Алгоритм RLE: описание, особенности, правила и примеры. Алгоритмы сжатия изображений без потерь

Первый вариант алгоритма

Данный алгоритм необычайно прост в реализации. Кодирование длин повторов - от английского Run Length Encoding (RLE) - один из самых ста­рых и самых простых алгоритмов архивации графики. Изображение в нем (как и в нескольких алгоритмах, описанных ниже) вытягивается в цепочку байтов по строкам растра. Само сжатие в RLE происходит за счет того, что в исходном изображении встречаются цепочки одинаковых байтов. Замена их на пары <счетчик повторений, значение> уменьшает избыточность данных.

Алгоритм декомпрессии при этом выглядит так:

Initialization(...); do {

byte = ImageFile.ReadNextByte(); if(является счетчиком(byte)) { counter = Low6bits(byte)+1; value = ImageFile.ReadNextByte(); for(i=l to counter)

DecompressedFile.WriteByte(value))

DecompressedFile.WriteByte(byte)) while (UmageFile.EOF ()) ;

В данном алгоритме признаком счетчика (counter) служат единицы в двух верхних битах считанного файла:

Соответственно оставшиеся 6 бит расходуются на счетчик, который мо­жет принимать значения от 1 до 64. Строку из 64 повторяющихся байт мы превращаем в 2 байта, т. е. сожмем в 32 раза.

Упражнение. Составьте алгоритм компрессии для первого варианта алгоритма RLE.

Алгоритм рассчитан на деловую графику - изображения с большими об­ластями повторяющегося цвета. Ситуация, когда файл увеличивается, для этого простого алгоритма не так уж редка. Ее можно легко получить, при­меняя групповое кодирование к обработанным цветным фотографиям. Для того чтобы увеличить изображение в 2 раза, его надо применить к изобра­жению, в котором значения всех пикселов больше двоичного 11000000 и подряд попарно не повторяются.

Упражнение. Предложите 2-3 примера "плохих" изображений для алгоритма RLE. Объясните, почему размер сжатого файла больше размера исходного файла.

Данный алгоритм реализован в формате PCX. См. пример в приложении 2.

Второй вариант алгоритма

Второй вариант этого алгоритма имеет большую максимальную степень сжатия и меньше увеличивает в размерах исходный файл. Алгоритм декомпрессии для него выглядит так:

Initialization(...); do {

byte = ImageFile.ReadNextByte(); counter = Low7bits(byte)+1; if(если признак повтора(byte)) { value = ImageFile.ReadNextByte(); for (i=l to counter)

CompressedFile.WriteByte(value)

for(i«=l to counter) {

value = ImageFile.ReadNextByte(); CompressedFile.WriteByte(value) } } while (! ImageFile.EOFO) ;

Признаком повтора в данном алгоритме является единица в старшем разряде соответствующего байта:

j 0 7 бит___ I Что пропускать I ... Что пропускать I

^ 1 7 бит I Что повторять I

Как можно легко подсчитать, в лучшем случае этот алгоритм сжимает файл в 64 раза (а не в 32 раза, как в предыдущем варианте), в худшем уве­личивает на 1/128. Средние показатели степени компрессии данного алго­ритма находятся на уровне показателей первого варианта.

(Эч Упражнение. Составьте алгоритм компрессии для второго варианта алгоритма RLE.

Похожие схемы компрессии использованы в качестве одного из алго­ритмов, поддерживаемых форматом TIFF, а также в формате TGA.

Характеристики алгоритма RLE:

Степени сжатия: первый вариант: 32, 2, 0,5. Второй вариант: 64, 3, I 128/129. (Лучшая, средняя, худшая степени).

Класс изображений: ориентирован алгоритм на изображения с не-I большим количеством цветов: деловую и научную графику.

Симметричность: примерно единица.

Характерные особенности: к положительным сторонам алгоритма, по-I жалуй, можно отнести только то, что он не требует дополнительной памяти \ при архивации и разархивации, а также быстро работает. Интересная особен-! ность группового кодирования состоит в том, что степень архивации для не-! которых изображений может быть существенно повышена всего лишь за i счет изменения порядка цветов в палитре изображения.

