Стандарт WCDMA или GSM: в чем разница между ними? Стандарты WCDMA или GSM - в чем разница между ними

(2 Generation) (1G - аналоговая сотовая связь, 2G - цифровая сотовая связь, 3G - широкополосная цифровая сотовая связь, коммутируемая многоцелевыми компьютерными сетями , в том числе Интернет).

В зависимости от количества диапазонов, телефоны подразделяются на классы и вариацию частот в зависимости от региона использования.

  • Однодиапазонные - телефон может работать в одной полосе частот. В настоящее время не выпускаются, но существует возможность ручного выбора определённого диапазона частот в некоторых моделях телефонов, например Motorola C115, или с помощью инженерного меню телефона.
  • Двухдиапазонные (Dual Band) - для Европы, Азии, Африки, Австралии 900/1800 и 850/1900 для Америки и Канады.
  • Трёхдиапазонные (Tri Band) - для Европы, Азии, Африки, Австралии 900/1800/1900 и 850/1800/1900 для Америки и Канады.
  • Четырехдиапазонные (Quad Band) - поддерживают все диапазоны 850/900/1800/1900.

Коммерческие сети GSM начали действовать в Европейских странах в середине г. GSM разработан позже, чем аналоговая сотовая связь и во многих отношениях была лучше спроектирована. Северо-Американский аналог - PCS, вырастил из своих корней стандарты включая цифровые технологии TDMA и CDMA , но для CDMA потенциальное улучшение качества обслуживания так и не было никогда подтверждено.

GSM Phase 1

1982 (Groupe Spécial Mobile) - 1990 г. Global System for Mobile Communications. Первая коммерческая сеть в январе г. Цифровой стандарт, поддерживает скорость передачи данных до 9,6 кбит/с. Полностью устарел, производство оборудования под него прекращено.

В 1991 году были введены услуги стандарта GSM «ФАЗА 1».

Подсистема базовых станций

Антенны трех базовых станций на мачте

BSS состоит из собственно базовых станций (BTS - Base Transceiver Station) и контроллеров базовых станций (BSC - Base Station Controller). Область, накрываемая сетью GSM, разбита на соты шестиугольной формы. Диаметр каждой шестиугольной ячейки может быть разным - от 400 м до 50 км. Максимальный теоретический радиус ячейки составляет 120 км , что обусловлено ограниченной возможностью системы синхронизации к компенсации времени задержки сигнала. Каждая ячейка покрывается одной BTS, при этом ячейки частично перекрывают друг друга, тем самым сохраняется возможность передачи обслуживания MS при перемещении её из одной соты в другую без разрыва соединения (Операция передачи обслуживания мобильного телефона (MS) от одной базовой станции (BTS) к другой в момент перехода мобильного телефона границы досягаемости текущей базовой станции во время разговора, или GPRS-сессии называется техническим термином «Handover» ). Естественно, что на самом деле сигнал от каждой станции распространяется, покрывая площадь в виде круга, но при пересечении получаются правильные шестиугольники. Каждая база имеет шесть соседних в связи с тем, что в задачи планирования размещения станций входила такая, как минимизация зон перекрывания сигнала от каждой станции. Большее число соседних станций, чем 6 - особых выгод не несёт. Рассматривая границы покрытия сигнала от каждой станции уже в зоне перекрытия, как раз получаем - шестиугольники.

Базовая станция (BTS) обеспечивает приём/передачу сигнала между MS и контроллером базовых станций. BTS является автономной и строится по модульному принципу. Направленные антенны базовых станций могут располагаться на вышках, крышах зданий и т. д.

Контроллер базовых станций (BSC) контролирует соединения между BTS и подсистемой коммутации. В его полномочия также входит управление очерёдностью соединений, скоростью передачи данных, распределение радиоканалов, сбор статистики, контроль различных радиоизмерений, назначение и управление процедурой Handover.

Подсистема коммутации

NSS состоит из нижеследующих компонентов.

Центр коммутации (MSC - Mobile Switching Centre)

MSC контролирует определённую географическую зону с расположенными на ней BTS и BSC. Осуществляет установку соединения к абоненту и от него внутри сети GSM, обеспечивает интерфейс между GSM и ТфОП , другими сетями радиосвязи, сетями передачи данных. Также выполняет функции маршрутизации вызовов, управление вызовами, эстафетной передачи обслуживания при перемещении MS из одной ячейки в другую. После завершения вызова MSC обрабатывает данные по нему и передаёт их в центр расчётов для формирования счета за предоставленные услуги, собирает статистические данные. MSC также постоянно следит за положением MS, используя данные из HLR и VLR, что необходимо для быстрого нахождения и установления соединения с MS в случае её вызова.

Домашний регистр местоположения (HLR - Home Location Registry)

Содержит базу данных абонентов, приписанных к нему. Здесь содержится информация о предоставляемых данному абоненту услугах, информация о состоянии каждого абонента, необходимая в случае его вызова, а также Международный Идентификатор Мобильного Абонента (IMSI - International Mobile Subscriber Identity), который используется для аутентификации абонента (при помощи AUC). Каждый абонент приписан к одному HLR. К данным HLR имеют доступ все MSC и VLR в данной GSM-сети, а в случае межсетевого роуминга - и MSC других сетей.

Гостевой регистр местоположения (VLR - Visitor Location Registry)

VLR обеспечивает мониторинг передвижения MS из одной зоны в другую и содержит базу данных о перемещающихся абонентах, находящихся в данный момент в этой зоне, в том числе абонентах других систем GSM - так называемых роумерах. Данные об абоненте удаляются из VLR в том случае, если абонент переместился в другую зону. Такая схема позволяет сократить количество запросов на HLR данного абонента и, следовательно, время обслуживания вызова.

Регистр идентификации оборудования (EIR - Equipment Identification Registry)

Содержит базу данных, необходимую для установления подлинности MS по IMEI (International Mobile Equipment Identity). Формирует три списка: белый (допущен к использованию), серый (некоторые проблемы с идентификацией MS) и чёрный (MS, запрещённые к применению). У российских операторов (и большей части операторов стран СНГ) используются только белые списки, что не позволяет раз и навсегда решить проблему кражи мобильных телефонов.

Центр аутентификации (AUC - Authentification Centre)

Здесь производится аутентификация абонента, а точнее - SIM (Subscriber Identity Module). Доступ к сети разрешается только после прохождения SIM процедуры проверки подлинности, в процессе которой с AUC на MS приходит случайное число RAND, после чего на AUC и MS параллельно происходит шифрование числа RAND ключом Ki для данной SIM при помощи специального алгоритма. Затем с MS и AUC на MSC возвращаются «подписанные отклики» - SRES (Signed Response), являющиеся результатом данного шифрования. На MSC отклики сравниваются, и в случае их совпадения аутентификация считается успешной.

Подсистема OMC (Operations and Maintenance Centre)

Соединена с остальными компонентами сети и обеспечивает контроль качества работы и управление всей сетью. Обрабатывает аварийные сигналы, при которых требуется вмешательство персонала. Обеспечивает проверку состояния сети, возможность прохождения вызова. Производит обновление программного обеспечения на всех элементах сети и ряд других функций.

