не менее, удобство этой среды и наличие хорошего руководства от разработчиков полностью окупает эти недостатки.

4 Среда разработки Codeblocks for Arduino

Существуют и другие среды разработки для Arduino кроме перечисленных. Например, CodeBlocks . Основное её отличие от описанных IDE - возможность писать код для микроконтроллеров и некоторых других платформ, не только для Arduino. Более подробно описывать её не буду, проще почитать информацию на официальном сайте и файлы справки.


Теперь мы знаем, что существуют альтернативные, гораздо более удобные, среды разработки, чем классическая Arduino IDE. Их использование может существенно упростить и ускорить написание ваших собственных скетчей.

Рассмотрим начало работы с Arduino в операционной системе Windows на примере Arduino Uno . Для других плат разница минимальна - эти особенности перечислены на страницах описания конкретных плат.

1. Установка Arduino IDE

Шаг 1

Выберите версию среды в зависимости от операционной системы.

Шаг 2

Нажмите на кнопку «JUST DOWNLOAD» для бесплатной загрузки Arduino IDE.

2. Запуск Arduino IDE

Запустите среду программирования Arduino IDE.

Arduino IDE не запускается?

Вероятней всего, на компьютере некорректно установлена JRE - Java Runtime Environment. Для решения проблемы

3. Подключение платы к компьютеру

Операционная система распознала плату Arduino как COM-порт и назначила номер 2 . Если вы подключите к компьютеру другую плату Arduino, операционная система назначит ей другой номер. Если у вас несколько плат Arduino, очень важно не запутаться в номерах COM-портов.

Что-то пошло не так?

После подключения Arduino к компьютеру, в диспетчере устройств не появляются новые устройства? Это может быть следствием следующих причин:

    Неисправный USB-кабель или порт

    Блокировка со стороны операционной системы

    Неисправная плата Arduino

4. Настройка Arduino IDE

Для настойки среды Arduino IDE с конкретной платформой Arduino - необходимо выбрать название модели Arduino и номер присвоенного плате COM-порта.


В рассмотренном примере мы выбрали плату Arduino Uno. В вашем случае выбирайте конкретно вашу модель Arduino.

Поздравляем, среда Arduino IDE настроена для прошивки платы Arduino.

Что-то пошло не так?

Среда настроена, плата подключена. Пора прошивать платформу.

Arduino IDE содержит большой список готовых примеров в которых можно быстро подсмотреть решение какой-либо задачи. Выберем самый распространенный пример - «Blink».

Немного модифицируем код, чтобы увидеть разницу с заводским миганием светодиода.

Заменим строчку:

Delay(1000 ) ;

Delay(100 ) ;

Полная версия кода:

void setup() { // настраиваем пин 13 в режим выхода pinMode(13 , OUTPUT) ; } void loop() { // подаём на пин 13 «высокий сигнал» digitalWrite(13 , HIGH) ; // ждём 100 миллисекунд delay(100 ) ; // подаём на пин 13 «низкий сигнал» digitalWrite(13 , LOW) ; // ждём 100 миллисекунд delay(100 ) ; }

Теперь светодиод «L» должен загораться и гаснуть каждые 100 миллисекунд - в 10 раз быстрее исходной версии. Загрузите скетч в Arduino и проверьте.
После загрузки светодиод начнёт мигать быстрее. Всё получилось.

Что-то пошло не так?

В результате загрузки появляется ошибка вида: avrdude: stk500_get sync(): not in sync: resp = 0x00 ? Значит Arduino настроена некорректно. Вернитесь к предыдущим пунктам и убедитесь в том, что устройство было корректно распознано операционной системой, а в Arduino IDE установлены правильные настройки COM-порта и модели платы.

Arduino - аппаратная вычислительная платформа для компьютера, основными компонентами которой являются простая плата ввода-вывода и среда разработки на языке Processing/Wiring. Arduino может использоваться как для создания автономных интерактивных объектов, так и подключаться к программному обеспечению, выполняемому на компьютере (например, Adobe Flash, Processing, Max, ).

