Стек (сетевые коммутаторы). Протоколы и стеки протоколов

Стек протоколов TCP/IP

Корпоративная сеть - это сложная система, состоящая из большого числа разнообразных устройств: компьютеров, концентраторов, маршрутизаторов , коммутаторов, системного прикладного программного обеспечения и т.д. Основная задача системных интеграторов и администраторов сетей состоит в том, чтобы эта система как можно лучше справлялась с обработкой потоков информации и позволяла получать правильные решения пользовательских задач в корпоративной сети. Прикладное программное обеспечение запрашивает сервис, обеспечивающий связь с другими прикладными программами. Этим сервисом является механизм межсетевого обмена.

Корпоративная информация, интенсивность ее потоков и способы ее обработки постоянно меняются. Примером резкого изменения технологии обработки корпоративной информации стал беспрецедентный рост популярности глобальной сети Internet за последние 2-3 года. Сеть Internet изменила способ представления информации, собрав на своих серверах все ее виды - текст, графику и звук. Транспортная система сети Internet существенно облегчила задачу построения распределенной корпоративной сети.

Соединение и взаимодействие в рамках одной мощной компьютерной сети явилось целью проектирования и создания семейства протоколов, названных в дальнейшем стеком протоколов TCP/IP (Transmission Control Protocol / Internet Protocol ) . Главной идеей стека является создание механизма межсетевого обмена.

Стек протоколов TCP/IP широко применяется во всем мире для объединения компьютеров в сети Internet . TCP / IP - это общее название, присвоенное семейству протоколов передачи данных, используемых для связи компьютеров и другого оборудования в корпоративной сети.

Основное достоинство стека протоколов TCP/IP в том, что он обеспечивает надежную связь между сетевым оборудованием от различных производителей. Это достоинство обеспечивается включением в состав TCP/IP отработанного в процессе эксплуатации набора коммуникационных протоколов с различными стандартизованными приложениями. Протоколы стека TCP/IP предоставляют механизм передачи сообщений, описывают детали форматов сообщений и указывают, как обрабатывать ошибки. Протоколы позволяют описать и понять процессы передачи данных, не учитывая тип оборудования, на котором эти процессы происходят.

История создания стека протоколов TCP/IP началась с момента, когда Министерство обороны США столкнулось с проблемой объединения большого числа компьютеров с различными операционными системами. Для этого в 1970 году был составлен набор стандартов. Протоколы, разработанные на базе этих стандартов, получили обобщенное название TCP/IP.

Стек протоколов TCP/IP был изначально предназначен для сети Advanced Research Project Agency Network (ARPANET ). ARPANET рассматривалась как экспериментальная распределенная сеть коммутации пакетов. Эксперимент по применению стека протоколов TCP/IP в этой сети закончился с положительными результатами. Поэтому стек протоколов был принят в промышленную эксплуатацию, а в дальнейшем был расширен и усовершенствовался в течение нескольких лет. Позже стек адаптировали для использования в локальных сетях. В начале 1980 года протокол стал использоваться как интегральная часть операционной системы Вег kley UNIX v 4.2. В этом же году появилась объединенная сеть Internet . Переход к технологии Internet был завершен в 1983 году, когда Министерство обороны США установило, что все компьютеры, присоединенные к глобальной сети, используют стек протоколов TCP/IP.

Стек протоколов TCP/IP предоставляет пользователям два основных сервиса , которые используют прикладные программы:

Дейтаграммное средство доставки пакетов . Это означает, что протоколы стека TCP/IP определяют маршрут передачи небольшого сообщения, основываясь только на адресной информации, находящейся в этом сообщении. Доставка осуществляется без установки логического соединения. Такой тип доставки делает протоколы TCP/IP адаптируемыми к широкому диапазону сетевого оборудования.

Надежное потоковое транспортное средство . Большинство приложений требует от коммуникационного программного обеспечения автоматического восстановления при ошибках передачи, потере пакетов или сбоях в промежуточных маршрутизаторах . Надежное транспортное средство позволяет устанавливать логическое соединение между приложениями, а затем посылать большие объемы данных по этому соединению.

Основными преимуществами стека протоколов TCP/IP являются:

Независимость от сетевой технологии. Стек протоколов TCP/IP не зависит от оборудования конечных пользователей, так как он только определяет элемент передачи - дейтаграмму - и описывает способ ее движения по сети.

Всеобщая связанность. Стек позволяет любой паре компьютеров, которые его поддерживают, взаимодействовать друг с другом. Каждому компьютеру назначается логический адрес, а каждая передаваемая дейтаграмма содержит логические адреса отправителя и получателя. Промежуточные маршрутизаторы используют адрес получателя для принятия решения о маршрутизации.

Межконцевые подтверждения. Протоколы стека TCP/IP обеспечивают подтверждение правильности прохождения информации при обмене между отправителем и получателем.

Стандартные прикладные протоколы. Протоколы TCP/IP включают в свой состав средства для поддержки наиболее часто встречающихся приложений, таких как электронная почта, передача файлов, удаленный доступ и т.д.