См. также

  • Список моделей GPS-трекеров
  • GSM-терминал

Примечания

Ссылки

  • Ассоциация GSMA (The GSM Association) (англ.)
  • 3GPP - Текущий уровень стандартизации GSM, свободные стандарты (англ.)
  • Схема нумерации спецификаций 3GPP (англ.)
  • (англ.)
  • Буклет ВОЗ «Построение диалога о рисках от электромагнитных полей» (pdf 2.68Mb)
  • «Предложения ВОЗ по Проекту Изучения Влияния Электромагнитных Полей; Влияние Радиополей Мобильных Телекоммуникаций на Здоровье; Рекомендации Органам Государственной Власти»

По состоянию на ноябрь 2007г. в России было около 168 млн. абонентов мобильной связи. При этом 85 % из них - клиенты GSM-операторов "большой тройки" - "Мобильных телесистем" (МТС), "Мегафона" и "Вымпелкома". Несмотря на то, что годовые темпы прироста постоянно сокращаются, уровень проникновения сотовых услуг в целом по России составляет 107%, при этом в Московской лицензионной зоне (МЛЗ) этот показатель составил 164%.

Лидерство в приросте абонентской базы в общероссийском масштабе удерживает Мегафон, а в МЛЗ он уступает по этому показателю компании МТС. Среди федеральных и региональных операторов наиболее высокие темпы прироста абонентов в годовом исчислении демонстрируют Tele2, НТК, Байкалвестком и Енисейтелеком.

Региональные GSM-операторы, не входящие в "большую сотовую тройку", ищут способ конкурентной борьбы с гигантами рынка. Большинство независимых GSM-операторов в России появились в последние несколько лет на базе операторов устаревшего стандарта AMPS. Все они в 2001-2002 гг. получили от Минсвязи лицензии, дающие им право на работу в стандарте GSM-1800.
Сейчас эти компании одна за другой запускают GSM-сети, но их абоненты, оказавшись в других регионах, вынуждены платить за связь в роуминге по $1-$1,5 за минуту. Теперь эти компании намерены договориться о единых роуминговых тарифах друг для друга, что позволит абонентам сетей при перемещении по стране ощущать себя не хуже клиентов МТС, "Вымпелкома" и "МегаФона", для которых единые и сравнительно низкие тарифы на внутрисетевой роуминг являются одним из ключевых преимуществ операторов "большой тройки".

Открытое Акционерное Общество «Мобильные ТелеСистемы» (МТС) - крупнейший оператор сотовой связи в России и странах СНГ, обслуживающий более 74 миллионов абонентов. Лицензионный портфель МТС включает большинство регионов России, Украину, Белоруссию, Узбекистан и Туркменистан, а население, проживающее в зоне действия сети МТС, составляет более 230 миллионов человек.
Компания "Мобильные ТелеСистемы" была образована в октябре 1993 года. 19 ноября 1993 года МТС получила первую лицензию на оказание услуг сотовой связи стандарта GSM. 15 мая 1994 г. были совершены первые звонки в сети МТС и уже 7 июля 1994 года МТС начала подключать первых абонентов.
В июне 2002 года МТС запустила сеть в Республике Беларусь. В марте 2003 года МТС приобрела контрольный пакет акций UMC, ведущего оператора мобильной связи в Украине.

ОАО "Мегафон" - общероссийский оператор мобильной связи стандарта GSM 900/1800. Образован в мае 2002 года. Лицензионная территория ОАО "МегаФон" охватывает 100% территории России - все 89 субъектов РФ, где проживает 145 миллионов человек. МегаФон - первый общероссийский оператор мобильной связи стандарта GSM 900/1800.

ОАО "ВымпелКом" является оператором сотовой связи в России, предоставляющим свои услуги под торговой маркой "Билайн". Лицензии на предоставление услуг сотовой связи группы компаний "ВымпелКом" охватывают территорию, на которой проживает 94% населения России, включая Москву, Московскую область и Санкт-Петербург. Сеть "Билайн" работает на территории 76 субъектов РФ.
Компания "ВымпелКом" организована 15сентября 1992 г. В июне 1997 года осуществлен успешный запуск первой в России сети стандарта GSM-1800- "БИЛАЙН 1800". 21 октября 1998 года компания успешно запустила в Москве первую очередь двухдиапазонной сети GSM-900/1800.
24 марта 1999 года АО "ВымпелКом" вошел в число членов Ассоциации Операторов GSM, которая объединяет компании, работающие встандарте GSM-900 и GSM-1800 на территории России и ряда стран СНГ.

ЗАО «СредневолжскаяМежрегиональная Ассоциация РадиоТелекоммуникационных Систем» (СМАРТС) было основано в мае 1991 г. в Самаре. Учредителями компании на 95% являются физические лица. Сейчас GSM-сеть СМАРТС охватывает 16 регионов России. На сегодняшний день СМАРТС заключила роуминговые соглашения практически со всеми российскими сетями в 74 регионах. Мировой роуминг у компании действует в 78 странах.

ОАО"Уралсвязьинформ" –крупнейший оператор мобильной связи и интернет-услуг Уральского региона. Компания работает на территории семи субъектов РФ общей площадью 1,9 млн. кв. км с населением более 15 млн. человек

НСС Нижегородская Сотовая Связь - в конце июня 1995 года компания начала работу с абонентами. В 1999 году компания наладила связь с миром посредством международного роуминга.

ОАО "Сибирьтелеком" - это крупнейший оператор телекоммуникационных услуг в Сибирском федеральном округе. Компания действует на территории около 5 тыс.кв.км с численностью населения порядка 21 млн. человек.

TELE2 , до 1993года известная под названием Comviq, была основана в Швеции в 1981 году. В России TELE2 являетс явладельцем 12 российских компаний-операторов мобильной связи. Первая в России сеть мобильной связи TELE2 была запущена в Иркутске 1 апреля 2003 года.

Знаете ли вы, что

Сети GSM. Взгляд изнутри.

Немного истории

На заре развития мобильной связи (а было это не так давно - в начале восьмидесятых) Европа покрывалась аналоговыми сетями самых разных стандартов - Скандинавия развивала свои системы, Великобритания свои… Сейчас уже сложно сказать, кто был инициатором последовавшей очень скоро революции - "верхи" в виде производителей оборудования, вынужденные разрабатывать для каждой сети собственные устройства, или "низы" в качестве пользователей, недовольные ограниченной зоной действия своего телефона. Так или иначе, в 1982 году Европейской Комиссией по Телекоммуникациям (CEPT) была создана специальная группа для разработки принципиально новой, общеевропейской системы мобильной связи. Основными требованиями, предъявляемыми к новому стандарту, были: эффективное использование частотного спектра, возможность автоматического роуминга, повышенное качество речи и защиты от несанкционированного доступа по сравнению с предшествующими технологиями, а также, очевидно, совместимость с другими существующими системами связи (в том числе проводными) и тому подобное.