Интегрированная среда разработки Arduino - это кроссплатформенное приложение на Java, включающее в себя редактор кода, компилятор и модуль передачи прошивки в плату.

Среда разработки основана на языке программирования Processing и спроектирована для программирования новичками, не знакомыми близко с разработкой программного обеспечения. Язык программирования аналогичен используемому в проекте Wiring. Строго говоря, это C++, дополненный некоторыми библиотеками. Программы обрабатываются с помощью препроцессора, а затем компилируется с помощью AVR-GCC.

Плата Arduino состоит из микроконтроллера Atmel AVR (ATmega328P и ATmega168 в новых версиях и ATmega8 в старых), а также элементов обвязки для программирования и интеграции с другими схемами. На многих платах присутствует линейный стабилизатор напряжения +5В или +3,3В. Тактирование осуществляется на частоте 16 или 8 МГц кварцевым резонатором (в некоторых версиях керамическим резонатором). В микроконтроллер предварительно прошивается загрузчик BootLoader, поэтому внешний программатор не нужен.

На концептуальном уровне все платы программируются через RS-232 (последовательное соединение), но реализация этого способа отличается от версии к версии. Плата Serial Arduino содержит простую инвертирующую схему для конвертирования уровней сигналов RS-232 в уровни ТТЛ, и наоборот. Текущие рассылаемые платы, например, Diecimila, программируются через USB, что осуществляется благодаря микросхеме конвертера USB-to-Serial FTDI FT232R. В версии платформы Arduino Uno в качестве конвертера используется микроконтроллер Atmega8 в SMD-корпусе. Данное решение позволяет программировать конвертер так, чтобы платформа сразу определялась как мышь, джойстик или иное устройство по усмотрению разработчика со всеми необходимыми дополнительными сигналами управления. В некоторых вариантах, таких как Arduino Mini или неофициальной Boarduino, для программирования требуется подключение отдельной платы USB-to-Serial или кабеля.

Платы Arduino позволяют использовать большую часть I/O выводов микроконтроллера во внешних схемах. Например, в плате Diecimila доступно 14 цифровых входов/выходов, 6 из которых могут выдавать ШИМ сигнал, и 6 аналоговых входов. Эти сигналы доступны на плате через контактные площадки или штыревые разъёмы. Также доступны несколько видов внешних плат расширения, называемых «англ. shields» (дословно: «щиты»), которые присоединяются к плате Arduino через штыревые разъёмы.

Версии плат Arduino

Оригинальные платы Arduino производит Smart Projects.

На данный момент доступны 15 версий плат, перечисленных ниже.

  • Serial Arduino, программируется через последовательное соединение (разъём DB-9), используется ATmega8.
  • Arduino Extreme, с USB-интерфейсом для программирования, используется ATmega8.
  • Arduino Mini, миниатюрная версия Arduino, использующая поверхностный монтаж ATmega328.

Не содержит конвертера USB-UART.

  • Arduino Nano 3.0, ещё миниатюрнее, с питанием от USB и поверхностным монтажом ATmega328.
  • LilyPad Arduino, минималистичный дизайн для носимых применений с поверхностным монтажом ATmega168 (в новых версиях ATmega328).
  • Arduino NG, с USB-интерфейсом для программирования, используется ATmega8.
  • Arduino NG plus, с USB-интерфейсом для программирования, используется ATmega168.
  • Arduino BT, с Bluetooth-интерфейсом для программирования, используется ATmega168 (в новых версиях ATmega328).
  • Arduino Diecimila, использует USB-интерфейс и Atmega168 в DIP28 корпусе.
  • Arduino Duemilanove («2009»), на основе ATmega168 (в новых версиях ATmega328), с автоматическим выбором питания от USB или внешнего источника.
  • Arduino Mega («2009»), на основе ATmega1280.
  • Arduino Mega2560 R3 («2011»), на основе ATmega2560.
  • Arduino Uno R3 (2011), на основе ATmega328.

