Список использованной литературы. Средства и способы передачи информации

    Гроднев И.И., Мурадян А.Г., Шарафутдинов P.M. и др. «Волоконно-оптические системы передачи и кабели». Справочник, «Радио и связь», М., 1993.

    Андреев В.А., Бурдин В.А., Попов В.В., Полыгаков А.И. Строительство и техническая эксплуатация волоконно-оптических линий связи. Учебник для ВУЗов - М., Радио и связь, 1995.

    Алексеев Е.Б. Особенности внедрения ВОСП на ВСС РФ, «Вестник связи», 1995, № 2.

    Алексеев Е.Б., Заркевич Е.А., Макеев О.Н., Устинов С.А. Концепция развития современных высокоскоростных ВОСП, «Электросвязь», 1996, № 9.

    Убайдуллаев P.P. «Волоконно-оптические сети». ЭКО-ТРЕНДЗ, М., 1998.

    Алексеев Е.Б., Заркевич Е.А., Устинов С.А. Концепция построения сетей доступа ВСС РФ на элементах фотонной технологии, «Электросвязь», ! 998, 10.

    Алексеев Е.Б. «Принципы построения и технической эксплуатации фотонных сетей связи». Учебное пособие, ИПК МТУ СИ, ЗАО «Информсвязьиздат», М. 2000.

    Алексеев Е.Б., Заркевич Е.А., Скляров O.K., Устинов С.А. Эволюция сети доступа на основе применения волоконно-оптических технологий, «Электросвязь», 2003, № 9.

    Алексеев Е.Б., Заркевич Е.А., Скляров O.K., Павлов Н.М. Атмосферные оптические линии передачи на местной сети связи России и проблемы их внедрения, «Электросвязь», 2003, №9.

    Алексеев Е.Б. «Основы проектирования и технической эксплуатации цифровых волоконно-оптических систем передачи». Учебное пособие, ИПК МТУСИ, ООО «Оргсервис-2000», М., 2004.

    Алексеев Е.Б. «Транспортные сети СЦИ. Проектирование, техническая эксплуатация и управление». Учебное пособие, ИПК МТУСИ, ООО «Оргсервис-2000», М., 2004.

    Алексеев Е.Б., Скляров O.K., Устинов С.А. Оптические сети операторов связи DWDM и CWDM в России, «Технологии и средства связи», 2004, № 2.

    Алексеев Е.Б., Скляров O.K., Устинов С.А. Спектральное уплотнение в оптических сетях связи, «ФОТОН-ЭКСПРЕСС», 2004, № 1.

    Алексеев Е.Б., Скляров O.K., Устинов С.А. Спектральное уплотнение оптических каналов в современных ВОСП, «ФОТОН-ЭКСПРЕСС», 2004, № 1.

    Петренко И.И., Убайдуллаев P.P. Пассивные оптические сети PON. Часть 1. Архитектура и стандарты, «LIGHTWAVE RUSSIAN EDITION», 2004, № 1.

    Петренко И.И., Убайдуллаев P.P. Пассивные оптические сети PON. Часть 1. Архитектура и стандарты, «LIGHTWAVE RUSSIAN EDITION», 2004, № I.

    Петренко И.И., Убайдуллаев P.P. Пассивные оптические сети PON. Часть 2. ETHERNET на первой миле, «LIGHTWAVE RUSSIAN EDITION», 2004, № 2.

    Петренко И.И., Убайдуллаев P.P. Пассивные оптические сети PON. Часть 3. Проектирование оптимальных сетей, «LIGHTWAVE RUSSIAN EDITION», 2004, № 3.

    Долотов Д.В. Оптические технологии в сетях доступа, «Технологии и средства связи», спецвыпуск «Системы абонентского доступа», 2004.

    РД 45.047-99 Линии передачи волоконно-оптические па магистральной и внутризоновых первичных сетях ВСС России. Техническая эксплуатация. Руководящий технический материал. "

    ОСТ 45.178-2000 Системы передачи с оптическими усилителями и спектральным уплотнением. Стыки оптические. Классификация и основные параметры.

    РД 45.036-99 Технические требования на аппаратуру атмосферного оптического цифрового линейного тракта плезиохронной цифровой иерархии.