Плодом упорного труда многих людей из разных стран (честно говоря, мне даже страшно представить себе объем проделанной ими работы!) стала представленная в 1990 году спецификация общеевропейской сети мобильной связи, названная Global System for Mobile Communications или просто GSM. А дальше все замелькало, как в калейдоскопе - первый оператор GSM принял абонентов в 1991 году, к началу 1994 года сети, основанные на рассматриваемом стандарте, имели уже 1.3 миллиона подписчиков, а к концу 1995 их число увеличилось до 10 миллионов! Воистину, "GSM шагает по планете" - в настоящее время телефоны этого стандарта имеют около 200 миллионов человек, а GSM-сети можно найти по всему миру.

Давайте же попробуем разобраться, как организованы и на каких принципах функционируют сети GSM. Сразу скажу, что задача предстоит не из легких, однако, поверьте - в результате мы получим истинное наслаждение от красоты технических решений, используемых в этой системе связи.

За рамками рассмотрения останутся два очень важных вопроса: во-первых, частотно-временное разделение каналов (с этим можно ознакомиться ) и, во-вторых, системы шифрования и защиты передаваемой речи (это настолько специфичная и обширная тема, что, возможно, в будущем ей будет посвящен отдельный материал).

Основные части системы GSM, их назначение и взаимодействие друг с другом.

Начнем с самого сложного и, пожалуй, скучного - рассмотрения скелета (или, как принято говорить на военной кафедре моего Alma Mater, блок-схемы) сети. При описании я буду придерживаться принятых во всем мире англоязычных сокращений, конечно, давая при этом их русскую трактовку.

Взгляните на рис. 1:

Рис.1 Упрощенная архитектура сети GSM.

Самая простая часть структурной схемы - переносной телефон, состоит из двух частей: собственно "трубки" - МЕ (Mobile Equipment - мобильное устройство) и смарт-карты SIM (Subscriber Identity Module - модуль идентификации абонента), получаемой при заключении контракта с оператором. Как любой автомобиль снабжен уникальным номером кузова, так и сотовый телефон имеет собственный номер - IMEI (International Mobile Equipment Identity - международный идентификатор мобильного устройства), который может передаваться сети по ее запросу (более подробно про IMEI можно узнать ). SIM , в свою очередь, содержит так называемый IMSI (International Mobile Subscriber Identity - международный идентификационный номер подписчика). Думаю, разница между IMEI и IMSI ясна - IMEI соответствует конкретному телефону, а IMSI - определенному абоненту.

"Центральной нервной системой" сети является NSS (Network and Switching Subsystem - подсистема сети и коммутации), а компонент, выполняющей функции "мозга" называется MSC (Mobile services Switching Center - центр коммутации). Именно последний всуе называют (иногда с придыханием) "коммутатор", а также, при проблемах со связью, винят во всех смертных грехах. MSC в сети может быть и не один (в данном случае очень уместна аналогия с многопроцессорными компьютерными системами) - например, на момент написания статьи московский оператор Билайн внедрял второй коммутатор (производства Alcatel). MSC занимается маршрутизацией вызовов, формированием данных для биллинговой системы, управляет многими процедурами - проще сказать, что НЕ входит в обязанности коммутатора, чем перечислять все его функции.

Следующими по важности компонентами сети, также входящими в NSS , я бы назвал HLR (Home Location Register - реестр собственных абонентов) и VLR (Visitor Location Register - реестр перемещений). Обратите внимание на эти части, в дальнейшем мы будем часто упоминать их. HLR , грубо говоря, представляет собой базу данных обо всех абонентах, заключивших с рассматриваемой сетью контракт. В ней хранится информация о номерах пользователей (под номерами подразумеваются, во-первых, упоминавшийся выше IMSI , а во-вторых, так называемый MSISDN -Mobile Subscriber ISDN, т.е. телефонный номер в его обычном понимании), перечень доступных услуг и многое другое - далее по тексту часто будут описываться параметры, находящиеся в HLR .

В отличие от HLR , который в системе один, VLR `ов может быть и несколько - каждый из них контролирует свою часть сети. В VLR содержатся данные об абонентах, которые находятся на его (и только его!) территории (причем обслуживаются не только свои подписчики, но и зарегистрированные в сети роумеры). Как только пользователь покидает зону действия какого-то VLR , информация о нем копируется в новый VLR , а из старого удаляется. Фактически, между тем, что есть об абоненте в VLR и в HLR , очень много общего - посмотрите таблицы, где приведен перечень долгосрочных (табл.1) и временных (табл.2 и 3) данных об абонентах, хранящихся в этих реестрах. Еще раз обращаю внимание читателя на принципиальное отличие HLR от VLR : в первом расположена информация обо всех подписчиках сети, независимо от их местоположения, а во втором - данные только о тех, кто находится на подведомственной этому VLR территории. В HLR для каждого абонента постоянно присутствует ссылка на тот VLR , который с ним (абонентом) сейчас работает (при этом сам VLR может принадлежать чужой сети, расположенной, например, на другом конце Земли).

1. Международный идентификационный номер подписчика (IMSI )
2. Телефонный номер абонента в обычном смысле (MSISDN )
3. Категория подвижной станции
4. Ключ идентификации абонента (Ki )
5. Виды обеспечения дополнительными услугами
6. Индекс закрытой группы пользователей
7. Код блокировки закрытой группы пользователей
8. Состав основных вызовов, которые могут быть переданы
9. Оповещение вызывающего абонента
10. Идентификация номера вызываемого абонента
11. График работы
12. Оповещение вызываемого абонента
13. Контроль сигнализации при соединении абонентов
14. Характеристики закрытой группы пользователей
15. Льготы закрытой группы пользователей
16. Запрещенные исходящие вызовы в закрытой группе пользователей
17. Максимальное количество абонентов
18. Используемые пароли
19. Класс приоритетного доступа
Таблица 1. Полный состав долгосрочных данных, хранимых в HLR и VLR .
1. Параметры идентификации и шифрования
2. Временный номер мобильного абонента (TMSI )
3. Адрес реестра перемещения, в котором находится абонент (VLR )
4. Зоны перемещения подвижной станции
5. Номер соты при эстафетной передаче
6. Регистрационный статус
7. Таймер отсутствия ответа
8. Состав используемых в данный момент паролей
9. Активность связи
Таблица 2. Полный состав временных данных, хранимых в HLR .
Таблица 3. Полный состав временных данных, хранимых в VLR .

NSS содержит еще два компонента - AuC (Authentication Center - центр авторизации) и EIR (Equipment Identity Register - реестр идентификации оборудования). Первый блок используется для процедур установления подлинности абонента, а второй, как следует из названия, отвечает за допуск к эксплуатации в сети только разрешенных сотовых телефонов. Подробно работа этих систем будет рассмотрена в следующем разделе, посвященном регистрации абонента в сети.

Исполнительной, если так можно выразиться, частью сотовой сети, является BSS (Base Station Subsystem - подсистема базовых станций). Если продолжать аналогию с человеческим организмом, то эту подсистему можно назвать конечностями тела. BSS состоит из нескольких "рук" и "ног" - BSC (Base Station Controller - контроллер базовых станций), а также множества "пальцев" - BTS (Base Transceiver Station - базовая станция). Базовые станции можно наблюдать повсюду - в городах, полях (чуть не сказал "и реках") - фактически это просто приемно-передающие устройства, содержащие от одного до шестнадцати излучателей. Каждый BSC контролирует целую группу BTS и отвечает за управление и распределение каналов, уровень мощности базовых станций и тому подобное. Обычно BSC в сети не один, а целое множество (базовых станций же вообще сотни).