Базовая классификация обратимых алгоритмов сжатия

Существует много разных практических методов сжатия без потери информации, которые, как правило, имеют разную эффективность для разных типов данных и разных объемов. Однако, в основе этих методов лежат три главные классические схемы сжатия:

Кодирование серий последовательностей (RLE);

Статистические методы сжатия;

Словарные (эвристические) методы сжатия.

Сжатие способом кодирования серий: алгоритм RLE

Наиболее известный простой подход и алгоритм сжатия информации обратимым путем - это кодирование серий последовательностей (Run Length Encoding - RLE). Суть методов данного подхода состоит в замене цепочек или серий повторяющихся байтов или их последовательностей на один кодирующий байт и счетчик числа их повторений . Проблема всех аналогичных методов заключается в определении способа, при помощи которого распаковывающий алгоритм мог бы отличить в результирующем потоке байтов кодированную серию от других - некодированных последовательностей байтов. Решение проблемы достигается обычно простановкой меток в начале кодированных цепочек. Такими метками могут быть, например, характерные значения битов в первом байте кодированной серии, значения первого байта кодированной серии и т.п. Данные методы, как правило, достаточно эффективны для сжатия растровых графических изображений (BMP, PCX, TIF, GIF), т.к. последние содержат достаточно много длинных серий повторяющихся последовательностей байтов. Недостатком метода RLE является достаточно низкая степень сжатия или стоимость кодирования файлов с малым числом серий и, что еще хуже - с малым числом повторяющихся байтов в сериях.

В основе алгоритма RLE лежит идея выявления повторяющихся последовательностей данных и замены их более простой структурой, в которой указывается код данных и коэффициент повторения. Например, пусть задана такая последовательность данных, что подлежит сжатию: 1 1 1 1 2 2 3 4 4 4 . В алгоритме RLE предлагается заменить ее следующей структурой: 1 4 2 2 3 1 4 3 , где первое число каждой пары чисел - это код данных, а второе - коэффициент повторения. Если для хранения каждого элемента данных входной последовательности отводится 1 байт, то вся последовательность будет занимать 10 байт памяти, тогда как выходная последовательность (сжатый вариант) будет занимать 8 байт памяти. Понятно, что алгоритм RLE будет давать лучший эффект сжатия при большей длине повторяющейся последовательности данных. В случае рассмотренного выше примера, если входная последовательность будет иметь такой вид: 1 1 1 1 1 1 3 4 4 4, то коэффициент сжатия будет равен 60%. В связи с этим большая эффективность алгоритма RLE достигается при сжатии графических данных (в особенности для однотонных изображений).


Эвристические (словарные) алгоритмы сжатия (LZ, LZW) ищут в файле строки, которые повторяются и строят словарь фраз, которые уже встречались. Обычно такие алгоритмы имеют целый ряд специфических параметров (размер буфера, максимальная длина фразы и т.п.), подбор которых зависит от опыта автора работы, и эти параметры добираются таким образом, чтобы достичь оптимального соотношения времени работы алгоритма, коэффициента сжатия и перечня файлов, которые хорошо сжимаются.

Статистические алгоритмы (Хаффмана, Шеннона-Фано, арифметические) Статистические алгоритмы используют статистическую модель данных, и качество сжатия информации напрямую зависит от того, насколько хороша эта модель. Учет статистических свойств данных в простейшем случае означает использование для кодирования неравномерных кодов – часто встречающиеся символы кодируются короткими кодами, а редко – длинными. Т.е., такие алгоритмы нуждаются в знании вероятностей появления символов в изображении, оценкой чего может являться в простом случае частота появления символов во входных данных. Как правило, эти вероятности неизвестны. Целью кодирования является преобразование входного потока в поток бит минимальной длины, что достигается уменьшением энтропии (хаотичности) входного потока путем учета частот символов.

Длина кода, представляющего символы из алфавита потока должна быть пропорциональна объему информации входного потока, а длина символов потока в битах может быть не кратна 8 и даже переменной. Если распределение вероятностей частот появления символов из алфавита входного потока известно, то можно построить модель оптимального кодирования. Однако, ввиду существования огромного числа различных форматов файлов задача значительно усложняется, т.к. распределение частот символов данных заранее неизвестно. В таком случае используются два подхода.