Используется конвертер USB-UART на базе ATmega16U2.

  • Arduino Ethernet (2011), на основе ATmega328.

Конвертера USB-UART нет. Ethernet чип - W5100, также содержит модуль MicroSD.

  • Arduino Mega ADK for Android (2011), на основе ATmega2560.

Содержит USB-хост для соединения с телефонами на базе операционной системы Android (м/с MAX3421e). Конвертер USB-UART на базе ATmega8U2.

Ардуино и Ардуино-совместимые платы спроектированы таким образом, чтобы их можно было при необходимости расширять, добавляя в схему устройства новые компоненты. Эти платы расширений подключаются к Ардуино посредством установленных на них штыревых разъёмов.

Существует множество различных по функциональности плат расширения - от простейших, предназначенных для макетирования (прототипирования), до сложных - плат управления шаговыми двигателями, плат беспроводного доступа по протоколам Bluetooth, ZigBee, Wi-Fi, GSM и т. д..

Примеры плат расширения:

Arduino Ethernet Shield
XBee Shield
TouchShield
Datalog Shield
USB Host Shield

Рассылаемые в настоящее время версии могут быть заказаны уже распаянными. Информация об устройстве платы (рисунок печатной платы) находится в открытом доступе и может быть использована теми, кто предпочитает собирать платы самостоятельно. Микроконтроллеры ATmega328 дёшевы и стоят около $3.

Документация, прошивки и чертежи Arduino распространяется под лицензией Creative Commons Attribution ShareAlike 2.5 и доступны на официальном сайте Arduino. Рисунок печатной платы для некоторых версий Arduino также доступен. Исходный код для интегрированной среды разработки и библиотек опубликован и доступен под лицензией GNU General Public License version 2.

Существует перевод документации по Arduino на русский язык.

Награды Arduino

Проект Arduino был удостоен почётного упоминания при вручении призов Prix Ars Electronica 2006 в категории Digital Communities.

Этот симулятор лучше всего работает в браузере Chrome
Давайте рассмотрим Arduino по внимательней.

Arduino это не большой компьютер, к которому могут подключаться внешние цепи. В Arduino Uno используется Atmega 328P
Это самый большой чип на плате. Этот чип выполняет программы, которые хранятся в его памяти. Вы можете загрузить программу через usb с помощью Arduino IDE. Usb порт также обеспечивает питание arduino.

Есть отдельный разъём питания. На плате есть два вывода обозначенные 5v и 3.3v, которые нужны для того, чтобы запитывать различные устройства. Так же вы найдете контакты, помеченные как GND, это выводы земли (земля это 0В). Платформа Arduino, так же, имеет 14 цифровых выводов (пинов), помеченных цифрами от 0 до 13, которые подключаются к внешним узлам и имеют два состояния высокое или низкое (включено или выключено). Эти контакты могут работать как выходы или как входы, т.е. они могут либо передавать какие-то данные и управлять внешними устройствами, либо получать данные с устройств. Следующие выводы на плате обозначены А0-А5. Это аналоговые входы, которые могут принимать данные с различных датчиков. Это особенно удобно, когда вам надо измерить некий диапазон, например температуру. У аналоговых входов есть дополнительные функции, которые можно задействовать отдельно.

Как использовать макетную плату.

Макетная плата нужна для того чтобы временно соединить детали, проверить, как работает устройство, до того как вы спаяете все вместе.
Все нижеследующие примеры собраны на макетной плате, чтобы можно было быстро вносить изменения в схему и повторно использовать детали не заморачиваясь с пайкой.

В макетной плате есть ряды отверстий, в которые вы можете вставлять детали и провода. Некоторые из этих отверстий электрически соединены друг с другом.