Резкий рост сети Internet и, естественно, ускоренное развитие стека протоколов TCP/IP потребовали от разработчиков создания серии документов, которые способствовали бы дальнейшему упорядоченному развитию протоколов. Организация Internet Activities Board (IAB ) разработала серию документов, называемых RFC (Request For Comments ). Некоторые RFC описывают сетевые сервисы или протоколы и их реализацию, другие документы описывают условия их применения. В том числе в RFC опубликованы стандарты стека протоколов TCP/IP. При этом следует иметь в виду, что стандарты TCP/IP всегда публикуются в виде документов RFC , но не все RFC определяют стандарты.

Документы RFC первоначально публиковались в электронном виде и могли комментироваться теми, кто принимал участие в их обсуждении. Документ мог претерпевать несколько изменений до тех пор, пока не будет достигнуто общее соглашение по его содержанию. Если документ при этом регламентировал новую идею, то ему присваивался номер, и он помещался к другим RFC . При этом каждому новому документу присваивается статус, регламентирующий необходимость его внедрения. Выход в свет нового документа RFC вовсе не означает, что все производители оборудования и программного обеспечения должны внедрять его в своей продукции. В приложении № 2 приведены описания некоторых документов RFC и их статусов.

1.Состояние стандартизации. Протокол может иметь несколько состояний:

стандарт на протокол утвержден;

стандарт на протокол предлагается к рассмотрению;

предлагается экспериментальный протокол;

протокол устарел и в настоящее время не используется.

2.Статус протокола. Протокол может иметь несколько статусов:

протокол требуется для внедрения;

протокол может внедряться производителем по выбору;

При эксплуатации сложной корпоративной сети возникает масса не связанных между собой проблем. Решить их функциональными возможностями одного протокола практически невозможно. Такой протокол должен был бы:

распознавать сбои в сети и восстанавливать ее работоспособность;

распределять пропускную способность сети и знать способы уменьшения потока данных при перегрузке;

распознавать задержки и потери пакетов, знать способ уменьшения ущерба от этого;

распознавать ошибки в данных и информировать о них прикладное программное обеспечение;

производить упорядоченное движение пакетов в сети.

Такое количество функциональных возможностей не под силу одному протоколу. Поэтому был создан набор взаимодействующих протоколов, названный стеком.

Так как стек протоколов TCP/IP был разработан до появления эталонной модели OSI , то соответствие его уровней уровням модели OSI достаточно условно. Структура стека протоколов TCP/IP приведена на рис. 1.1.

Рис. 1.1. Структура стека протоколов TCP/IP .

Рис. 1. 2. Путь передачи сообщений .

Теоретически посылка сообщения от одной прикладной программы к другой означает последовательную передачу сообщения вниз через соседние уровни стека у отправителя, передачу сообщений по уровню сетевого интерфейса (уровню IV ) или, в соответствии с эталонной моделью OSI , по физическому уровню, прием сообщения получателем и передачу его вверх через соседние уровни протокольного программного обеспечения. На практике взаимодействие уровней стека организовано гораздо сложнее. Каждый уровень принимает решение о корректности сообщения и производит определенное действие на основании типа сообщения или адреса назначения. В структуре стека протоколов TCP/IP имеется явный «центр тяжести» - это сетевой уровень и протокол IP в нем. Протокол IP может взаимодействовать с несколькими модулями протоколов более высокого уровня и несколькими сетевыми интерфейсами. То есть на практике процесс передачи сообщений от одной прикладной программы к другой будет выглядеть следующим образом: отправитель передает сообщение, которое на уровне III про токолом IP помещается в дейтаграмму и посылается в сеть (сеть 1). На промежуточных устройствах, например маршрутизаторах , дейтаграмма передается вверх до уровня протокола IP , который отправляет ее обратно вниз, в другую сеть (сеть 2). Когда дейтаграмма достигает получате ля, протокол IP выделяет сообщение и передает его на верхние уровни. Рис. 1.2 иллюстрирует данный процесс.

Структуру стека протоколов TCP/IP можно разделить на четыре уровня . Самый нижний - уровень сетевого интерфейса (уровень IV ) -соответствует физическому и канальному уровню модели OSI . В стеке протоколов TCP/IP этот уровень не регламентирован. Уровень сетево го интерфейса отвечает за прием дейтаграмм и передачу их по конкрет ной сети. Интерфейс с сетью может быть реализован драйвером уст ройства или сложной системой, которая использует свой протокол ка нального уровня (коммутатор, маршрутизатор ). Он поддерживает стан дарты физического и канального уровня популярных локальных сетей: Ethernet , Token Pang , FDDI и т.д. Для распределенных сетей поддержи ваются проколы соединений РРР и SLIP , а для глобальных сетей - протокол Х.25. Предусмотрена поддержка использования развивающейся технологии коммутации ячеек - ATM . Обычной практикой стало вклю чение в стек протоколов TCP/IP новых технологий локальных или рас пределенных сетей и регламентация их новыми документами RFC .

Сетевой уровень (уровень III ) - это уровень межсетевого взаимо действия. Уровень управляет взаимодействием между пользователями в сети. Он принимает от транспортного уровня запрос на посылку пакета от отправителя вместе с указанием адреса получателя. Уровень инкапсулирует пакет в дейтаграмму, заполняет ее заголовок и при необходи мости использует алгоритм маршрутизации. Уровень обрабатывает при ходящие дейтаграммы и проверяет правильность поступившей инфор мации. На стороне получателя программное обеспечение сетевого уровня удаляет заголовок и определяет, какой из транспортных протоколов будет обрабатывать пакет.