Управляется и координируется работа сети с помощью OSS (Operating and Support Subsystem - подсистема управления и поддержки). OSS состоит из всякого рода служб и систем, контролирующих работу и трафик - дабы не перегружать читателя информацией, работа OSS ниже рассматриваться не будет.

Регистрация в сети.

При каждом включении телефона после выбора сети начинается процедура регистрации. Рассмотрим наиболее общий случай - регистрацию не в домашней, а в чужой, так называемой гостевой, сети (будем предполагать, что услуга роуминга абоненту разрешена).

Пусть сеть найдена. По запросу сети телефон передает IMSI абонента. IMSI начинается с кода страны "приписки" его владельца, далее следуют цифры, определяющие домашнюю сеть, а уже потом - уникальный номер конкретного подписчика. Например, начало IMSI 25099… соответствует российскому оператору Билайн. (250-Россия, 99 - Билайн). По номеру IMSI VLR гостевой сети определяет домашнюю сеть и связывается с ее HLR . Последний передает всю необходимую информацию об абоненте в VLR , который сделал запрос, а у себя размещает ссылку на этот VLR , чтобы в случае необходимости знать, "где искать" абонента.

Очень интересен процесс определения подлинности абонента. При регистрации AuC домашней сети генерирует 128-битовое случайное число - RAND, пересылаемое телефону. Внутри SIM с помощью ключа Ki (ключ идентификации - так же как и IMSI , он содержится в SIM ) и алгоритма идентификации А3 вычисляется 32-битовый ответ - SRES (Signed RESult) по формуле SRES = Ki * RAND. Точно такие же вычисления проделываются одновременно и в AuC (по выбранному из HLR Ki пользователя). Если SRES , вычисленный в телефоне, совпадет со SRES , рассчитанным AuC , то процесс авторизации считается успешным и абоненту присваивается TMSI (Temporary Mobile Subscriber Identity-временный номер мобильного абонента). TMSI служит исключительно для повышения безопасности взаимодействия подписчика с сетью и может периодически меняться (в том числе при смене VLR ).

Теоретически, при регистрации должен передаваться и номер IMEI , но у меня есть большие сомнения насчет того, что московские операторы отслеживают IMEI используемых абонентами телефонов. Давайте будем рассматривать некую "идеальную" сеть, функционирующую так, как было задумано создателями GSM. Так вот, при получении IMEI сетью, он направляется в EIR , где сравнивается с так называемыми "списками" номеров. Белый список содержит номера санкционированных к использованию телефонов, черный список состоит из IMEI , украденных или по какой-либо иной причине не допущенных к эксплуатации телефонов, и, наконец, серый список - "трубки" с проблемами, работа которых разрешается системой, но за которыми ведется постоянное наблюдение.

После процедуры идентификации и взаимодействия гостевого VLR с домашним HLR запускается счетчик времени, задающий момент перерегистрации в случае отсутствия каких-либо сеансов связи. Обычно период обязательной регистрации составляет несколько часов. Перерегистрация необходима для того, чтобы сеть получила подтверждение, что телефон по-прежнему находится в зоне ее действия. Дело в том, что в режиме ожидания "трубка" только отслеживает сигналы, передаваемые сетью, но сама ничего не излучает - процесс передачи начинается только в случае установления соединения, а также при значительных перемещениях относительно сети (ниже это будет рассмотрено подробно) - в таких случаях таймер, отсчитывающий время до следующей перерегистрации, запускается заново. Поэтому при "выпадении" телефона из сети (например, был отсоединен аккумулятор, или владелец аппарата зашел в метро, не выключив телефон) система об этом не узнает.

Все пользователи случайным образом разбиваются на 10 равноправных классов доступа (с номерами от 0 до 9). Кроме того, существует несколько специальных классов с номерами с 11 по 15 (разного рода аварийные и экстренные службы, служебный персонал сети). Информация о классе доступа хранится в SIM . Особый, 10 класс доступа, позволяет совершать экстренные звонки (по номеру 112), если пользователь не принадлежит к какому-либо разрешенному классу, или вообще не имеет IMSI (SIM ). В случае чрезвычайных ситуаций или перегрузки сети некоторым классам может быть на время закрыт доступ в сеть.

Территориальное деление сети и handover .

Как уже было сказано, сеть состоит из множества BTS - базовых станций (одна BTS - одна "сота", ячейка). Для упрощения функционирования системы и снижения служебного трафика, BTS объединяют в группы - домены, получившие название LA (Location Area - области расположения). Каждой LA соответствует свой код LAI (Location Area Identity). Один VLR может контролировать несколько LA . И именно LAI помещается в VLR для задания местоположения мобильного абонента. В случае необходимости именно в соответствующей LA (а не в отдельной соте, заметьте) будет произведен поиск абонента. При перемещении абонента из одной соты в другую в пределах одной LA перерегистрация и изменение записей в VLR /HLR не производится, но стоит ему (абоненту) попасть на территорию другой LA , как начнется взаимодействие телефона с сетью. Каждому пользователю, наверное, не раз приходилось слышать периодические помехи (типа хрюк-хрюк---хрюк-хрюк---хрюк-хрюк:-)) в музыкальной системе своего автомобиля от находящегося в режиме ожидания телефона - зачастую это является следствием проводимой перерегистрации при пересечении границ LA . При смене LA код старой области стирается из VLR и заменяется новым LAI , если же следующий LA контролируется другим VLR , то произойдет смена VLR и обновление записи в HLR .

Вообще говоря, разбиение сети на LA довольно непростая инженерная задача, решаемая при построении каждой сети индивидуально. Слишком мелкие LA приведут к частым перерегистрациям телефонов и, как следствие, к возрастанию трафика разного рода сервисных сигналов и более быстрой разрядке батарей мобильных телефонов. Если же сделать LA большими, то, в случае необходимости соединения с абонентом, сигнал вызова придется подавать всем сотам, входящим в LA , что также ведет к неоправданному росту передачи служебной информации и перегрузке внутренних каналов сети.

Теперь рассмотрим очень красивый алгоритм так называемого handover `ра (такое название получила смена используемого канала в процессе соединения). Во время разговора по мобильному телефону вследствие ряда причин (удаление "трубки" от базовой станции, многолучевая интерференция, перемещение абонента в зону так называемой тени и т.п.) мощность (и качество) сигнала может ухудшиться. В этом случае произойдет переключение на канал (может быть, другой BTS ) с лучшим качеством сигнала без прерывания текущего соединения (добавлю - ни сам абонент, ни его собеседник, как правило, не замечают произошедшего handover `а). Handover`ы принято разделять на четыре типа:

  • смена каналов в пределах одной базовой станции
  • смена канала одной базовой станции на канал другой станции, но находящейся под патронажем того же BSC .
  • переключение каналов между базовыми станциями, контролируемыми разными BSC , но одним MSC
  • переключение каналов между базовыми станциями, за которые отвечают не только разные BSC , но и MSC .

В общем случае, проведение handover `а - задача MSC . Но в двух первых случаях, называемых внутренними handover `ами, чтобы снизить нагрузку на коммутатор и служебные линии связи, процесс смены каналов управляется BSC , а MSC лишь информируется о происшедшем.