Два верхних и нижних ряда соединены по - рядно вдоль всей платы. Эти ряды используются, чтобы подавать питание на схему. Это может быть 5в или 3.3в, но в любом случае, первое, что вам надо сделать - это подключить 5в и GND на макетную плату, как показано на рисунке. Иногда эти соединения рядов могут прерываться посередине платы, тогда, если вам понадобится, вы можете их соединить, как показано на рисунке.








Остальные отверстия, расположенные в середине платы, группируются по пять отверстий. Они используется для соединения деталей схемы.


Первое, что мы подключим к нашему микроконтроллеру, это светодиод. Схема электрических соединений показана на картинке.

Для чего нужен резистор в схеме? В данном случае он ограничивает ток, который проходит через светодиод. Каждый светодиод рассчитан на определённый ток, и если этот ток будет больше, то светодиод выйдет из строя. Узнать, какого номинала должен быть резистор можно с помощью закона ома. Для тех кто не знает или забыл, закон ома говорит, что существует линейная зависимость тока от напряжения. Т.е, чем больше мы приложим напряжение к резистору, тем больше потечет через него ток.
V=I*R
Где V -напряжение на резистор
I - ток через резистор
R - сопротивление, которое надо найти.
Во-первых, мы должны узнать напряжение на резистор. Большинство светодиодов 3мм или 5мм, которые вы будете использовать, имеют рабочее напряжение 3в. Значит, на резисторе нам надо погасить 5-3=2в.

Затем мы вычислим ток, проходящий через резистор.
Большинство 3 и 5мм светодиодов светятся полной яркостью при токе 20мА. Ток больше этого может вывести их из строя, а ток меньшей силы снизит их яркость, не причинив никакого вреда.

Итак, мы хотим включить светодиод в цепь 5в,чтобы на нем был ток 20мА. Так как все детали включены в одну цепь на резистор тоже будет ток 20мА.
Мы получаем
2В = 20 мА * R
2В = 0.02A * R
R = 100 Ом

100 Ом это минимальное сопротивление, лучше использовать немного больше, потому, что светодиоды имеют некоторый разброс характеристик.
В данном примере используется резистор 220 Ом. Только потому, что у автора их очень много:wink: .

Вставьте светодиод в отверстия посередине платы таким образом, чтобы его длинный вывод был соединён с одним из выводов резистора. Второй конец резистора соедините с 5V, а второй вывод светодиода соедините с GND. Светодиод должен загореться.

Обратите внимание, что есть разница, как соединять светодиод. Ток течёт от более длинного вывода к более короткому. На схеме это можно представить, что ток течёт в ту сторону, куда направлен треугольник. Попробуйте перевернуть светодиод и вы увидите, что он не будет светиться.

А вот как вы будете соединять резистор, разницы совсем нет. Можете его перевернуть или попробовать подсоединить к другому выводу светодиода, это не повлияет на работу схемы. Он все так же будет ограничивать ток через светодиод.

Анатомия Arduino Sketch.

Программы для Arduino называют sketch. Они состоят из двух основных функций. Функция setup и функция loop
внутри этой функции вы будете задавать все основные настройки. Какие выводы будут работать на вход или выход, какие библиотеки подключать, инициализировать переменные. Функция Setup() запускается только один раз в течение скетча, когда стартует выполнение программы.
это основная функция, которая выполняется после setup() . Фактически это сама программа. Это функция будет выполняться бесконечно, пока вы не выключите питание.

Arduino мигает светодиодом



В этом примере мы соединим схему со светодиодом к одному из цифровых выводов Arduino и будем включать и выключать его с помощью программы, а так же вы узнаете несколько полезных функций.

Эта функция используется в setup () части программы и служит для инициализации выводов, которые вы будете использовать, как вход (INPUT) или выход (OUTPUT) . Вы не сможете считать или записать данные с пина, пока не установите его соответственно в pinMode . Эта функция имеет два аргумента: pinNumber - это номер пина, который вы будете использовать.