Первый заключается в просмотре входного потока и построении кодирования на основании собранной статистики (при этом требуется два прохода по файлу - один для просмотра и сбора статистической информации, второй - для кодирования, что несколько ограничивает сферу применения таких алгоритмов, т.к., таким образом, исключается возможность однопроходного кодирования "на лету", применяемого в телекоммуникационных системах, где и объем данных, подчас, не известен, а их повторная передача или разбор может занять неоправданно много времени). В таком случае, в выходной поток записывается статистическая схема использованного кодирования. Данный метод известен как статическое кодирование Хаффмена. Вместе со сжатым файлом передается таблица символов. Такие алгоритмы достаточно неплохо сжимают большинство файлов, но необходимая дополнительная передача таблицы частот символов, а также необходимость двух проходов исходного файла для набора статистики и сжатия.

Второй метод - метод адаптивного кодирования. Его принцип состоит в том, чтобы менять схему кодирования в зависимости от характера изменений входного потока. Адаптивные - начинают работать с фиксированной начальной таблицей частот символов (обычно все символы сначала равновероятны) и в процессе работы эта таблица изменяется в зависимости от символов, которые встречаются в файле. Преимущества: однопроходность алгоритма, не нуждается в передаче таблицы частот символов, достаточно эффективно сжимает широкий класс файлов. Такой подход имеет однопроходный алгоритм и не требует сохранения информации об использованном кодировании в явном виде. Адаптивное кодирование может дать большую степень сжатия, по сравнению со статическим, поскольку более полно учитываются изменения частот входного потока. Данный метод известен как динамическое кодирование Хаффмена.

С учетом этого статистические алгоритмы можно разделить на три класса:

1. Не адаптивные - используют фиксированные, заблаговременно заданные вероятности символов. Таблица вероятностей символов не передается вместе с файлом, поскольку она известна заблаговременно. Недостаток: узкая область использования для определенной таблицы частот, для которых достигается приемлемый коэффициент сжатия.

2. Полуадаптивные - для каждого файла строится таблица частот символов и на основе неё сжимают файл. Вместе со сжатым файлом передается таблица символов. Такие алгоритмы достаточно неплохо сжимают большинство файлов, но необходимая дополнительная передача таблицы частот символов, а также необходимость двух проходов исходного файла для набора статистики и сжатия.

3. Адаптивные - начинают работать с фиксированной начальной таблицей частот символов (обычно все символы сначала равновероятны) и в процессе работы эта таблица изменяется в зависимости от символов, которые встречаются в файле. Преимущества: однопроходность алгоритма, не нуждается в передаче таблицы частот символов, достаточно эффективно сжимает широкий класс файлов.

В основе алгоритма Хаффмана лежит идея кодирования битовыми группами. Сначала проводится частотный анализ входной последовательности данных, то есть устанавливается частота вхождения каждого символа, встречащегося в ней. После этого, символы сортируются по уменьшению частоты вхождения.

Основная идея состоит в следующем: чем чаще встречается символ, тем меньшим количеством бит он кодируется. Результат кодирования заносится в словарь, необходимый для декодирования. Рассмотрим простой пример, иллюстрирующий работу алгоритма Хаффмана.

В статическом кодировании Хаффмена входным символам (цепочкам битов различной длины) ставятся в соответствие цепочки битов, также, переменной длины - их коды. Длина кода каждого символа берется пропорциональной двоичному логарифму его частоты, взятому с обратным знаком. А общий набор всех встретившихся различных символов составляет алфавит потока. Это кодирование является префиксным, что позволяет легко его декодировать в результативный поток, т.к., при префиксном кодировании, код любого символа не является префиксом кода никакого другого символа - алфавит уникален.

Еще 10-15 лет назад архиваторы использовались в основном для экономии места на жестких дисках и для того, чтобы уместить максимум данных на дискету. Однако времена изменились. Дискетами как средством переноса и хранения информации уже давно никто не пользуется, а стоимость накопителей стала настолько низкой, что никто даже не задумывается о сжатии данных с целью экономии места. Кроме того, объемы данных стали такими большими, что их архивация и разархивация с целью экономии места просто нецелесообразна, поскольку отнимает очень много времени. Ну действительно, сегодня объемы данных на накопителях пользователей измеряются терабайтами. А теперь представьте себе, сколько потребуется времени, чтобы заархивировать один терабайт данных. На это уйдет не один и даже не два часа, а как минимум часов 10-12, то есть компьютер придется оставить включенным на всю ночь.