Во время разговора мобильный телефон постоянно контролирует уровень сигнала от соседних BTS (список каналов (до 16), за которыми необходимо вести наблюдение, задается базовой станцией). На основании этих измерений выбираются шесть лучших кандидатов, данные о которых постоянно (не реже раза в секунду) передаются BSC и MSC для организации возможного переключения. Существуют две основные схемы handover `а:

  • "Режим наименьших переключений" (Minimum acceptable performance). В этом случае, при ухудшении качества связи мобильный телефон повышает мощность своего передатчика до тех пор, пока это возможно. Если же, несмотря на повышение уровня сигнала, связь не улучшается (или мощность достигла максимума), то происходит handover .
  • "Энергосберегающий режим" (Power budget). При этом мощность передатчика мобильного телефона остается неизменной, а в случае ухудшения качества меняется канал связи (handover ).

Интересно, что инициировать смену каналов может не только мобильный телефон, но и MSC , например, для лучшего распределения трафика.

Маршрутизация вызовов.

Поговорим теперь, каким образом происходит маршрутизация входящих вызовов мобильного телефона. Как и раньше, будем рассматривать наиболее общий случай, когда абонент находится в зоне действия гостевой сети, регистрация прошла успешно, а телефон находится в режиме ожидания.

При поступлении запроса (рис.2) на соединение от проводной телефонной (или другой сотовой) системы на MSC домашней сети (вызов "находит" нужный коммутатор по набранному номеру мобильного абонента MSISDN , который содержит код страны и сети).


Рис.2 Взаимодействие основных блоков сети при поступлении входящего вызова.

MSC пересылает в HLR номер (MSISDN ) абонента. HLR , в свою очередь, обращается с запросом к VLR гостевой сети, в которой находится абонент. VLR выделяет один из имеющихся в ее распоряжении MSRN (Mobile Station Roaming Number - номер "блуждающей" мобильной станции). Идеология назначения MSRN очень напоминает динамическое присвоение адресов IP при коммутируемом доступе в Интернет через модем. HLR домашней сети получает от VLR присвоенный абоненту MSRN и, сопроводив его IMSI пользователя, передает коммутатору домашней сети. Заключительной стадией установления соединения является направление вызова, сопровождаемого IMSI и MSRN , коммутатору гостевой сети, который формирует специальный сигнал, передаваемый по PAGCH (PAGer CHannel - канал вызова) по всей LA , где находится абонент.

Маршрутизация исходящих вызовов не представляет с идеологической точки зрения ничего нового и интересного. Приведу лишь некоторые из диагностических сигналов (таблица 4), свидетельствующие о невозможности установить соединение и которые пользователь может получить в ответ на попытку установления соединения.

Таблица 4. Основные диагностические сигналы об ошибке при установлении соединения.

Заключение

Конечно, в мире нет ничего идеального. Рассмотренные выше сотовые системы GSM не исключение. Ограниченное число каналов создает проблемы в деловых центрах мегаполисов (а в последнее время, ознаменованное бурным ростом абонентской базы, и на их окраинах) - чтобы позвонить, часто приходится ждать уменьшения нагрузки системы. Малая, по современным меркам, скорость передачи данных (9600 бит/с) не позволяет пересылать объемные файлы, не говоря о видеоматериалах. Да и роуминговые возможности не так уж безграничны - Америка и Япония развивают свои, несовместимые с GSM, цифровые системы беспроводной связи.

Конечно, рано говорить, что дни GSM сочтены, но нельзя и не замечать появления на горизонте так называемых 3G -систем, олицетворяющих начало новой эры в развитии сотовой телефонии и лишенных перечисленных недостатков. Как хочется заглянуть на несколько лет вперед и посмотреть, какие возможности получим все мы от новых технологий! Впрочем, ждать осталось не так долго - начало коммерческой эксплуатации первой сети третьего поколения намечается на начало 2001 года… А вот какая судьба уготована новым системам - взрывообразный рост, как GSM, или разорение и уничтожение, как Iridium, покажет время…

Эта статья первая из цикла статей про сотовую связь. В данном цикле я хотел бы подробно описать принципы работы сетей сотовой связи второго, третьего и четвертого поколений. Стандарт GSM относится ко второму поколению (2G).

Сотовая связь первого поколения была аналоговой и сейчас не используются, поэтому рассматривать мы ее не будем. Второе поколение является цифровым и эта особенность позволила полностью вытеснить сети 1G. Цифровой сигнал по сравнению с аналоговым более помехоустойчивый, что является крупным преимуществом в подвижной радиосвязи. Кроме того, цифровой сигнал помимо речи позволяет передавать данные (SMS, GPRS). Стоит отметить, что данная тенденция по переходу с аналогового сигнала на цифровой является характерной не только для сотовой связи.

GSM (Global System Mobile) — глобальный стандарт цифровой мобильной связи, с разделение каналов по времени TDMA и частоте FDMA. Разработан под эгидой Европейского института стандартизации электросвязи (ETSI) в конце 1980-х годов.

GSM обеспечивает поддержку услуг:

  • Передачи данных GPRS
  • Передача речи
  • Передача коротких сообщений SMS
  • Передача факса

Кроме того, существуют дополнительные услуги:

  • Определение номера
  • Переадресация вызова
  • Ожидание и удержание вызова
  • Конференц-связь
  • Голосовая почта

Архитектура сети GSM

Рассмотрим подробнее из каких элементов строится сеть GSM и каким образом они взаимодействуют между собой.

Сеть GSM делится на две системы: SS (Switching System) — коммутационная подсистема, BSS (Base Station System) — система базовых станций. SS выполняет функции обслуживания вызовов и установления соединений, а также отвечает за реализацию всех назначенных абоненту услуг. BSS отвечает за функции, относящиеся к радиоинтерфейсу.

SS включает в себя:

  • MSC (Mobile Switching Center) — узел коммутации сети GSM
  • GMSC (Gate MSC) — коммутатор, который обрабатывает вызовы от внешних сетей
  • HLR (Home Location Register) — база данных домашних абонентов
  • VLR (Visitor Location Register) — база данных гостевых абонентов
  • AUC (Authentication Cetner) — центр аутентификации (проверки подлинности абонента)

BSS включает в себя:

  • BSC (Base Station Controller) — контроллер базовых станций
  • BTS (Base Transeiver Station) — приемо-передающая станция
  • MS (Mobile Station) — мобильная станция

Состав коммутационной подсистемы SS

MSC выполняет функции коммутации для мобильной связи. Данный центр контролирует все входящие и исходящие вызовы, поступающие из других телефонных сетей и сетей передачи данных. К данным сетям можно отнести PSTN, ISDN, сети передачи данных общего пользования, корпоративные сети, а также сети мобильной связи других операторов. Функции проверки подлинности абонентов также выполняются в MSC. MSC обеспечивает маршрутизацию вызовов и функции управления вызовами. На MSC возлагаются функции коммутации. MSC формирует данные, необходимые для тарификации предоставленных сетью услуг связи, накапливает данные по состоявшимся разговорам и передаёт их в центр расчётов (биллинг-центр). MSC составляет также статистические данные, необходимые для контроля работы и оптимизации сети. MSC не только участвует в управлении вызовами, но также управляет процедурами регистрации местоположения и передачи управления.