Mode -задает, как пин будет работать. На вход (INPUT) или выход (OUTPUT) . Чтобы зажечь светодиод мы должны подать сигнал ИЗ Arduino. Для этого мы настраиваем пин на выход.
- эта функция служит для того, чтобы задать состояние (state) пина (pinNumber) . Есть два основных состояния (вообще их 3), одно это HIGH , на пине будет 5в, другое это Low и на пине будет 0в. Значит, чтобы зажечь светодиод нам надо на пине, соединенном со светодиодом выставить высокий уровень HIGH .

Задержка. Служит для задержки работы программы на заданный в мсек период.
Ниже приведен код, который заставляет мигать светодиод.
//LED Blink int ledPin = 7;//пин Arduino к которому подключен светодиод void setup() { pinMode(ledPin, OUTPUT);// установка пина как ВЫХОД } void loop() { digitalWrite(ledPin, HIGH);//зажечь светодиод delay(1000);// задержка 1000 мсек (1 сек) digitalWrite(ledPin, LOW);//Выключить светодиод delay(1000);//ждать 1 сек }

Небольшие пояснения по коду.
Строки, которые начинаются с "//" это комментарии Arduino их игнорирует.
Все команды заканчиваются точкой с запятой, если вы их забудете, то получите сообщение об ошибке.

ledPin - это переменная. Переменные используются в программах для хранения значений. В данном примере переменной ledPin присваивается значение 7, это номер пина Arduino. Когда Arduino в программе встретит строку с переменной ledPin , он будет использовать то значение, которое мы указали ранее.
Так запись pinMode(ledPin, OUTPUT) аналогична записи pinMode(7, OUTPUT) .
Но в первом случае вам достаточно поменять переменную и она поменяется в каждой строке, где используется, а во втором случае вам, чтобы поменять переменную, придётся ручками в каждой команде вносить изменения.

В первой строке указывает на тип переменной. При программировании Arduino важно всегда объявлять тип переменных. Пока вам достаточно знать, что INT объявляет отрицательные и положительные числа.
Ниже представлено моделирование скетча. Нажмите старт, чтобы посмотреть работу схемы.

Как и ожидалось, светодиод гаснет и загорается через одну секунду. Попробуйте поменять задержку, чтобы посмотреть, как она работает.

Управление несколькими светодиодами.

В этом примере вы узнаете, как управлять несколькими светодиодами. Для этого установите ещё 3 светодиода на плату и соедините их с резисторами и выводами Arduino, как показано ниже.

Для того, чтобы включать и выключать светодиоды по очереди надо написать программу подобную этой:
//Multi LED Blink int led1Pin = 4; int led2Pin = 5; int led3Pin = 6; int led4Pin = 7; void setup() { //установка пинов как ВЫХОД pinMode(led1Pin, OUTPUT); pinMode(led2Pin, OUTPUT); pinMode(led3Pin, OUTPUT); pinMode(led4Pin, OUTPUT); } void loop() { digitalWrite(led1Pin, HIGH);//зажечь светодиод delay(1000);//задержка 1 сек digitalWrite(led1Pin, LOW);//потушить светодиод delay(1000);//задержка 1 сек //do the same for the other 3 LEDs digitalWrite(led2Pin, HIGH);//зажечь светодиод delay(1000);// задержка 1 сек digitalWrite(led2Pin, LOW);//потушить светодиод delay(1000);//задержка 1 сек digitalWrite(led3Pin, HIGH);//зажечь светодиод delay(1000);// задержка 1 сек digitalWrite(led3Pin, LOW);//потушить светодиод delay(1000);//задержка 1 сек digitalWrite(led4Pin, HIGH);//зажечь светодиод delay(1000);// задержка 1 сек digitalWrite(led4Pin, LOW);//потушить светодиод delay(1000);//задержка 1 сек }

Эта программа будет отлично работать, но это не самое рациональное решение. Код надо изменить. Для того, чтобы программа работала раз за разом мы применим конструкцию, которая называется .
Циклы удобны, когда надо повторить одно и тоже действие несколько раз. В коде, проведенном выше мы повторяем строки