Казалось бы, архиваторы сегодня должны постепенно утрачивать свою актуальность. Но ничего подобного не происходит. У подавляющего большинства пользователей среди прочих программ установлены архиваторы, либо они используют архиватор, встроенный в операционную систему Windows (другие ОС в данной публикации мы не рассматриваем).

Дело в том, что изменилось назначение архиваторов. Сегодня они используются преимущественно для выкладывания данных в Сеть. Большинство драйверов на сайтах производителей выкладываются именно в архивах, и большая часть программ на различных ресурсах также заархивированы. Кстати, и сам пользователь прежде чем выложить какие­либо данные в Сеть (например, на файлообменные ресурсы), запаковывает данные в архив.

Что касается российского рынка, то у нас наиболее распространенными являются три архиватора: WinRAR, WinZip и 7-Zip, представленные как в 32-, так и 64-битной версиях. Именно их мы и будем сравнивать в данной статье. Однако прежде кратко рассмотрим некоторые теоретические аспекты работы архиваторов.

Алгоритмы сжатия информации

Суть любого алгоритма сжатия информации заключается в том, чтобы путем некоторого преобразования исходного набора информационных бит получить на выходе некоторый набор меньшего размера. Причем все алгоритмы преобразования данных можно условно разделить на два класса: обратимые и необратимые.

Под необратимым алгоритмом сжатия информации подразумевается такое преобразование исходной последовательности бит, при котором выходная последовательность меньшего размера не позволяет в точности восстановить входную последовательность. Алгоритмы необратимого сжатия используются, например, в отношении графических, видео­ и аудиоданных, причем это всегда приводит к потере их качества. Естественно, в архиваторах алгоритмы необратимого сжатия данных не применяются, а потому в дальнейшем мы их рассматривать не будем.

Алгоритмы обратимого сжатия данных позволяют в точности восстановить исходную последовательность данных из сжатой последовательности. Именно такие алгоритмы и используются в архиваторах. Общими характеристиками всех алгоритмов сжатия являются степень сжатия (отношение объемов исходной и сжатой последовательности данных), скорость сжатия (время, затрачиваемое на архивирование некоторого объема данных) и качество сжатия (величина, показывающая, насколько сильно сжата последовательность данных, путем применения к нему повторного сжатия по этому же или иному алгоритму).

Теория сжатия информации, известная также как теория экономного кодирования дискретной информации, - это достаточно сложный раздел математической науки. Конечно же, изложение даже ее азов выходит далеко за рамки данной статьи, а потому мы лишь поверхностно рассмотрим различные алгоритмы сжатия информации, не вдаваясь в детали. Кроме того, сегодня разработано очень много алгоритмов сжатия данных, и их рассмотрение также входит в нашу задачу. Поэтому мы лишь на качественном уровне расскажем о нескольких алгоритмах, которые позволяют получить общее представление о методах сжатия информации.

Алгоритм RLE

Один из самых старых и самых простых методов сжатия информации - это алгоритм RLE (Run Length Encoding), то есть алгоритм кодирования серий последовательностей. Этот метод очень прост в реализации и представляет собой один из алгоритмов архивации, а суть его заключается в замене серии (группы) повторяющихся байтов на один кодирующий байт и счетчик числа их повторений. То есть группа одинаковых байтов заменятся на пару: <счетчик повторений, значение>, что сокращает избыточность данных.

В данном алгоритме признаком счетчика служат единицы в двух верхних битах считанного байта. К примеру, если первые два бита - это 11, то остальные 6 бит отводятся на счетчик, который может принимать значения от 1 до 64. Соответственно серию из 64 повторяющихся байтов можно определить всего двумя байтами, то есть сжать в 32 раза.

Есть и другой вариант реализации этого алгоритма, когда признаком счетчика является 1 в первом байте счетчика. В этом случае счетчик может принимать максимальное значение, равное 127, - а следовательно максимальная степень сжатия будет равна 64.

Понятно, что алгоритм RLE эффективен только тогда, когда имеется большое количество длинных групп одинаковых байтов. Если же байты не повторяются, то использование метода RLE приводит к увеличению объема файла.

Метод RLE, как правило, весьма эффективен для сжатия растровых графических изображений (BMP, PCX, TIF, GIF), поскольку они содержат очень много длинных серий повторяющихся последовательностей байтов.