В системе GSM каждый оператор располагает базой данных, содержащей информацию обо всех абонентах принадлежащих своей PLMN. В сети одного оператора логически HLR – один, а физически их много, т.к. это
распределенная база данных. Информация об абоненте заносится в HLR в момент регистрации абонента (заключения абонентом контракта на обслуживание) и хранится до тех пор, пока абонент не расторгнет контракт и не будет удалён из регистра HLR.
Хранящаяся информация в HLR включает в себя:

  • Идентификаторы (номера) абонента.
  • Дополнительные услуги, закрепленные за абонентом
  • Информацию о местоположении абонента, с точностью до номера MSC/VLR
  • Аутентификационную информацию абонента (триплеты)

HLR может быть выполнен как встроенная функция в MSC/VLR, так и отдельно. Если емкость HLR исчерпана, то может быть добавлен дополнительный HLR. И в случае организации нескольких HLR база данных остаётся единой – распределённой. Запись данных об абоненте всегда остаётся единственной. К данным, хранящихся в HLR, могут получить доступ MSC и VLR, относящиеся к другим сетям, в рамках обеспечения межсетевого роуминга абонентов.

База данных VLR содержит информацию о всех абонентах мобильной связи, расположенных в данный момент в зоне обслуживания MSC. Таким образом, для каждого MSC на сети существует свой VLR. В VLR временно хранится информация о услугах, и благодаря этому связанный с ним MSC может обслуживать всех абонентов, находящихся в зоне обслуживания данного MSC. В HLR и VLR хранится очень похожая информация об абоненте, но есть некоторые отличия, которые будут рассмотрены в следующих главах. Когда абонент перемещается в зону обслуживания нового MSC, VLR, подключенный к данному MSC, запрашивает информацию об абоненте из того HLR, в котором хранятся данные этого абонента. HLR посылает копию информации в VLR и обновляет у себя информацию о местоположении абонента. После того как информация обновится, MS может осуществлять исходящие/входящие соединения.

Для исключения несанкционированного использования ресурсов системы связи вводятся механизмы аутентификации – удостоверения подлинности абонента. AUC — центр проверки подлинности абонента, состоит из нескольких блоков и формирует ключи аутентификации и шифрации (осуществляется генерация паролей). С его помощью MSC проверяет подлинность абонента, и при установлении соединения на радиоинтерфейсе будет включена шифрация передаваемой информации.

Состав подсистемы базовых станций BSS

BSC управляет всеми функциями, относящимися к работе радиоканалов в сети GSМ. Это коммутатор, который обеспечивает такие функции, как хэндовер MS, назначение радиоканалов и сбор данных о конфигурации сот. Каждый MSC может управлять несколькими BSC.

BTS управляет радиоинтерфейсом с MS. BTS включает в себя такое радиооборудование, как приемо-передатчики и антенны, которые необходимы для обслуживание каждой соты в сети. Контроллер BSC управляет несколькими BTS.

Географическое построение сетей GSM

Каждая телефонная сеть нуждается в определенной структуре для маршрутизации вызовов к требуемой станции и далее к абоненту. В сети мобильной связи эта структура особенно важна, так как абоненты перемещаются по сети, то есть меняют свое местоположение и это местоположение должно постоянно отслеживаться.

Не смотря на то, что сота является базовой единицей системы связи GSM, дать четкое определение очень сложно. Привязать этот термин к антенне или к базовой станции невозможно, т.к. существуют различные соты. Тем не менее, сота – это некоторая географическая область, которая обслуживается одной или несколькими базовыми станциями и в которой действует одна группа контрольных логических каналов GSM (сами каналы будут рассмотрены в следующих главах). Каждой соте назначается свой уникальной номер, называемый Глобальным идентификатором соты (CGI). В сети, охватывающей, например, целую страну, число сот может быть очень большим.

Зона местоположения (LA) определяется как группа сот, в которой будет производиться вызов мобильной станции. Местоположение абонента в пределах сети связано с той LA, в которой в данный момент находится абонент. Идентификатор данной зоны (LAI) хранится в VLR. Когда MS пересекает границу между двумя сотами, принадлежащими различным LA, она передает в сеть информацию о новой LA. Это происходит только в том случае, если MS находится в режиме Idle. Информация о новом местоположении не передается в течение установленного соединения, этот процесс будет происходить после окончания соединения. Если MS пересекает границу между сотами в пределах одной LA, она не сообщает сети о своем новом местоположении. При поступлении входящего вызова к MS пейджинговое сообщение распространяется в пределах всех сот, принадлежащих одной LA.

Зона обслуживания MSC состоит из некоторого числа LA и отображает географическую часть сети, находящуюся под управлением одного MSC. Для того, чтобы направить вызов к MS информация о зоне обслуживания MSC также необходима, поэтому зона обслуживания также отслеживается и информация о ней записывается в базе данных (HLR).

Зона обслуживания PLMN представляет собой совокупность сот, обслуживаемых одним оператором и определяется как зона, в которой оператор обеспечивает абоненту радиопокрытие и доступ к своей сети. В любой стране может быть несколько PLMN, по одной на каждого оператора. Определение роуминг употребляется в случае перемещения MS из одной области обслуживания PLMN в другую. Так называемый внутри сетевой роуминг представляет собой смену MSC/VLR.

Зона обслуживания GSM представляет собой всю географическую область, в которой абонент может получить доступ к сети GSM. Зона обслуживания GSM увеличивается по мере того, как новые операторы подписывают контракты, предусматривающие совместную работу по обслуживанию абонентов. В настоящее время зона обслуживания GSM охватывает с некоторыми промежутками многие страны от Ирландии до Австралии и от Южной Африки до Америки.

Международный роуминг – это термин, который применяется в том случае, когда MS перемещается от одной национальной PLMN в другую национальную PLMN.

Частотный план GSM

GSM включает в себя несколько диапазонов частот, наиболее распространены: 900, 1800, 1900 МГц. Изначально под стандарт GSM был выделен диапазон 900 МГц. В настоящее время данный диапазон остаётся всемирным. В некоторых странах используются расширенные диапазоны частот, обеспечивающие большую ёмкость сети. Расширенные диапазоны частот называются E-GSM и R-GSM, в то время как обычный диапазон носит название P-GSM (primary).

  • P-GSM900 890-915/935-960 MHz
  • E-GSM900 880-915/925-960 MHz
  • R-GSM900 890-925/935-970 MHz
  • R-GSM1800 1710-1785/1805-1880 MHz

В 1990 г. для увеличения конкуренции между операторами, в Великобритании начали развивать новую версию GSM, которая адаптирована к диапазону частот 1800. Сразу после утверждения данного диапазона несколько стран сделали заявку на использование данного диапазона частот. Введение данного диапазона увеличило рост количества операторов, приводя к увеличению конкуренции и, соответственно, улучшению качества
обслуживания. Применение данного диапазона позволяет увеличивать емкость сети за счёт увеличения полосы пропускания и, соответственно, увеличение количества несущих. Диапазон частот 1800 использует следующие диапазоны частот: GSM 1710-1805/1785-1880 MHz. До 1997 года стандарт 1800 носил название Digital Cellular System (DCS) 1800 MHz, в настоящее время носит название GSM 1800.