DigitalWrite (led4Pin, HIGH); delay (1000); digitalWrite (led4Pin, LOW); delay (1000);
полный код скетча во вложении (скачиваний: 1187)

Регулировка яркости светодиодов

Иногда вам надо будет менять яркость светодиодов в программе. Это можно сделать с помощью команды analogWrite() . Эта команда так быстро включает и выключает светодиод, что глаз не видит это мерцание. Если светодиод половину времени будет включён, а половину выключен, то визуально будет казаться, что он светится в половину своей яркости. Это называется широтно-импульсная модуляция (ШИМ или PWM по-английски). Шим применяется довольно часто, так как с ее помощью можно управлять "аналоговым" компонентом с помощью цифрового кода. Не все выводы Arduino подходят для этих целей. Только те выводы, около которых нарисовано такое обозначение "~ ". Вы увидите его рядом с выводами 3,5,6,9,10,11.
Соедините один из ваших светодиодов с одним из выводов ШИМ(у автора это вывод 9). Теперь запуститьскетч мигания светодиода, но прежде измените команду digitalWrite() на analogWrite() . analogWrite() имеет два аргумента: первый это номер вывода, а второй- значение ШИМ (0-255), применительно к светодиодам это будет их яркость свечения, а для электродвигателей скорость вращения. Ниже представлен код примера для разной яркости светодиода.
//Меняем яркость светодиода int ledPin = 9;//к этому выводу подсоединен светодиод void setup() { pinMode(ledPin, OUTPUT);// инициализация пина на вывод } void loop() { analogWrite(ledPin, 255);//полная яркость (255/255 = 1) delay(1000);// пауза 1 сек digitalWrite(ledPin, LOW);//выключить светодиод delay(1000);//пауза 1 сек analogWrite(ledPin, 191);//яркость на 3/4 (191/255 ~= 0.75) delay(1000);//пауза 1 сек digitalWrite(ledPin, LOW);//выключить светодиод delay(1000);//пауза 1 сек analogWrite(ledPin, 127);//половина яркости (127/255 ~= 0.5) delay(1000);// пауза 1 сек digitalWrite(ledPin, LOW);//выключить светодиод delay(1000);//пауза 1 сек analogWrite(ledPin, 63);//четверть яркости (63/255 ~= 0.25) delay(1000);// пауза 1 сек digitalWrite(ledPin, LOW);//выключить светодиод delay(1000);//пауза 1 сек }

Попробуйте поменять значение ШИМ в команде analogWrite () ,чтобы увидеть, как это влияет на яркость.
Далее вы узнаете, как регулировать яркость плавно от полной до нулевой. Можно,конечно, скопировать кусок кода 255 раз
analogWrite(ledPin, brightness); delay(5);//short delay brightness = brightness + 1;
Но, сами понимаете - это будет не практично. Для этого лучше всего использовать цикл FOR, который использовали ранее.
В следующем примере используются два цикла, один для уменьшения яркости от 255 до 0
for (int brightness=0;brightness=0;brightness--){ analogWrite(ledPin,brightness); delay(5); }
delay(5) используется, чтобы замедлить скорость нарастания и уменьшения яркости 5*256=1280 мсек= 1.28 сек.)
В первой строке используется "brightness- " ,для того чтобы значение яркости уменьшалось на 1, каждый раз, когда цикл повторяется. Обратите внимание, что цикл будет работать до тех пор, пока brightness >=0 .Заменив знак > на знак >= мы включили 0 в диапазон яркости. Ниже смоделирован этот скетч. //плавно меняем яркость int ledPin = 9;//к этому пину подключен светодиод void setup() { pinMode(ledPin, OUTPUT);// инициализация пина на выход } void loop() { //плавно увеличиваем яркость (0 to 255) for (int brightness=0;brightness=0;brightness--){ analogWrite(ledPin,brightness); delay(5); } delay(1000);//ждем 1 сек //плавно уменьшаем яркость (255 to 0) for (int brightness=255;brightness>=0;brightness--){ analogWrite(ledPin,brightness); delay(5); } delay(1000);//ждем 1 сек } }
Это видно не очень хорошо, но идея понятна.