    РД 45.186-2001 Аппаратура волоконно-оптических усилителей для применения на Взаимоувязанной сети связи Российской Федерации. Технические требования.

    РД 45.200-2001 Применение волоконно-оптических средств на сетях доступа. Руководящий технический материал.

    РЛ 45 286-2002 Аппаратура волоконно-оптической системы передачи со спектральным разделением. Общие технические

    Скляров O.K., Заркевич Е.А., Устинов С.А. Волоконно-оптические технологии как основа развития широкополосных сетей доступа, «Технологии и средства и связи», №3, 2003

    Павлов Н.М. Параметры атмосферного кнала и надежность АОЛП, «Технологии и средства и связи», №2, 2003

    Основные положения развития Взаимоувязанной сети связи Российской Федерации на перспективу до 2005 года, кн.1, 2, М, 1996 г.

    Правила технической эксплуатации первичной сети Взаимоувязанной сети связи Российской Федерации», кн. 1,2,3. Введены в действие приказом Минсвязи России от 19.10.98 г., N 187.

    РД 45.180-2001 Руководство по проведению планово-профилактических и аварийно-восстановительных работ на линейно-кабельных сооружениях связи волоконно-оптической линии передач.

    ГОСТ 26599-85 Системы передачи волоконно-оптические. Термины и определения.

    ОСТ 45.201-2003 Системы передачи волоконно-оптические. Усилители оптические. Термины и определения.

    ОСТ 45.202-2003 Системы передачи волоконно-оптические со спектральным разделением. Основные компоненты. Термины и определения.

    Стандарт МЭК 60875-1 Generic Specification for Fibre-optic Branching Devices (Основная спецификация для волоконно-оптических устройств разветвления)

    Стандарт МЭК 60869-(Generic Specification for Fibre-optic Attenuators (Основная спецификация для волоконно-оптических аттенюаторов).

    Стандарт МЭК 6)931-1 Fibre-optic Terminology (Терминология по волоконной оптике).

    Стандарт МЭК 61202-1 Generic Specification for Fibre-optic solators (Основная спецификация для волоконно-оптических изоляторов).

    Стандарт МЭК 60876-1 Generic Specification for Fibre-optic Switches (Основная спецификация для волоконно-оптических переключателей).

    Стандарт МЭК 60874-1 Generic Specification for Fibre-optic Connectors (Основная спецификация для волоконно-оптических разъемных соединителей).

    Стандарт МЭК 61073-1 Generic Specification for Splices for Optical Fibres and Cables (Основная спецификация для волоконно-оптических соединителей).