Ограничение информационного алфавита

Еще один достаточно простой способ сжатия информации можно назвать ограничением информационного алфавита. Сразу же отметим, что на практике такой алгоритм не реализован, но изложение данного метода поможет лучше понять метод кодов переменной длины.

В дальнейшем под информационным алфавитом мы будем подразумевать набор символов, используемый для кодирования информационной последовательности. К примеру, пусть имеется некоторое текстовое сообщение. Для кодировки каждой буквы этого сообщения используется ASCII-таблица, состоящая из 256 символов. При этом под кодирование каждого символа отводится ровно 8 бит (1 байт). В данном случае информационный алфавит - это все 256 символов кодировочной ASCII-таблицы.

Понятно, что в исходном текстовом сообщении могут применяться не все 256 символов ASCII-таблицы. К примеру, если речь идет о текстовом сообщении на русском языке, в котором нет цифр, то достаточно 64 символов (33 строчные и 31 заглавная буквы). Если добавить к этому знаки препинания, знаки абзаца и перехода на новую строку, станет понятно, что число символов не превысит 100. В этом случае можно использовать не 8-, а 7-битное кодирование символов, что позволяет получить таблицу из 128 символов. То есть мы как бы ограничиваем информационный алфавит, за счет чего можно уменьшить разрядность каждого колируемого символа. Можно пойти дальше - точно определить количество применяемых символов в текстовом сообщении. Если, к примеру, выяснится, что в сообщении задействуются всего 30 символов (включая символы перехода на новую строку), то можно использовать 5-битную кодировочную таблицу, содержащую 32 символа, и тогда степень сжатия текстового сообщения станет еще большей. Действительно, если в исходном сообщении применяется 8-битное кодирование символов, а в сжатом - 5-битное, то коэффициент сжатия будет 8/5.

Несмотря на кажущуюся простоту метода ограничения алфавита, на практике он не используется. Дело в том, что описанный метод не позволяет корректно декодировать исходное сообщение без передачи дополнительной информации. Действительно, не зная кодировочных таблиц, применяемых для сжатия информации, декодировать ее невозможно. То есть вместе с закодированной информационной последовательностью необходимо передавать и кодировочные таблицы. Понятно, что в этом случае выигрыш от использования ограниченного алфавита сводится к нулю.

У метода ограниченного алфавита есть и другие недостатки. Если исходное информационное сообщение содержит большое количество разнообразных символов, то понизить разрядность представления символов алфавита не удастся и данный способ просто не сработает. Предположим, к примеру, что в исходном информационном сообщении содержится 129 символов из 256-символьного алфавита. Воспользоваться 7-битным кодированием символов в данном случае не удастся, поскольку 7 бит позволят закодировать только 128 символов. Поэтому для 129 символов придется обратиться к тому же 8-битному кодированию, как и в исходном 256-символьном алфавите.

Коды переменной длины

Одним из главных недостатков рассмотренного нами гипотетического метода ограничения алфавита является то, что в нем применяется равномерный код, когда все символы информационного алфавита имеют одинаковую длину (8, 7 бит или меньше). Было бы логичнее использовать такую систему кодирования, при которой длина кода символа зависит от частоты его появления в информационном сообщении. То есть, если в исходном информационном сообщении некоторые символы встречаются чаще других, то для них оптимально использовать короткие коды, а для редко встречающихся -более длинные.

В качестве гипотетического примера рассмотрим следующее информационное сообщение: «авиакатастрофа» , которое содержит 14 символов. Предположим, что у нас имеется алфавит из 14 символов, который позволяет нам закодировать это сообщение. Если используется равномерный код, то на каждый символ алфавита потребуется 4 бита (длина кода в 4 бита позволит сформировать 16 символов). Однако нетрудно заметить, что в нашем информационном сообщении символ «а» встречается пять раз, символ «т» - два раза, а остальные символы - по одному разу. Если для символа «а» мы будем использовать код длиной 2 бит, для символа «т» - длиной 3 бита, а для остальных символов - длиной 4 бита, то мы наверняка сможем сэкономить. Нужно лишь понять, как именно строить коды переменной длины и как именно длина кода должна зависеть от частоты появления символа в информационном сообщении.