RGB-светодиод и Arduino

RGB-светодиод на самом деле это три светодиода разного цвета в одном корпусе.

Включая разные светодиоды с различной яркостью можно комбинировать и получать разные цвета. Для Arduino, где количество градаций яркости равно 256 вы получите 256^3=16581375 возможных цветов. Реально их, конечно, будет меньше.
Светодиод, который мы будем использоваться общим катодом. Т.е. все три светодиода конструктивно соединены катодами к одному выводу. Этот вывод мы подсоединим к выводу GND. Остальные выводы, через ограничительные резисторы, надо подсоединить к выводам ШИМ. Автор использовал выводы 9-11.Таким образом можно будет управлять каждым светодиодом отдельно. В первом скетче показано, как включить каждый светодиод отдельно.



//RGB LED - test //pin connections int red = 9; int green = 10; int blue = 11; void setup(){ pinMode(red, OUTPUT); pinMode(blue, OUTPUT); pinMode(green, OUTPUT); } void loop(){ //включение/выключение красного светодиод digitalWrite(red, HIGH); delay(500); digitalWrite(red, LOW); delay(500); //включение/выключение зеленого светодиода digitalWrite(green, HIGH); delay(500); digitalWrite(green, LOW); delay(500); //включение/выключение синего светодиода digitalWrite(blue, HIGH); delay(500); digitalWrite(blue, LOW); delay(500); }

В следующем примере используются команды analogWrite() и , чтобы получать различные случайные значения яркости для светодиодов. Вы увидите разные цвета, меняющиеся случайным образом.
//RGB LED - random colors //pin connections int red = 9; int green = 10; int blue = 11; void setup(){ pinMode(red, OUTPUT); pinMode(blue, OUTPUT); pinMode(green, OUTPUT); } void loop(){ //pick a random color analogWrite(red, random(256)); analogWrite(blue, random(256)); analogWrite(green, random(256)); delay(1000);//wait one second }

Random(256) -возвращает случайное число в диапазоне от 0 до 255.
В прикрепленном файле скетч, который продемонстрирует плавные переходы цветов от красного к зеленому, затем к синему, красному, зеленому и т.д. (скачиваний: 326)
Пример скетча работает, но есть много повторяющегося кода. Можно упростить код, написав собственную вспомогательную функцию, которая будет плавно менять один цвет на другой.
Вот как она будет выглядеть: (скачиваний: 365)
Давайте рассмотрим определение функции по частям. Функция называется fader и имеет два аргумента. Каждый аргумент отделяется запятой и имеет тип объявленный в первой строке определения функции: void fader (int color1, int color2) . Вы видите, что оба аргумента объявлены как int , и им присвоены имена color1 и color2 в качестве условных переменных для определения функции. Void означает, что функция не возвращает никаких значений, она просто выполняет команды. Если надо было бы написать функцию, которая возвращала результат умножения это выглядело бы так:
int multiplier(int number1, int number2){ int product = number1*number2; return product; }
Обратите внимание, как мы объявили Тип int в качестве типа возвращаемого значения вместо
void .
Внутри функции идут команды, которые вы уже использовали в предыдущем скетче, только номера выводов заменили на color1 и color2 . Вызывается функция fader , ее аргументы вычисляются как color1 = red и color2 = green . В архиве полный скетч с использованием функций (скачиваний: 272)

Кнопка

В следующем скетче будет использоваться кнопка с нормально разомкнутыми контактами, без фиксации.


Это значит, что пока кнопка не нажата, ток через неё не идёт, а после отпускания, кнопка возвращается в исходное положение.
В схеме, помимо кнопки используется резистор. В данном случае он не ограничивает ток, а "подтягивает" кнопку к 0в (GND). Т.е. пока кнопка не нажата на выводе Arduino, к которому она подключена, будет низкий уровень. Резистор, используемый в схеме 10 кОм.