СПИСОК ЛИТЕРАТУРЫ

1. Пономарёв, Л.И. Антенные системы сотовой связи / Л.И. Пономарёв, А.И. Скородумов, А.Ю. Ганицев. - М.: Вузовская книга, 2015. - 320 c.
2. Скляров, О.К. Волоконно-оптические сети и системы связи / О.К. Скляров. - СПб.: Лань, 2010. - 272 c.
3. Скляров, О.К. Волоконно-оптические сети и системы связи: Учебное пособие / О.К. Скляров. - СПб.: Лань, 2010. - 272 c.
4. Оссовская, М.П. Волоконно-оптические сети и системы связи: Учебное пособиеКПТ / М.П. Оссовская. - СПб.: Лань КПТ, 2016. - 272 c.
5. Фриман, Р. Волоконно-оптические системы связи / Р. Фриман. - М.: Техносфера, 2007. - 512 c.
6. Чаадаев, В.К. Информационные системы компаний связи. Создание и внедрение / В.К. Чаадаев. - М.: Эко-Трендз, 2004. - 256 c.
7. Чаадаев, В.К. Информационные системы компаний связи. Создание и внедрение / В.К. Чаадаев и др. - М.: Эко-Трендз, 2004. - 256 c.
8. Мизайлов, В.Ф. Космические системы связи: Учебное пособие / В.Ф. Мизайлов, .Н. Мошкин, И.В. Брагин. - СПб.: ГУАП, 2012. - 174 c.
9. Андреев, В.А. Направляющие системы электросвязи в 2-х т., т.1-Теория передач и влияния: Учебник для вузов / В.А. Андреев. - М.: ГЛТ, 2011. - 424 c.
10. Андреев, В.А. Направляющие системы электросвязи. В 2 тт. Т. 1. Теория передачи и влияния / В.А. Андреев, Э.Л. Портнов и др. - М.: ГЛТ, 2011. - 424 c.
11. Андреев, В.А. Направляющие системы электросвязи. В 2 тт. Т. 2. Проектирование, строительство и техническая эксплуатация / В.А. Андреев, Э.Л. Портнов и др. - М.: ГЛТ, 2010. - 424 c.
12. Портнов, Э.Л. Направляющие системы электросвязи. В 2-х т. Т. 2. Проектирование, строительство и техническая эксплуатация: Учебник для вузов / Э.Л. Портнов. - М.: Гор. линия-Телеком, 2010. - 424 c.
13. Портнов, Э.Л. Направляющие системы электросвязи. В 2-х т.Т. 1. Теория передачи и влияния: Учебник для вузов / Э.Л. Портнов. - М.: Гор. линия-Телеком, 2011. - 424 c.
14. Ксенофонтов, С.Н. Направляющие системы электросвязи. Сборник задач: Учебное пособие для вузов / С.Н. Ксенофонтов, Э.Л. Портнов. - М.: РиС, 2014. - 268 c.
15. Ксенофонтов, С.Н. Направляющие системы электросвязи. Сборник задач: Учебное пособие для вузов. – , стереотип. / С.Н. Ксенофонтов. - М.: ГЛТ, 2009. - 268 c.
16. Андреев, В.А. Направляющие системы электросвязи: Учебник для вузов. В 2-х томах. Том 1 – Теория передачи и влияния / В.А. Андреев, Э.Л. Портнов, Л.Н. Кочановский. - М.: ГЛТ, 2011. - 424 c.
17. Андреев, В.А. Направляющие системы электросвязи: Учебник для вузов. В 2-х томах. Том 2 – Проектирование, строитель / В.А. Андреев. - М.: ГЛТ, 2010. - 424 c.
18. Андреев, В.А. Направляющие системы электросвязи: Учебник для вузов. В 2-х томах. Том 2 – Проектирование, строительство и техническая эксплуатация / В.А. Андреев, Э.Л. Портнов, Л.Н. Кочановский. - М.: Горячая линия - Телеком, 2010. - 424 c.
19. Маликова, Е.Е. Расчёт оборудования мультисервисных сетей связи. Методические указания по курсовому проектированию по дисциплине «Системы коммутации» / Е.Е. Маликова, Ц.Ц. Михайлова, А.П. Пшеничников. - М.: Горячая линия -Телеком, 2014. - 78 c.
20. Тоискин, В.С. Системы документальной электросвязи: Учебное пособие / В.С. Тоискин, А.П. Жук. - М.: Риор, 2018. - 318 c.
21. Тоискин, В.С. Системы документальной электросвязи: Учебное пособие / В.С. Тоискин, А.П. Жук. - М.: ИЦ РИОР, ИНФРА-М, 2011. - 352 c.
22. Будылдина, Н.В. Системы документальной электросвязи: Учебное пособие для вузов / Н.В. Будылдина, С.В. Тимченко. - М.: ГЛТ, 2011. - 200 c.
23. Будылдина, Н.В. Системы документальной электросвязи: Учебное пособие для вузов. / Н.В. Будылдина. - М.: ГЛТ, 2011. - 200 c.
24. Будылдина, Н.В. Системы документальной электросвязи: Учебное пособие для вузов. / Н.В. Будылдина, С.В. Тимченко. - М.: Горячая линия - Телеком, 2011. - 200 c.
25. Головин, О.В. Системы и устройства коротковолновой радиосвязи. / О.В. Головин, С.П. Простов. - М.: ГЛТ, 2006. - 598 c.
26. Бабков, В.Ю. Системы мобильной связи: термины и определения / В.Ю. Бабков, Г.З. Голант, А.В. Русаков. - М.: ГЛТ, 2009. - 158 c.
27. Бабков, В.Ю. Системы мобильной связи: термины и определения / В.Ю. Бабков. - М.: ГЛТ, 2009. - 158 c.
28. Бабков, В.Ю. Системы мобильной связи: термины и определения. / В.Ю. Бабков, Г.З. Голант, А.В. Русаков. - М.: ГЛТ, 2009. - 158 c.
29. Весоловский, К. Системы подвижной радиосвязи / К. Весоловский. - М.: ГЛТ, 2006. - 536 c.
30. Комашинский, В.И. Системы подвижной радиосвязи с пакетной передачей информации / В.И. Комашинский. - М.: ГЛТ, 2007. - 176 c.
31. Комашинский, В. Системы подвижной радиосвязи с пакетной передачей информации / В. Комашинский. - М.: ГЛТ, 2007. - 176 c.
32. Комашинский, В.И. Системы подвижной радиосвязи с пакетной передачей информации. Основы моделирования. / В.И. Комашинский, А.В. Максимов. - М.: ГЛТ, 2007. - 176 c.
33. Весоловский, К. Системы подвижной радиосвязи. / К. Весоловский. - М.: ГЛТ, 2006. - 536 c.
34. Бабков, В.Ю. Сотовые системы мобильной радиосвязи: Учебное пособие для ВУЗов / В.Ю. Бабков. - СПб.: BHV, 2013. - 432 c.
35. Берлин, А.Н. Сотовые системы связи: Учебное пособие / А.Н. Берлин. - М.: Бином. Лаборатория знаний, 2009. - 360 c.
36. Берлин, А.Н. Сотовые системы связи: Учебное пособие / А.Н. Берлин. - М.: БИНОМ. ЛЗ, ИНТУИТ, 2013. - 360 c.
37. Сомов, А.М. Спутниковые системы связи / А.М. Сомов, С.Ф. Корнев. - М.: ГЛТ, 2012. - 244 c.
38. Сомов, А.М. Спутниковые системы связи. / А.М. Сомов, С.Ф. Корнев. - М.: Горячая линия -Телеком, 2012. - 244 c.
39. Сомов, А.М. Спутниковые системы связи: Учебное пособие для вузов / А.М. Сомов, С.Ф. Корнев. - М.: РиС, 2015. - 244 c.
40. Берлин, А.Н. Цифровые сотовые системы связи / А.Н. Берлин. - М.: Эко-Трендз, 2007. - 296 c.
41. Важенин, Н.А. Электрические ракетные двигатели космических аппаратов и их влияние на радиосистемы космической связи / Н.А. Важенин и др. - М.: Физматлит, 2013. - 432 c.
42. Томаси, У. Электронные системы связи / У. Томаси. - М.: Техносфера, 2007. - 1360 c.