В качестве основного протокола сетевого уровня в стеке TCP/IP используется протокол IP , который и создавался с целью передачи ин формации в распределенных сетях. Достоинством протокола IP является возможность его эффективной работы в сетях со сложной топологи ей. При этом протокол рационально использует пропускную способ ность низкоскоростных линий связи. В основе протокола IP заложен дейтаграммный метод, который не гарантирует доставку пакета, но на правлен на ее осуществление.

К этому уровню относятся все протоколы, которые создают, под держивают и обновляют таблицы маршрутизации. Кроме того, на этом уровне функционирует протокол обмена информацией об ошибках меж ду маршрутизаторами в сети и отправителями.

Следующий уровень - транспортный (уровень II ) . Основной его задачей является обеспечение взаимодействия между прикладными про граммами. Транспортный уровень управляет потоком информации с обес печением надежной передачи. Для этого использован механизм подтвер ждения правильного приема с дублированием передачи утерянных или пришедших с ошибками пакетов. Транспортный уровень принимает дан ные от нескольких прикладных программ и посылает их более низкому уровню. При этом он добавляет дополнительную информацию к каждо му пакету, в том числе и значение вычисленной контрольной суммы.

На этом уровне функционирует протокол управления передачей данных TCP (Transmission Control Protocol ) и протокол передачи при кладных пакетов дейтаграммным методом UDP (User Datagram Protocol ). Протокол TCP обеспечивает гарантированную доставку данных за счет образования логических соединений между удаленными прикладными процессами. Работа протокола UDP аналогична работе протокола IP , но основной его задачей является выполнение функций связующего звена между сетевым протоколом и различными приложениями.

Самый верхний уровень (уровень I ) - прикладной . На нем реализованы широко используемые сервисы прикладного уровня. К ним от носятся: протокол передачи файлов между удаленными системами, про токол эмуляции удаленного терминала, почтовые протоколы и т.д. Каж дая прикладная программа выбирает тип транспортировки - либо не прерывный поток сообщений, либо последовательность отдельных со общений. Прикладная программа передает данные транспортному уров ню в требуемой форме.

Рассмотрение принципов функционирования стека протоколов TCP/IP целесообразно проводить, начиная с протоколов третьего уров ня. Это связано с тем, что протоколы более высоких уровней в своей работе опираются на функциональные возможности протоколов нижних уровней. Для понимания проблем маршрутизации в распределен ных сетях изучение протоколов рекомендуется проводить в следующей последовательности: IP , ARP , ICMP , UDP и TCP . Это связано с тем, что для доставки информации между удаленными системами в распределенной сети используется в той или иной степени все семейство сте ка протоколов TCP/IP.

Стек протоколов TCP/IP включает в свой состав большое число протоколов прикладного уровня. Эти протоколы выполняют различные функции, в том числе: управление сетью, передачу файлов, оказание распределенных услуг при использовании файлов, эмуляцию термина лов, доставку электронной почты и т.д. Протокол передачи файлов ( File Transfer Protocol - FTP ) обеспечивает перемещение файлов между ком пьютерными системами. Протокол Telnet обеспечивает виртуальную тер минальную эмуляцию. Простой протокол управления сетью ( Simple Network Management Protocol - SNMP ) является протоколом управле ния сетью, используемым для сообщений об аномальных условиях в сети и установления значений допустимых порогов в сети. Простой протокол передачи почты (Simple Mail Transfer Protocol - SMTP ) обеспечивает механизм передачи электронной почты. Эти протоколы и другие прило жения используют услуги стека TCP/IP для обеспечения пользователей базовыми сетевыми услугами.

Более подробно протоколы прикладного уровня стека протоколов TCP/IP в рамках данного материала не рассматриваются.

Перед рассмотрением протоколов стека TCP/IP введем базовые термины, определяющие названия фрагментов информации, передава емой между уровнями. Название блока данных, передаваемого по сети, зависит от того, на каком уровне стека протоколов он находится. Блок данных, с которым имеет дело сетевой интерфейс, называется кадром . Если блок данных находится между сетевым интерфейсом и сетевым уровнем, то он называется IP -дейтаграммой (или просто дейтаграм мой). Блок данных, циркулирующий между транспортным и сетевым уровнями и выше, называется IP -пакетом . На рис. 1.3 показано соот ветствие обозначений блоков данных уровням стека протоколов TCP/IP.


Рис. 1. 3. Обозначение фрагментов информации на уровнях стека TCP/IP.

Очень важно дополнить описание уровней стека протоколов TCP/IP описанием различия между передачей от отправителя непосредственно к получателю и передачей через несколько сетей. На рис. 4 показано различие между этими видами передач.


Рис. 1.4. Способы передачи информации.

При доставке сообщения через две сети с применением маршрутизатора оно использует два разных сетевых кадра (кадр 1 и кадр 2). Кадр 1 - для передачи от отправителя до маршрутизатора , кадр 2 - от маршрутизатора до получателя.

Прикладной и транспортный уровни могут устанавливать соединения, поэтому принцип разделения на уровни определяет, что пакет, принятый транспортным уровнем получателя, должен быть идентичен пакету, посланному транспортным уровнем отправителя.