В 1995 году в США была специфицирована концепция PCS (Personal Cellular System). Основной идеей этой концепции является возможность предоставления персональной связи, то есть связи между двумя абонентами, а не между двумя мобильными станциями. PCS не требует, чтобы эти услуги были реализованы на основе сотовой технологии, но в настоящее время эта технология признана наиболее эффективной для данной концепции. Частоты, доступные для реализации PCS, находятся в области 1900 МГц. Поскольку в Северной Америке стандарт GSM 900 не может быть использован из-за того, что эта полоса частот занята другим стандартом, стандарт GSM 1900 является возможностью заполнения этого пробела. Основным различием между американским стандартом GSM 1900 и GSM 900 является то, что GSM 1900 поддерживает сигнализацию ANSI.

Традиционно полоса 800 МГц была занята распространенным в США стандартом TDMA (AMPS и D-AMPS). Как и в случае со стандартом GSM 1800 этот стандарт дает возможность получения дополнительных лицензий, то есть расширяет область работы стандарта на национальных сетях предоставляя операторам дополнительную емкость.

В результате, физический канал между приемником и передатчиком определяется частотой, выделенными фреймами и номерами таймслотов в них. Обычно базовые станции используют один или несколько каналов ARFCN, один из которых используется для идентификации присутствия BTS в эфире. Первый таймслот (индекс 0) фреймов этого канала используется в качестве базового служебного канала (base-control channel или beacon-канал). Оставшаяся часть ARFCN распределяется оператором для CCH и TCH каналов на свое усмотрение.

2.3 Логические каналы

На основе физических каналов формируются логические. Um-интерфейс подразумевает обмен как пользовательской информацией, так и служебной. Согласно спецификации GSM, каждому виду информации соответствует специальный вид логических каналов, реализуемых посредством физических:

  • каналы трафика (TCH - Traffic Channel),
  • каналы служебной информации (CCH - Control Channel).
Каналы трафика делятся на два основных вида: TCH/F - Full rate канал с максимальной скоростью до 22,8 Кбит/с и TCH/H - Half rate канал с максимальной скоростью до 11,4 Кбит/с. Данные виды каналов могут быть использованы для передачи речи (TCH/FS, TCH/HS) и пользовательских данных (TCH/F9.6, TCH/F4.8, TCH/H4.8, TCH/F2.4, TCH/H2.4), например, SMS.

Каналы служебной информации делятся на:

  • Широковещательные (BCH - Broadcast Channels).
    • FCCH - Frequency Correction Channel (канал коррекции частоты). Предоставляет информацию, необходимую мобильному телефону для коррекции частоты.
    • SCH - Synchronization Channel (канал синхронизации). Предоставляет мобильному телефону информацию, необходимую для TDMA-синхронизации с базовой станцией (BTS), а также ее идентификационные данные BSIC .
    • BCCH - Broadcast Control Channel (широковещательный канал служебной информации). Передает основную информацию о базовой станции, такую как способ организации служебных каналов, количество блоков, зарезервированных для сообщений предоставления доступа, а также количество мультифреймов (объемом по 51 TDMA-фрейму) между Paging-запросами.
  • Каналы общего назначения (CCCH - Common Control Channels)
    • PCH - Paging Channel. Забегая вперед, расскажу, что Paging - это своего рода ping мобильного телефона, позволяющий определить его доступность в определенной зоне покрытия. Данный канал предназначен именно для этого.
    • RACH - Random Access Channel (канал произвольного доступа). Используется мобильными телефонами для запроса собственного служебного канала SDCCH. Исключительно Uplink-канал.
    • AGCH - Access Grant Channel (канал уведомлений о предоставлении доступа). На этом канале базовые станции отвечают на RACH-запросы мобильных телефонов, выделяя SDCCH, либо сразу TCH.
  • Собственные каналы (DCCH - Dedicated Control Channels)
    Собственные каналы, так же как и TCH, выделяются определенным мобильным телефонам. Существует несколько подвидов:
    • SDCCH - Stand-alone Dedicated Control Channel. Данный канал используется для аутентификации мобильного телефона, обмена ключами шифрования, процедуры обновления местоположения (location update), а также для осуществления голосовых вызовов и обмена SMS-сообщениями.
    • SACCH - Slow Associated Control Channel. Используется во время разговора, либо когда уже задействован канал SDCCH. С его помощью BTS передает телефону периодические инструкции об изменении таймингов и мощности сигнала. В обратную сторону идут данные об уровне принимаемого сигнала (RSSI), качестве TCH, а также уровень сигнала ближайших базовый станций (BTS Measurements).
    • FACCH - Fast Associated Control Channel. Данный канал предоставляется вместе с TCH и позволяет передавать срочные сообщения, например, во время перехода от одной базовой станции к другой (Handover).

2.4 Что такое burst?

Данные в эфире передаются в виде последовательностей битов, чаще всего называемых «burst», внутри таймслотов. Термин «burst», наиболее подходящим аналогом которому является слово «всплеск», должен быть знаком многим радиолюбителям, и появился, скорее всего, при составлении графических моделей для анализа радиоэфира, где любая активность похожа на водопады и всплески воды. Подробнее о них можно почитать в этой замечательной статье (источник изображений), мы остановимся на самом главном. Схематичное представление burst может выглядеть так:

Guard Period
Во избежание возникновения интерференции (т.е. наложения двух busrt друг на друга), продолжительность burst всегда меньше продолжительности таймслота на определенное значение (0,577 - 0,546 = 0,031 мс), называемое «Guard Period». Данный период представляет собой своего рода запас времени для компенсации возможных задержек по времени при передаче сигнала.

Tail Bits
Данные маркеры определяют начало и конец burst.

Info
Полезная нагрузка burst, например, данные абонентов, либо служебный трафик. Состоит из двух частей.

Stealing Flags
Эти два бита устанавливаются когда обе части данных burst канала TCH переданы по каналу FACCH. Один переданный бит вместо двух означает, что только одна часть burst передана по FACCH.

Training Sequence
Эта часть burst используется приемником для определения физических характеристик канала между телефоном и базовой станцией.

2.5 Виды burst

Каждому логическому каналу соответствуют определенные виды burst:

Normal Burst
Последовательности этого типа реализуют каналы трафика (TCH) между сетью и абонентами, а также все виды каналов управления (CCH): CCCH, BCCH и DCCH.

Frequency Correction Burst
Название говорит само за себя. Реализует односторонний downlink-канал FCCH, позволяющий мобильным телефонам более точно настраиваться на частоту BTS.

Synchronization Burst
Burst данного типа, так же как и Frequency Correction Burst, реализует downlink-канал, только уже SCH, который предназначен для идентификации присутствия базовых станций в эфире. По аналогии с beacon-пакетами в WiFi-сетях, каждый такой burst передается на полной мощности, а также содержит информацию о BTS, необходимую для синхронизации с ней: частота кадров, идентификационные данные (BSIC), и прочие.