Если все символы входят в информационное сообщение с одинаковой частотой (равновероятны), то при информационном алфавите из N символов для кодирования каждого символа потребуется ровно log 2 N бит. Фактически это случай равномерного кода.

Если же символы имеют разную вероятность появления в информационном сообщении, то, согласно теории К. Шеннона, символу, вероятность появления которого равна p, оптимально и, что особенно важно, теоретически допустимо ставить в соответствие код длиной –log 2 p . Возвращаясь к нашему примеру с информационным сообщением «авиакатастрофа» и учитывая, что вероятность появления символа «а» (p(a)) составляет 5/14, вероятность появления символа «т» - 2/14, а вероятность появления всех остальных символов - 1/14, мы получим, что: для символа «a» оптимальная длина кода равна –log 2 (5/14) = 1,48 бит; для символа «т» - –log 2 (2/14) = 2,8 бит, а для всех остальных символов она составляет –log 2 (1/14) = 3,8. Поскольку в нашем случае длина кода может иметь только целочисленное значение, то, округляя, получим, что для символа «а» оптимально использовать код длиной 2 бита, для символа «т» - длиной 3 бита, а для остальных - длиной 4 бита.

Давайте посчитаем степень сжатия при использовании такого кодирования. Если бы применялся равномерный код на базе 14-символьного алфавита, то для кодирования слова «авиакатастрофа» потребовалось бы 56 бит. При использовании кодов переменной длины потребуется 5×2 бита + 2×3 бита + 7×4 бита = 44 бита, то есть коэффициент сжатия составит 1,27.

Теперь рассмотрим алгоритмы получения кодов переменной длины.

Префиксное кодирование

Наиболее простым методом получения кодов переменной длины является так называемое префиксное кодирование, которое позволяет получать целочисленные по длине коды. Главная особенность префиксных кодов заключается в том, что в пределах каждой их системы более короткие по длине коды не совпадают с началом (префиксом) более длинных кодов. Именно это свойство префиксных кодов позволяет очень просто производить декодирование информации.

Поясним это свойство префиксных кодов на конкретном примере. Пусть имеется система из трех префиксных кодов: {0, 10, 11}. Как видим, более короткий код 0 не совпадает с началом более длинных кодов 10 и 11. Пусть код 0 задает символ «а», код 10 - символ «м», а код 11 - символ «р». Тогда слово «рама» кодируется последовательностью 110100. Попробуем раскодировать эту последовательность. Поскольку первый бит - это 1, то первый символ может быть только «м» или «р» и определяется значением второго бита. Поскольку второй бит - это 1, то первый символ - это «р». Третий бит - это 0, и он однозначно соответствует символу «а». Четвертый бит - это 1, то есть нужно смотреть на значение следующего бита, который равен 0, тогда третий символ - это «м». Последний бит - это 0, что однозначно соответствует символу «а». Таким образом, свойство префиксных кодов, заключающееся в том, что более короткие по длине коды не могут совпадать с началом более длинных кодов, позволяет однозначно декодировать закодированное префиксными кодами переменной длины информационное сообщение.

Префиксные коды обычно получают построением кодовых (для двоичной системы) деревьев. Каждый внутренний узел такого бинарного дерева имеет два исходящих ребра, причем одному ребру соответствует двоичный символ «0», а другому - «1». Для определенности можно договориться, что левому ребру нужно ставить в соответствие символ «0», а правому - символ «1».

Поскольку в дереве не может быть циклов, от корневого узла к листовому всегда можно проложить один-единственный маршрут. Если ребра дерева пронумерованы, то каждому такому маршруту соответствует некоторая уникальная двоичная последовательность. Множество всех таких последовательностей будет образовывать систему префиксных кодов.

Для рассмотренного примера системы из трех префиксных кодов: {0, 10, 11}, которые задают символы «а», «м» и «р», кодовое дерево показано на рис. 1.

Рис. 1. Кодовое дерево для системы
из трех префиксных кодов: {0, 10, 11}

Удобство древовидного изображения префиксных кодов заключается в том, что именно древовидная структура позволяет сформировать коды переменной длины, отвечающие главному условию префиксных кодов, то есть условию, что более короткие по длине коды не совпадают с началом более длинных кодов.