Лекция 3. Стек TCP/IP. Базовые протоколы TCP/IP

Протокол TCP/IP является базовым транспортным сетевым прото- колом. Термин "TCP/IP" обычно обозначает все, что связано с протоколами TCP и IP. Он охватывает целое семейство протоколов, прикладные программы и даже саму сеть. В состав семейства входят протоколы UDP, ARP, ICMP, TELNET, FTP и многие другие.

Архитектура протоколов TCP/IP предназначена для объединенной сети, состоящей из соединенных друг с другом шлюзами отдельных разнородных пакетных подсетей, к которым подключаются разнородные машины. Каждая из подсетей работает в соответствии со своими специфическими требованиями и имеет свою природу средств связи. Однако предполагается, что каждая подсеть может принять пакет информации (данные с соответствующим сетевым заголовком) и доставить его по указанному адресу в этой конкретной подсети. Не требуется, чтобы подсеть гарантировала обязательную доставку пакетов и имела надежный сквозной протокол. Таким образом, две машины, подключенные к одной подсети, могут обмениваться пакетами.

Стек протоколов TCP/IP имеет четыре уровня (рисунок 3.1).

Рисунок 3.1 – Стек TCP/IP

Уровень IV соответствует уровню доступа к сети, который работает на основе стандартных протоколах физического и канального уровня, таких, как Ethernet, Token Ring, SLIP, PPP и других. Протоколы этого уровня отвечают за пакетную передачу данных в сети на уровне аппаратных средств.

Уровень III обеспечивает межсетевое взаимодействие при передаче пакетов данных из одной подсети в другую. При этом работает протокол IP.

Уровень II является основным и работает на базе протокола управления передачей TCP. Этот протокол необходим для надежной передачи сообщений между размещенными на разных машинах прикладными программами за счет образования виртуальных соединений между ними.

Уровень I – прикладной. Стек TCP/IP существует давно и он включает в себя большое количество протоколов и сервисов прикладного уровня (протокол передачи файлов FTP, протокол Telnet, протокол Gopher для доступа к ресурсам всемирного пространства GopherSpace, самый известный протокол HTTP для доступа к удаленным гипертекстовым базам данных во всемирный паутине и др.).

Все протоколы стека можно разделить на две группы: протоколы передачи данных, передающие полезные данные между двумя сторонами; служебные протоколы, необходимые для корректной работы сети.

Служебные протоколы обязательно используют какой-либо протокол передачи данных. Например, служебный протокол ICMP использует протокол IP. Интернет – совокупность всех связных компьютерных сетей, использующих протоколы стека TCP/IP.

Функции транспортного уровня. Протоколы TCP, UDP.

Четвертый уровень модели, предназначен для доставки данных без ошибок, потерь и дублирования в той последовательности, как они были переданы. При этом неважно, какие данные передаются, откуда и куда, то есть он предоставляет сам механизм передачи. Транспортным уровнем предоставляются следующие виды услуг:

– установление транспортного соединения;

– передача данных;

– разрыв транспортного соединения.

Функции, выполняемые транспортным уровнем:

– преобразование транспортного адреса в сетевой;

– мультиплексирование транспортных соединений в сетевые;

– установление и разрыв транспортных соединений;

– упорядочивание блоков данных по отдельным соединениям;

– обнаружение ошибок и необходимый контроль за качеством услуг;

– восстановление после ошибок;

– сегментирование, объединение и сцепление;

– управление потоком данных по отдельным соединениям;

– супервизорные функции;

– передача срочных транспортных блоков данных.

Протокол управления передачей TCP предоставляет надежную службу доставки пакетов, ориентированную на установление соединения.

Протокол TCP:

– гарантирует доставку IP-датаграмм;

– выполняет разбиение на сегменты и сборку больших блоков данных, отправляемых программами;

– обеспечивает доставку сегментов данных в нужном порядке;

– выполняет проверку целостности переданных данных с помощью контрольной суммы;

– посылает положительные подтверждения, если данные получены успешно. Используя избирательные подтверждения, можно также посылать отрицательные подтверждения для данных, которые не были получены;

– предлагает предпочтительный транспорт для программ, которым требуется надежная передача данных с установлением сеанса связи, например для баз данных «клиент-сервер» и программ электронной почты.

TCP основан на связи «точка – точка» между двумя узлами сети. TCP получает данные от программ и обрабатывает их как поток байтов. Байты группируются в сегменты, которым TCP присваивает последовательные номера, необходимые для правильной сборки сегментов на узле-приемнике.

Чтобы два узла TCP могли обмениваться данными, им нужно сначала установить сеанс связи друг с другом. Сеанс TCP инициализируется с помощью процесса, называемого трехэтапным установлением связи, котором синхронизируются номера последовательности и передается управляющая информация, необходимая для установления виртуального соединения между узлами. По завершении этого процесса установления связи начинается пересылка и подтверждение пакетов в последовательном порядке между этими узлами. Аналогичный процесс используется TCP перед прекращением соединения для того, чтобы убедиться, что оба узла закончили передачу и прием данных (рисунок 3.2).