1. Цифровые и аналоговые системы передачи / В.И.Иванов, В.Н. Гордиенко, Т.Н. Попов и др.- М.: «Горячая линия – Телеком», 2003.-232с.

2. Крук Б.И., Попантонопуло В.Н., Шувалов В.П. Телекоммуникационные системы и сети. Т.1 – «Горячая Линия – Телеком», 2003. – 648с.

3. Беллами Дж. Цифровая телефония: Пер. с англ. – М.: «Эко-Трендз», 2004.- 640 с.

4. Винокуров В.М. Цифровые системы передачи: учебное пособие /Томск. гос. ун-т систем упр. и радиоэлектроники. – Томск: ТУСУР, 2006. – 159 с.

5. Кулева Н.Н., Федорова Е.Л. Транспортные технологии SDH и OTN. СПб.: ГОУВПО СПбГУТ, 2009.-96 с.

6. Ефанов В. И. Электрические и волоконно-оптические линии связи: Учебное пособие. Томск: ТУСУР,2007 - 150 с

7. Андреев В.А. Направляющие системы электросвязи. Том 1. Теория передачи и влияния. М: «Горячая линия– Телеком», 2009 -424с.

8. Баркун М.А., Ходасевич О.Р. Цифровые системы синхронной коммутации.- М.: «Эко-Трендз», 2001.-187с.

9. Винокуров В.М. Сети связи и системы коммутации. - Томск, ТМЦДО, 2005.

10. Гольдштейн Б.С., Пинчук А.В., Суховицкий А.Л. IP-телефония. - М.: «Радио и связь»,2001.-334с.

11. Фокин В.Г. Оптические транспортные сети. – Новосибирск: Сиб ГУТИ, 2003.-157с.