До сих пор мы рассматривали лишь идею префиксных кодов переменной длины. Что касается алгоритмов получения префиксных кодов, то их можно разработать достаточно много, но наибольшую известность получили два метода: Шеннона-Фано и Хаффмана.

Алгоритм Шеннона-Фано

Данный алгоритм получения префиксных кодов независимо друг от друга предложили Р. Фано и К. Шеннон, заключается он в следующем. На первом шаге все символы исходной информационной последовательности сортируются по убыванию или возрастанию вероятностей их появления (частоты их появления), после чего упорядоченный ряд символов в некотором месте делится на две части так, чтобы в каждой из них сумма частот символов была примерно одинакова. В качестве демонстрации рассмотрим уже знакомое нам слово «авиакатастрофа» .

Если символы, составляющие данное слово, отсортировать по убыванию частоты их появления, то получим следующую последовательность: {а(5), т(2), в(1), и(1), к(1), с(1), р(1), о(1), ф(1)} (в скобках указывается частота повторяемости символа в слове). Далее, нам нужно разделить эту последовательность на две части так, чтобы в каждой из них сумма частот символов была примерно одинаковой (насколько это возможно). Понятно, что раздел пройдет между символами «т» и «в», в результате чего образуется две последовательности: {а(5), т(2)} и {в(1), и(1), к(1), с(1), р(1), о(1), ф(1)}. Причем суммы частот повторяемости символов в первой и второй последовательностях будут одинаковы и равны 7.

На первом шаге деления последовательности символов мы получаем первую цифру кода каждого символа. Правило здесь простое: для тех символов, которые оказались в последовательности слева, код будет начинаться с «0», а для тех, что справа - с «1».

В частности, последовательность {а(5), т(2)} разделится на два отдельных символа: a(5) и т(2) (других вариантов деления нет). Тогда вторая цифра кода для символа «a» - это «0», а для символа «т» - «1». Поскольку в результате деления последовательности мы получили отдельные элементы, то они более не делятся и для символа «a» получаем код 00, а для символа «т» - код 01.

Последовательность {в(1), и(1), к(1), с(1), р(1), о(1), ф(1)} можно разделить либо на последовательности {в(1), и(1), к(1)} и {с(1), р(1), о(1), ф(1)}, либо на {в(1), и(1), к(1)}, {с(1)} и {р(1), о(1), ф(1)}.

В первом случае суммы частот повторяемости символов в первой и второй последовательностях будут 3 и 4 соответственно, а во втором случае - 4 и 3 соответственно. Для определенности воспользуемся первым вариантом.

Для символов полученной новой последовательности {в(1), и(1), к(1)} (это левая последовательность) первые две цифры кода будут 10, а для последовательности {с(1), р(1), о(1), ф(1)} - 11.

В нашем примере (рис. 2 и 3) получается следующая система префиксных кодов: «a» - 00, «т» - 01, «в» - 100, «и» - 1010, «к» - 1011, «с» - 1100, «р» - 1101, «о» - 1110, «ф» - 1111. Как нетрудно заметить, более короткие коды не являются началом более длинных кодов, то есть выполняется главное свойство префиксных кодов.

Рис. 2. Демонстрация алгоритма Шеннона-Фано

Рис. 3. Кодовое дерево для слова «авиакатастрофа»
в алгоритме Шеннона-Фано

Алгоритм Хаффмана

Алгоритм Хаффмана - это еще один алгоритм получения префиксных кодов переменной длины. В отличие от алгоритма Шеннона-Фано, который предусматривает построение кодового дерева сверху вниз, данный алгоритм подразумевает построение кодового дерева в обратном порядке, то есть снизу вверх (от листовых узлов к корневому узлу).

На первом этапе, как и в алгоритме Шеннона-Фано, исходная последовательность символов сортируется в порядке убывания частоты повторяемости символов (элементов последовательности). Для рассмотренного ранее примера со словом «авиакатастрофа» получим следующую отсортированную последовательность элементов: {а(5), т(2), в(1), и(1), к(1), с(1), р(1), о(1), ф(1)}.

Далее два последних элемента последовательности заменяются на новый элемент S1, которому приписывается повторяемость, равная сумме повторяемостей исходных элементов. Затем производится новая сортировка элементов последовательности в соответствии с их повторяемостью. В нашем случае два последних элемента o(1) и ф(1) заменяются на элемент S1(2), а вновь отсортированная последовательность примет вид: {а(5), т(2), S1(2), в(1), и(1), к(1), с(1), р(1)}.