Рисунок 3.2 – Формат заголовка сегмента TCP

Поля порт источника и порт получателя занимают по 2 байта и идентифицируют процесс-отправитель процесс-получатель. Поля порядковый номер и номер подтверждения (длины по 4 байта) нумеруют каждый отправленный или полученный байт данных. Реализуются как целые числа без знака, которые сбрасываются, когда достигают максимального значения. Каждая сторона ведет собственную порядковую нумерацию. Поле длина заголовка занимает 4 бита и представляет собой длину заголовка TCP-сегмента, измеренную в 32-битовых словах. Длина заголовка не фиксирована и может изменяться в зависимости от значений, устанавливаемых в поле параметры. Поле резерв занимает 6 бит. Поле флаги занимает 6 бит и содержит шесть 1-битовых флагов:

– флаг URG (Urgent Pointer – указатель точности) устанавливается в 1 в случае использования поля указатель на срочные данные;

– флаг ACK (Acknowledgment – подтверждение) устанавливается в 1 в случае, если поле номер подтверждения содержит данные. В противном случае это поле игнорируется;



– флаг PSH (Push – выталкивание) означает, что принимающий стек TCP должен немедленно информировать приложение о поступивших данных, а не ждать пока буфер заполнится;

– флаг RST (Reset – сброс) используется для отмены соединения: из-за ошибки приложения, отказа от неверного сегмента, попытки создать соединение при отсутствии затребованного сервиса;

– флаг SYN (Synchronize – синхронизация) устанавливается при инициировании соединения и синхронизации порядкового номера;

– флаг FIN (Finished – завершение) используется для разрыва соединения. Он указывает, что отправитель закончил передачу данных.

Поле размер окна (длина 2 байта) содержит количество байт, которое может быть послано после байта, получение которого уже подтверждено. Поле контрольная сумма (длина 2 байта) служит для повышения надежности. Оно содержит контрольную сумму заголовка, данных и псевдозаголовка. При выполнении вычислений поле контрольная сумма устанавливается равным нулю, а поле данных дополняется нулевым байтом, если его длина представляет собой нечетное число. Алгоритм вычисления контрольной суммы просто складывает все 16-разрядные слова в дополнительном коде, а затем вычисляет дополнение для всей суммы.

Протокол UDP, являясь дейтаграммным протоколом, реализует сервис по возможности, то есть не гарантирует доставку своих сообщений, а, следовательно, никоим образом не компенсирует ненадежность дейтаграммного протокола IP. Единица данных протокола UDP называется UDP-пакетом или пользовательской дейтаграммой. Каждая дейтаграмма переносит отдельное пользовательское сообщение. Это приводит к ограничению: длина дейтаграммы UDP не может превышать длины поля данных протокола IP, которое, в свою очередь, ограничено размером кадра технологии нижнего уровня. Поэтому если UDP-буфер переполняется, то данные приложения отбрасываются. Заголовок UDP-пакета, состоящий из четырех 2-байтовых полей, содержит поля порт источника, порт получателя, длина UDP и контрольная сумма (рисунок 3.3).

Поля порт источника и порт получателя идентифицируют передающий и получающий процессы. Поле длина UDP содержит длину пакета UDP в байтах. Поле контрольная сумма содержит контрольную сумму пакета UDP, вычисляемую по всему пакету UDP с добавленным псевдозаголовком.

Рисунок 3.3 – Формат заголовка пакета UDP

Основная литература: 2

Дополнительная литература: 7

Контрольные вопросы:

1. Каким протоколом в OSI является TCP/IP?

2. Для чего предназначена архитектура протоколов TCP/IP?

3. Какие уровни имеет стек TCP/IP?

4. Какие функции выполняет протокол управления передачей TCP?

5. Какие отличия существуют между протоколами TCP и UDP?

Стеки протоколов

Стек протоколов - это иерархически организованный набор сетевых протоколов различных уровней, достаточный для организации и обеспечения взаимодействия узлов в сети. В настоящее время в сетях используется большое количество стеков коммуникационных протоколов. Наиболее популярными являются стеки: TCP/IP, IPX/SPX, NetBIOS/SMB, Novell NetWare, DECnet, XNS, SNA и OSI. Все эти стеки, кроме SNA, на нижних уровнях - физическом и канальном - используют одни и те же хорошо стандартизованные протоколы Ethemet, Token Ring, FDDI и некоторые другие, которые позволяют использовать во всех сетях одну и ту же аппаратуру. Зато на верхних уровнях все стеки работают по своим собственным протоколам. Эти протоколы часто не соответствуют рекомендуемому моделью OSI разбиению на уровни. В частности, функции сеансового и представительного уровня, как правило, объединены с прикладным уровнем. Такое несоответствие связано с тем, что модель OSI появилась как результат обобщения уже существующих и реально используемых стеков, а не наоборот.

Все протоколы, входящие в стек, разработаны одним производителем, то есть они способны работать максимально быстро и эффективно.

Важным моментом в функционировании сетевого оборудования, в частности сетевого адаптера, является привязка протоколов. Она позволяет использовать разные стеки протоколов при обслуживании одного сетевого адаптера. Например, можно одновременно использовать стеки TCP/IP и IPX/SPX. Если вдруг при попытке установления связи с адресатом с помощью первого стека произошла ошибка, то автоматически произойдёт переключение на использование протокола из следующего стека. Важным моментом в данном случае является очередность привязки, поскольку она однозначно влияет на использование того или иного протокола из разных стеков.

Вне зависимости от того, какое количество сетевых адаптеров установлено в компьютере, привязка может осуществляться как «один к нескольким», так и «несколько к одному», то есть один стек протоколов можно привязать сразу к нескольким адаптерам или несколько стеков к одному адаптеру.