12. Олифер В.Г., Олифер Н.А. Компьютерные сети. – Санкт-Петербург: изд-во «Питер», 2006.- 958 с.

13. Валов С.Г., Голышко А.В. Информационные сети будущего. Вестник связи. №№2-6, 2003.

14. Гургенидзе А.Т., Кореш В.И. Мультисервисные сети и услуги широкополосного доступа. –С-Пб.: «Наука и техника», 2003.-400с.

15. Широкополосные беспроводные сети передачи информации Вишневский В.М., Ляхов А.И., Портной С.Л., Шахнович И.В., «Техносфера», 2005. - 592

16. Скляр Бернард. Цифровая связь. Теоретические основы и практическое применение. М. : Издательский дом «Вильямc», 2003. - 1104 с. : ил.

17. Бакланов И.SDH-NGSDH Практический взгляд на развитие транспортных сетей М. :«Метротек», 2006 - 736 с. ил.

18. Томаси У. Электронные системы связи. «Техносфера», 2007 - 1358 с.

Конец работы -

Эта тема принадлежит разделу:

Телекоммуникационные системы. Сигналы и каналы электрической связи. Системы связи с частотным разделением каналов. Цифровые системы передачи

Лабораторные работы часа.. практические занятия часа.. всего аудиторных занятий часов..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Каналы, тракты, системы и сети передачи информации
ТС предназначены для передачи информации. Для начала сформулируем некоторые определения: Информация – совокупность сведений, данных, знаний о каких-либо процессах, явл

Функциональные признаки
а) Сеть передачи (транспортная сеть, первичная сеть) – основа для оказания и распределения услуг. В сеть передачи входят: - системы передачи; - сетевые узлы –

Иерархические признаки (территориальные)
По степени охвата пользователей телекоммуникационные системы разделяются следующим образом: 1.2.2.1 Глобальные - охватывают весь мир или значительную его ч

Стандартизация телекоммуникационных сетей и систем
Телекоммуникационные сети и системы являются сложными аппаратно-программными комплексами, распределенными на больших территориях и, как правило, состоящие из разнородных составляющих, т.е. включающ

Энергетические характеристики сигналов
К энергетическим характеристикам сигналов относятся абсолютные характеристики: мощность Р, напряжение U, ток I и их уровни передачи (логарифмические характеристики) pм, pu, p

Временные и спектральные характеристики первичных сигналов электросвязи
Временные и спектральные характеристики первичных сигналов электросвязи связаны с его формой. Для основных типов сигналов электросвязи они приведены в таблице 2.1 Таблица 2

Параметры сигнала с точки зрения его передачи по каналу связи
Основными параметрами аналогового сигнала с точки зрения его передачи по каналу связи являются: - длительность сигнала Тс; - ширина спектра DFс; - д

Сравнительная характеристика сигналов электросвязи
Сигнал Полоса, Гц Динамический диапазон, дБ Количество информации, бит Телеграф

Двусторонняя передача с 2-х проводным окончанием
Такой вид передачи является самым простым и дешевым. Он в массовом порядке используется в абонентских телефонных линиях. Передача сигнала осуществляется по паре проводов, которые протянуты от абоне

Каналы связи
Каналом передачи называется последовательное включение каналообразующего оборудования и линии связи. К каналообразующему оборудованию относятся модемы, передатчики и приемники, мультиплексоры и дру

Аналоговые типовые каналы
1. Канал тональной частоты (ТЧ) является основным в аналоговой телефонии. Он сосредоточен в частотном диапазоне 0.3 – 3.4 кГц. Входное и выходное сопротивления равны 600 Ом. Из

Формирование канальных и групповых сигналов
Главное требование, применимое к системам ЧРК, заключается в минимизации ширины спектра при преобразовании сигнала. Для экономного использования частотного ресурса используют модуляцию с одной боко

Накопление собственных помех в линейном тракте
Одним из существенных недостатков аналоговых систем передачи является накопление собственных помех в линейном тракте по мере прохождения сигнала. Рассмотрим участок линейного тракта, состоящий из и