Dummy Burst
Фиктивный burst, передаваемый базовой станцией для заполнения неиспользуемых таймслотов. Дело в том, что если на канале нет никакой активности, мощность сигнала текущего ARFCN будет значительно меньше. В этом случае мобильному телефону может показаться, что он далеко от базовой станции. Чтобы этого избежать, BTS заполняет неиспользуемые таймслоты бессмысленным трафиком.

Access Burst
При установлении соединения с BTS мобильный телефон посылает запрос выделенного канала SDCCH на канале RACH. Базовая станция, получив такой burst, назначает абоненту его тайминги системы FDMA и отвечает на канале AGCH, после чего мобильный телефон может получать и отправлять Normal Bursts. Стоит отметить увеличенную продолжительность Guard time, так как изначально ни телефону, ни базовой станции не известна информация о временных задержках. В случае, если RACH-запрос не попал в таймслот, мобильный телефон спустя псевдослучайный промежуток времени посылает его снова.

2.6 Frequency Hopping

Цитата из Википедии:

Псевдослучайная перестройка рабочей частоты (FHSS - англ. frequency-hopping spread spectrum) - метод передачи информации по радио, особенность которого заключается в частой смене несущей частоты. Частота меняется в соответствии с псевдослучайной последовательностью чисел, известной как отправителю, так и получателю. Метод повышает помехозащищённость канала связи.


3.1 Основные векторы атак

Посколько Um-интерфейс является радиоинтерфейсом, весь его трафик «виден» любому желающему, находящемуся в радиусе действия BTS. Причем анализировать данные, передаваемые через радиоэфир, можно даже не выходя из дома, используя специальное оборудование (например, старый мобильный телефон, поддерживаемый проектом OsmocomBB, или небольшой донгл RTL-SDR) и прямые руки самый обычный компьютер.

Выделяют два вида атаки: пассивная и активная. В первом случае атакующий никак не взаимодействует ни с сетью, ни с атакуемым абонентом - исключительно прием и обработка информации. Не трудно догадаться, что обнаружить такую атаку почти не возможно, но и перспектив у нее не так много, как у активной. Активная атака подразумевает взаимодействие атакующего с атакуемым абонентом и/или сотовой сетью.

Можно выделить наиболее опасные виды атак, которым подвержены абоненты сотовых сетей:

  • Сниффинг
  • Утечка персональных данных, СМС и голосовых звонков
  • Утечка данных о местоположении
  • Спуфинг (FakeBTS или IMSI Catcher)
  • Удаленный захват SIM-карты, исполнение произвольного кода (RCE)
  • Отказ в обслуживании (DoS)

3.2 Идентификация абонентов

Как уже упоминалось в начале статьи, идентификация абонентов выполняется по IMSI, который записан в SIM-карте абонента и HLR оператора. Идентификация мобильных телефонов выполняется по серийному номеру - IMEI. Однако, после аутентификации ни IMSI, ни IMEI в открытом виде по эфиру не летают. После процедуры Location Update абоненту присваивается временный идентификатор - TMSI (Temporary Mobile Subscriber Identity), и дальнейшее взаимодействие осуществляется именно с его помощью.

Способы атаки
В идеале, TMSI абонента известен только мобильному телефону и сотовой сети. Однако, существуют и способы обхода данной защиты. Если циклически звонить абоненту или отправлять SMS-сообщения (а лучше Silent SMS), наблюдая за каналом PCH и выполняя корреляцию, можно с определенной точностью выделить TMSI атакуемого абонента.

Кроме того, имея доступ к сети межоператорного взаимодействия SS7, по номеру телефона можно узнать IMSI и LAC его владельца. Проблема в том, что в сети SS7 все операторы «доверяют» друг другу, тем самым снижая уровень конфиденциальности данных своих абонентов.

3.3 Аутентификация

Для защиты от спуфинга, сеть выполняет аутентификацию абонента перед тем, как начать его обслуживание. Кроме IMSI, в SIM-карте хранится случайно сгенерированная последовательность, называемая Ki, которую она возвращает только в хэшированном виде. Также Ki хранится в HLR оператора и никогда не передается в открытом виде. Вцелом, процесс аутентификации основан на принципе четырехстороннего рукопожатия:

  1. Абонент выполняет Location Update Request, затем предоставляет IMSI.
  2. Сеть присылает псевдослучайное значение RAND.
  3. SIM-карта телефона хэширует Ki и RAND по алгоритму A3. A3(RAND, Ki) = SRAND.
  4. Сеть тоже хэширует Ki и RAND по алгоритму A3.
  5. Если значение SRAND со стороны абонента совпало с вычисленным на стороне сети, значит абонент прошел аутентификацию.

Способы атаки
Перебор Ki, имея значения RAND и SRAND, может занять довольно много времени. Кроме того, операторы могут использовать свои алгоритмы хэширования. В сети довольно мало информации о попытках перебора. Однако, не все SIM-карты идеально защищены. Некоторым исследователям удавалось получить прямой доступ к файловой системе SIM-карты, а затем извлечь Ki.

3.4 Шифрование трафика

Согласно спецификации, существует три алгоритма шифрования пользовательского трафика:
  • A5/0 - формальное обозначение отсутствия шифрования, так же как OPEN в WiFi-сетях. Сам я ни разу не встречал сетей без шифрования, однако, согласно gsmmap.org , в Сирии и Южной Корее используется A5/0.
  • A5/1 - самый распространенный алгоритм шифрования. Не смотря на то, что его взлом уже неоднократно демонстрировался на различных конференциях, используется везде и повсюду. Для расшифровки трафика достаточно иметь 2 Тб свободного места на диске, обычный персональный компьютер с Linux и программой Kraken на борту.
  • A5/2 - алгоритм шифрования с умышленно ослабленной защитой. Если где и используется, то только для красоты.
  • A5/3 - на данный момент самый стойкий алгоритм шифрования, разработанный еще в 2002 году. В интернете можно найти сведения о некоторых теоретически возможных уязвимостях, однако на практике его взлом еще никто не демонстрировал. Не знаю, почему наши операторы не хотят использовать его в своих 2G-сетях. Ведь для это далеко не помеха, т.к. ключи шифрования известны оператору и трафик можно довольно легко расшифровывать на его стороне. Да и все современные телефоны прекрасно его поддерживают. К счастью, его используют современные 3GPP-сети.
Способы атаки
Как уже говорилось, имея оборудование для сниффинга и компьютер с 2 Тб памяти и программой Kraken, можно довольно быстро (несколько секунд) находить сессионные ключи шифрования A5/1, а затем расшифровывать чей-угодно трафик. Немецкий криптолог Карстен Нол (Karsten Nohl) в 2009 году способ взлома A5/1. А через несколько лет Карстен и Сильвиан Мюно продемонстрировали перехват и способ дешифровки телефонного разговора с помошью нескольких старых телефонов Motorola (проект OsmocomBB).

Заключение

Мой длинный рассказ подошел к концу. Более подробно и с практической стороны с принципами работы сотовых сетей можно будет познакомиться в цикле статей , как только я допишу оставшиеся части. Надеюсь, у меня получилось рассказать Вам что-нибудь новое и интересное. Жду Ваших отзывов и замечаний!
  • мобильные устройства
  • радиоканал
  • радиосвязь
  • Добавить метки

    
    Top