NetWare - сетевая операционная система и набор сетевых протоколов, которые используются в этой системе для взаимодействия с компьютерами-клиентами, подключёнными к сети. В основе сетевых протоколов системы лежит стек протоколов XNS. В настоящее время NetWare поддерживает протоколы TCP/IP и IPX/SPX. Novell NetWare была популярна в 80-е и 90-е года по причине большей эффективности в сравнении с операционными системами общего назначения. Ныне это устаревшая технология.

Стек протоколов XNS (Xerox Network Services Internet Transport Protocol) разработан компанией Xerox для передачи данных по сетям Ethernet. Содержит 5 уровней.

Уровень 1 - среда передачи - реализует функции физического и канального уровня в OSI-модели:

* управляет обменом данными между устройством и сетью;

* маршрутизирует данные между устройствами одной сети.

Уровень 2 - межсетевой - соответствует сетевому уровню в OSI- модели:

* управляет обменом данными между устройствами, находящимися в разных сетях (обеспечивает дейтаграммный сервис в терминах IEEE- модели) ;

* описывает способ прохождения данных через сеть.

Уровень 3 - транспортный - соответствует транспортному уровню в OSI-модели:

* обеспечивает связь "end-to-end" между источником и приемником данных.

Уровень 4 - контрольный - соответствует сессионному и представительному уровню в OSI-модели:

* управляет представлением данных;

* управляет контролем над ресурсами устройств.

Уровень 5 - прикладной - соответствует высшим уровням в OSI- модели:

* обеспечивает функции обработки данных для прикладных задач.

Стек протоколов TCP/IP (Transmission Control Protocol/Internet Protocol) на сегодня является наиболее распространенным и функциональным. Он работает в локальных сетях любых масштабов. Данный стек является основным стеком в глобальной сети Интернет. Поддержка стека была реализована в компьютерах c операционной системой UNIX. В результате популярность протокола TCP/IP возросла. В стек протоколов TCP/IP входит достаточно много протоколов, работающих на различных уровнях, но свое название он получил благодаря двум протоколам - TCP и IP.

TCP (Transmission Control Protocol) - транспортный протокол, предназначенный для управлением передачей данных в сетях, использующих стек протоколов TCP/ IP. IP (Internet Protocol) - протокол сетевого уровня, предназначенный для доставки данных в составной сети с использованием одного из транспортных протоколов, например TCP или UDP.

Нижний уровень стека TCP/IP использует стандартные протоколы передачи данных, что делает возможным его применение в сетях с использованием любых сетевых технологий и на компьютерах с любой операционной системой.

Изначально протокол TCP/IP разрабатывался для применения в глобальных сетях, именно поэтому он является максимально гибким. В частности, благодаря способности фрагментации пакетов данные, несмотря на качество канала связи, в любом случае доходят до адресата. Кроме того, благодаря наличию IP-протокола становится возможной передача данных между разнородными сегментами сети.

Недостатком TCP/IP-протокола является сложность администрирования сети. Так, для нормального функционирования сети требуется наличие дополнительных серверов, например DNS, DHCP и т. д., поддержание работы которых и занимает большую часть времени системного администратора. Лимончелли Т., Хоган К., Чейлап С. - Сестемное и сетевое администрирование. 2-е изд. 2009год. 944с

Стек протоколов IPX/SPX (Internetwork Packet Exchange/Sequenced Packet Exchange) является разработкой и собственностью компании Novell. Он был разработан для нужд операционной системы Novell NetWare, которая еще до недавнего времени занимала одну из лидирующих позиций среди серверных операционных систем.

Протоколы IPX и SPX работают на сетевом и транспортном уровнях модели ISO/ OSI соответственно, поэтому отлично дополняют друг друга.

Протокол IPX может передавать данные с помощью датаграмм, используя для этого информацию о маршрутизации в сети. Однако для того, чтобы передать данные по найденному маршруту, необходимо сначала установить соединение между отправителем и получателем. Этим и занимается протокол SPX или любой другой транспортный протокол, работающий в паре с IPX.

К сожалению, стек протоколов IPX/SPX изначально ориентирован на обслуживание сетей небольшого размера, поэтому в больших сетях его использование малоэффективно: излишнее использование широковещательного вещания на низкоскоростных линиях связи недопустимо.

На физическом и канальном уровнях стек OSI поддерживает протоколы Ethernet, Token Ring, FDDI, а также протоколы LLC, X.25 и ISDN, то есть использует все разработанные вне стека популярные протоколы нижних уровней, как и большинство других стеков. Сетевой уровень включает сравнительно редко используемые протоколы Connectionoriented Network Protocol (CONP) и Connectionless Network Protocol (CLNP). Протоколы маршрутизации стека OSI это ES-IS (End System -- Intermediate System) между конечной и промежуточной системами и IS-IS (Intermediate System -- Intermediate System) между промежуточными системами. Транспортный уровень стека OSI скрывает различия между сетевыми сервисами с установлением соединения и без установления соединения, так что пользователи получают требуемое качество обслуживания независимо от нижележащего сетевого уровня. Чтобы обеспечить это, транспортный уровень требует, чтобы пользователь задал нужное качество обслуживания. Службы прикладного уровня обеспечивают передачу файлов, эмуляцию терминала, службу каталогов и почту. Из них наиболее популярными являются служба каталогов (стандарт Х.500), электронная почта (Х.400), протокол виртуального терминала (VTP), протокол передачи, доступа и управления файлами (FTAM), протокол пересылки и управления работами (JTM).