Продолжая данную процедуру замещения двух последних элементов последовательности на новый элемент с суммарной повторяемостью и последующей пересортировкой последовательности в соответствии с повторяемостью элементов, мы придем к ситуации, когда в последовательности останется всего один элемент (рис. 4).

Рис. 4. Демонстрация алгоритма Хаффмана
на примере слова «авиакатастрофа»

Одновременно с замещением элементов и пересортировкой последовательности строится кодовое бинарное дерево. Алгоритм построения дерева очень прост: операция объединения (замещения) двух элементов последовательности порождает новый узловой элемент на кодовом дереве. То есть если смотреть на дерево снизу вверх, ребра кодового дерева всегда исходят из замещаемых элементов и сходятся в новом узловом элементе, соответствующем элементу последовательности, полученному путем замещения (рис. 5). При этом левому ребру кодового дерева можно присвоить значение «0», а правому - «1». Эти значения в дальнейшем будут служить элементами префиксного кода.

Рис. 5. Построение кодового дерева
в алгоритме Хаффмана
(замещение элементов «o» и «ф»
новым элементом S1)

Полное кодовое дерево, построенное по алгоритму Хаффмана для слова «авиакатастрофа» , показано на рис. 6.

Рис. 6. Полное кодовое дерево для слова «авиакатастрофа»,
построенное по алгоритму Хаффмана

Пройдясь по ребрам кодового дерева сверху вниз, легко получить префиксные коды для всех символов нашего информационного алфавита:

Если теперь попытаться написать слово «авиакатастрофа» в кодировке Хаффмана, то получим 41-битную последовательность 0 1101 11000 0 11001 0 111 0 1010 111 1011 1000 1001 0. Интересно отметить, что при использовании префиксных кодов Шеннона-Фано мы также получим 41-битную последовательность для слова «авиакатастрофа». То есть в конкретном примере эффективность кодирования Хаффмана и Шеннона-Фано одинакова. Но если учесть, что реальный информационный алфавит - это 256 символов (а не 14, как в нашем примере), а реальные информационные последовательности - это любые по своему содержанию и длине файлы, то возникает вопрос об оптимальном префиксном коде, то есть коде, который позволяет получить минимальную по длине выходную последовательность.

Можно доказать, что система кодов, полученная с помощью алгоритма Хаффмана, -лучшая среди всех возможных систем префиксных кодов в том плане, что длина результирующей закодированной информационной последовательности получается минимальной. То есть алгоритм Хаффмана является оптимальным.

Основной недостаток алгоритма Хаффмана заключается в сложности процесса построения системы кодов. Тем не менее именно оптимальный алгоритм Хаффмана является самым распространенным алгоритмом генерации кода переменной длины и находит свое воплощение в большинстве утилит сжатия и архивации информации.

Арифметическое кодирование

Как мы уже отмечали, согласно критерию Шеннона, оптимальным является такой код, в котором под каждый символ отводится код длиной –log 2 p бит. И если, к примеру, вероятность какого-то символа составляет 0,2, то оптимальная длина его кода будет равна –log 2 0,2 = 2,3 бит. Понятно, что префиксные коды не могут обеспечить такую длину кода, а потому не являются оптимальными. Вообще длина кода, определяемая критерием Шеннона, - это лишь теоритический предел. Вопрос лишь в том, какой способ кодирования позволяет максимально приблизиться к этому теоретическому пределу. Префиксные коды переменной длины эффективны и достаточно просты в реализации, однако существуют и более эффективные способы кодирования, в частности алгоритм арифметического кодирования.

Идея арифметического кодирования заключается в том, что вместо кодирования отдельных символов код присваивается одновременно всей информационной последовательности. При этом очевидно, что длина кода, приходящаяся на один отдельный символ, может быть и не целым числом. Именно поэтому такой способ кодирования гораздо эффективнее префиксного кодирования и более соответствует критерию Шеннона.

Идея алгоритма арифметического кодирования заключается в следующем. Как и во всех рассмотренных ранее способах кодирования, каждый символ исходной информационной последовательности характеризуется его вероятностью. Исходной незакодированной последовательности ставится в соответствие полуинтервал }


Top