//определяем нажатие кнопки int buttonPin = 7; void setup(){ pinMode(buttonPin, INPUT);//инициализируем пин на вход Serial.begin(9600);//инициализируем последовательный порт } void loop(){ if (digitalRead(buttonPin)==HIGH){//если кнопка нажата Serial.println("pressed"); // выводим надпись "pressed" } else { Serial.println("unpressed");// иначе "unpressed" } }
В этом скетче несколько новых команд.
-эта команда принимает значение High (высокий уровень) и low (низкий уровень), того вывода, который мы проверяем. Предварительно в setup() этот вывод надо настроить на вход.
; //где buttonPin это номер вывода, куда подсоединяется кнопка.
Последовательный порт позволяет отправлять Arduino сообщения на компьютер, в то время, как сам контроллер выполняет программу. Это полезно для отладки программы, отправки сообщений на другие устройства или приложения. Чтобы включить передачу данных через последовательный порт (другое название UART или USART), надо инициализировать его в setup()

Serial.begin() имеет всего один аргумент-это скорость передачи данных между Arduino и компьютером.
скетче используется команда для вывода сообщения на экран в Arduino IDE (Tools >> Serial Monitor).
- конструкция позволяют контролировать ход выполнения программы, объеденив несколько проверок в одном месте.
If(если) digitalRead возвращает значение HIGH, то на мониторе выводится слово "нажата". Else(иначе) на мониторе выводится слово " отжата" . Теперь можно попробовать включать и выключать светодиод по нажатию кнопки.
//button press detection with LED output int buttonPin = 7; int ledPin = 8; void setup(){ pinMode(buttonPin, INPUT);//this time we will set button pin as INPUT pinMode(ledPin, OUTPUT); Serial.begin(9600); } void loop(){ if (digitalRead(buttonPin)==HIGH){ digitalWrite(ledPin,HIGH); Serial.println("pressed"); } else { digitalWrite(ledPin,LOW); Serial.println("unpressed"); } }

Аналоговый вход.

analogRead позволяет считать данные с одного из аналоговых выводов Arduino и выводит значение в диапазоне от 0 (0В) до 1023 (5В). Если напряжение на аналоговом входе будет равно 2.5В, то будет напечатано 2.5 / 5 * 1023 = 512
analogRead имеет только один аргумент- Это номер аналогового входа (А0-А5). В следующем скетче приводится код считывания напряжения с потенциометра. Для этого подключите переменный резистор, крайними выводами на пины 5V и GND, а средний вывод на вход А0.

Запустите следующий код и посмотрите в serial monitor, как меняются значения в зависимости от поворота ручки резистора.
//analog input int potPin = A0;//к этому пину подсоединяется центральный вывод потенциометра void setup(){ //аналоговый пин по умолчанию включен на вход, поэтому инициализация не нужна Serial.begin(9600); } void loop(){ int potVal = analogRead(potPin);//potVal is a number between 0 and 1023 Serial.println(potVal); }
Следующий скетч объединяет скетч нажатия кнопки и скетч управления яркостью светодиода. Светодиод будет включаться от кнопки, и управлять яркостью свечения будет потенциометр.
//button press detection with LED output and variable intensity int buttonPin = 7; int ledPin = 9; int potPin = A0; void setup(){ pinMode(buttonPin, INPUT); pinMode(ledPin, OUTPUT); Serial.begin(9600); } void loop(){ if (digitalRead(buttonPin)==HIGH){//if button pressed int analogVal = analogRead(potPin); int scaledVal = map(analogVal, 0, 1023, 0, 255); analogWrite(ledPin, scaledVal);//turn on led with intensity set by pot Serial.println("pressed"); } else { digitalWrite(ledPin, LOW);//turn off if button is not pressed Serial.println("unpressed"); } }




Top