Достаточно популярный стек протоколов, разработкой которого занимались компании IBM и Microsoft, соответственно, ориентированный на использование в продуктах этих компаний. Как и у TCP/IP, на физическом и канальном уровне стека NetBIOS/SMB работают стандартные протоколы, такие как Ethernet, Token Ring и другие, что делает возможным его использование в паре с любым активным сетевым оборудованием. На верхних же уровнях работают протоколы NetBIOS (Network Basic Input/Output System) и SMB (Server Message Block).

Протокол NetBIOS был разработан в середине 80-х годов прошлого века, но вскоре был заменен на более функциональный протокол NetBEUI (NetBIOS Extended User Interface), позволяющий организовать очень эффективный обмен информацией в сетях, состоящих не более чем из 200 компьютеров.

Для обмена данными между компьютерами используются логические имена, присваиваемые компьютерам динамически при их подключении к сети. При этом таблица имен распространяется на каждый компьютер сети. Поддерживается также работа с групповыми именами, что позволяет передавать данные сразу нескольким адресатам.

Главные плюсы протокола NetBEUI - скорость работы и очень малые требования к ресурсам. Если требуется организовать быстрый обмен данными в небольшой сети, состоящей из одного сегмента, лучшего протокола для этого не найти. Кроме того, для доставки сообщений установленное соединение не является обязательным требованием: в случае отсутствия соединения протокол использует датаграммный метод, когда сообщение снабжается адресом получателя и отправителя и «пускается в путь», переходя от одного компьютера к другому.

Однако NetBEUI обладает и существенным недостатком: он полностью лишен понятия о маршрутизации пакетов, поэтому его использование в сложных составных сетях не имеет смысла. Пятибратов А.П.,Гудыно Л.П.,Кириченко А.А.Вычислительные машины, сети и телекоммуникационные системы Москва 2009год. 292с

Что касается протокола SMB (Server Message Block), то с его помощью организуется работа сети на трех самых высоких уровнях - сеансовом, уровне представления и прикладном уровне. Именно при его использовании становится возможным доступ к файлам, принтерам и другим ресурсам сети. Данный протокол несколько раз был усовершенствован (вышло три его версии), что позволило применять его даже в таких современных операционных системах, как Microsoft Vista и Windows 7. Протокол SMB универсален и может работать в паре практически с любым транспортным протоколом, например TCP/IP и SPX.

Стек протоколов DECnet (Digital Equipment Corporation net) содержит 7 уровней. Несмотря на разницу в терминологии, уровни DECnet очень похожи на уровни OSI-модели. DECnet реализует концепцию сетевой архитектуры DNA (Digital Network Architecture), разработанную фирмой DEC, согласно которой разнородные вычислительные системы (ЭВМ разных классов), функционирующие под управлением различных операционных систем, могут быть объединены в территориально-распределенные информационно-вычислительные сети.

Протокол SNA (System Network Architecture) компании IBM предназначен для удаленной связи с большими компьютерами и содержит 7 уровней. SNA основана на концепции главной (хост) -машины и обеспечивает доступ удаленных терминалов к мейнфреймам IBM. Основной отличительной чертой SNA является наличие возможности доступа каждого терминала к любой прикладной программе главной ЭВМ. Системная сетевая архитектура реализована на базе виртуального телекоммуникационного метода доступа (Virtual Telecommunication Access Method - VTAM) в главной ЭВМ. VTAM управляет всеми линиями связи и терминалами, причем каждый терминал имеет доступ ко всем прикладным программам.

Согласованный набор протоколов разных уровней, достаточный для организации межсетевого взаимодействия, называется стеком протоколов . Для каждого уровня определяется набор функций–запросов для взаимодействия с выше лежащим уровнем, который называетсяинтерфейсом . Правила взаимодействия двух машин могут быть описаны в виде набора процедур для каждого из уровней, которые называютсяпротоколами .

Существует достаточно много стеков протоколов, широко применяемых в сетях. Это и стеки, являющиеся международными и национальными стандартами, и фирменные стеки, получившие распространение благодаря распространенности оборудования той или иной фирмы. Примерами популярных стеков протоколов могут служить стек IPX/SPX фирмы Novell, стек TCP/IP, используемый в сетиInternetи во многих сетях на основе операционной системы UNIX, стек OSI международной организации по стандартизации, стек DECnet корпорацииDigitalEquipmentи некоторые другие.

Стеки протоколов разбиваются на три уровня:

  • транспортные;

    прикладные.

Сетевые протоколы

Сетевые протоколы предоставляют следующие услуги: адресацию и маршрутизацию информации, проверку на наличие ошибок, запрос повторной передачи и установление правил взаимодействия в конкретной сетевой среде. Ниже приведены наиболее популярные сетевые протоколы.

    DDP (DatagramDeliveryProtocol– Протокол доставки дейтаграмм).Протокол передачи данныхApple, используемый вAppleTalk.

    IP (Internet Protocol – Протокол Internet). Протокол стека TCP/IP, обеспечивающий адресную информацию и информацию о маршрутизации.

    IPX (InternetworkPacketeXchange– Межсетевой обмен пакетами) в NWLink.ПротоколNovelNetWare, используемый для маршрутизации и направления пакетов.

    NetBEUI (NetBIOSExtendedUserInterface– расширенный пользовательский интерфейс базовой сетевой системы ввода вывода). Разработанный совместно IBM иMicrosoft, этот протокол обеспечивает транспортные услуги дляNetBIOS.

Транспортные протоколы

Транспортные протоколы предоставляют следующие услуги надежной транспортировки данных между компьютерами. Ниже приведены наиболее популярные транспортные протоколы.

    ATP (AppleTalkProtocol– Транзакционный протоколAppleTalk) и NBP (NameBindingProtocol– Протокол связывания имен). Сеансовый и транспортный протоколыAppleTalk.

    NetBIOS (Базовая сетевая система ввода вывода). NetBIOS Устанавливает соединение между компьютерами, аNetBEUI предоставляет услуги передачи данных для этого соединения.

    SPX (SequencedPacketeXchange– Последовательный обмен пакетами) в NWLink.ПротоколNovelNetWare, используемый для обеспечения доставки данных.

    TCP (TransmissionControlProtocol– Протокол управления передачей).Протокол стека TCP/IP, отвечающий за надежную доставку данных.

Прикладные протоколы

Прикладные протоколы отвечают за взаимодействие приложений. Ниже приведены наиболее популярные прикладные протоколы.

    AFP (Apple Talk File Protocol – Файловый протокол Apple Talk).Протокол удаленного управления файламиMacintosh.

    FTP (File Transfer Protocol – Протокол передачи файлов). Протокол стека TCP/IP,используемый для обеспечения услуг по передачи файлов.

    NCP (NetWare Core Protocol – Базовый протокол NetWare). Оболочка и редиректоры клиентаNovelNetWare.

    SNMP (SimpleNetworkManagementProtocol– Простой протокол управления сетью).Протокол стека TCP/IP, используемый дляуправления и наблюдения за сетевыми устройствами.

    HTTP (HyperTextTransferProtocol) – протокол передачи гипертекста и другие протоколы.

Большинство протоколов (все из перечисленных, кроме SNA) одинаковы на физическом и на канальном уровне, но на других уровнях как правило используют разные протоколы.

Литература

  • В. Г. Олифер, Н. А. Олифер, Компьютерные сети. Принципы, технологии, протоколы., СПб.: Питер, 2002. - 672 стр. ISBN 5-8046-0133-4

Wikimedia Foundation . 2010 .

Смотреть что такое "Стек протоколов" в других словарях:

    Собирательное название для сетевых протоколов разных уровней, используемых в сетях. Слово стек (англ. stack, стопка) подразумевает, что протокол TCP работает поверх IP (англ. Transmission Control Protocol/Internet Protocol) Словарь бизнес… … Словарь бизнес-терминов

    - … Википедия

    Стек структура данных с методом доступа к элементам LIFO. Стек (трость) короткая тонкая трость с ременной петлей на конце. Стек (азартные игры) в казино, игорном бизнесе стопка из 20 фишек. Стек (компания) крупная российская телекоммуникационная… … Википедия

    Необходимо проверить качество перевода и привести статью в соответствие со стилистическими правилами Википедии. Вы можете помочь улучшить эту статью, исправив в ней ошибки. Оригинал на англ … Википедия

    Простое представление стека У этого термина существуют и другие значения, см. Стек (значения). Стек (англ. stack стоп … Википедия

    Таблица сетевых протоколов по функциональному назначению содержит список всех существующих (а также существовавших в прошлом) протоколов, имеющих отношение к компьютерным сетям (сетевые протоколы). Сетевой протокол набор правил,… … Википедия

    набор протоколов - пакет протоколов стек протоколов комплект протоколов — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы пакет протоколовстек протоколовкомплект… … Справочник технического переводчика

    Стек протоколов TCP/IP (англ. Transmission Control Protocol/Internet Protocol) собирательное название для сетевых протоколов разных уровней, используемых в сетях. Слово «стек» (англ. stack, стопка) подразумевает, что протокол IP. В модели OSI… … Википедия

    Стек протоколов ОКС7 Уровень Протоколы Пользовательский INAP, MAP, IS 41, ... TCAP, CAP, ISUP, ... Сетевой MTP3 + SCCP Канальный MTP2 Физический MTP1 Система сигнализации N7 (ОКС 7) это набор сигнальных телефонных протоколов, используемых для… … Википедия

Книги

  • Стек протоколов ОКС 7. Подсистема SCCP: справочник , Гольдштейн Б.С., Ехриель И.М., Рерле Р.Д.. 320 стр. Справочник по подсистеме SCCP (Signalling Connection Control Part) стека протоколов общеканальной сигнализации 7. Рассматриваются общие принципы и понятия, процедуры, форматы…
  • Стек протоколов ОКС 7. Подсистема ISUP. Справочник , Б. С. Гольдштейн, И. М. Ехриель, Р. Д. Рерле. Справочник по подсистеме ISUP (ISDN User Part) стека протоколов общеканальной сигнализации 7. Рассматриваются общие принципы и понятия, процедуры, форматы сообщений и параметров, средства и…



Top