Цифровой сигнал
Прежде чем рассмотреть процедуру его формирования сформулируем основные принципиальные отличия аналоговых и цифровых сигналов. Аналоговый сигнал представляет из себя бесконечную последовательность

Линейное кодирование
Цифровойсигнал после процедуры группообразования и АЦП имеет вид, представленный на рисунке 4.7, а. Он является однополярным и в нем нетрудно выделить три типичных ситуации: 1) чередование

Оконечная станция ЦСП
С учетом всего изложенного структурная схема ЦСП приобретает более развернутый, но далеко не окончательный вид (рисунок 4.10). Здесь сигнал от абонента поступает по двухпроводной линии на

Достоинства и недостатки ЦСП
К достоинствам цифровых методов передачи относятся: - высокая помехоустойчивость обеспечивается наличием в двоичном цифровом сигнале всего двух состояний. В связи с этим воздействие импуль

Компандирование в ЦСП
Принципы компандирования кратко были рассмотрены в подразделе 4.1.2. Здесь этот вопрос рассмотрим более подробно. При равномерном квантовании шаг квантования D одинаков как для малых, так и для бол

Линейные коды
Преобразование цифрового сигнала к виду, позволяющему передавать его с наименьшими энергетическими затратами, малым уровнем, называется преобразованием к коду передачи, а сами коды

Синхронизация в ЦСП
В системах с ВРК принципиальным является четкое соблюдение временных соотношений импульсных последовательностей как на передающем, так и на приемном концах группового тракта. Под эт

Тактовая синхронизация
Основное назначение тактовой синхронизации – обеспечение темпа передачи и согласование скоростей передачи и приема информации. Нарушение тактовой синхронизации приводит к увеличению

Цикловая синхронизация
Цикловая синхронизация отвечает за распределение канальных интервалов, определяя их начало и последовательность. При нарушении ЦС начало цикла в приемнике смещается относительно истинного положения

Самостоятельная работа
Процесс объединения цифровых сигналов различных каналов, как уже отмечалось в разделе 4.1, заключается в размещении импульсов последовательно во времени друг за другом (рисунок 4.42). Идеальная пос

Первичный цифровой сигнал (ИКМ-30)
В ЦСП групповой сигнал формируется в виде цикла. Длительность цикла τц равна времени дискретизации tд, которое равно 125мкс. В пределах цикла передается информация от N к

Шумы и помехи в цифровых системах передачи
В ЦСП на передачу информации влияют те же виды шумов и помех, что и в аналоговых системах (см. раздел3): тепловые и дробовые шумы, переходные помехи в многопарных электрических кабелях, атмосферные

Шумы дискретизации
Если при дискретизации и передаче расстояния между отсчетами становятся не одинаковыми, то будут появляться шумы дискретизации, т.е. шумы неравномерности временных отсчетов:

Шумы квантования Самостоятельная работа
Природа шумов квантования связана с округлением отсчета сигнала до значения ближайшего уровня (рисунок 4.50). Последовательные ошибки квантования в ИКМ-кодере в общем случае предполагаются

Шумы незагруженного канала
Анализ выражения (4.3) показывает, что при заданном D отношение сигнал-шум мало для малых значений сигналов. Как показано на рисунке 4.54, шумы равны значениям сигнала, если значения его дискретных

Шумы ограничения Самостоятельная работа
При кодировании обычно искусственно ограничивают уровень выходного сигнала. Характеристика квантователя с ограниченным Sвых приведена на рисунке 4.56.

Объединение цифровых потоков
Первичные цифровые потоки (ИКМ-30) могут объединяться для увеличения скорости передачи информации по одному групповому тракту. При этом за одно и то же время, например длительность цикла, нужно пер

Плезиохронная цифровая иерархия
Описанные выше принципы организации первичных цифровых потоков (ИКМ-30) и их объединение позволили предложить плезиохронную цифровую иерархию ЦСП (рисунок 4.62). Здесь на каждой ступени об

Синхронная цифровая иерархия (SDH)
Новая цифровая иерархия была задумана как скоростная информационная среда передачи для транспортирования цифровых потоков с разными скоростями. В этой иерархии объединяются и разъединяются потоки с

Линии связи
5.1 Кабельные линии связи. Основой телефонных сетей, сетей передачи данных, кабельного телевидения являются кабельные линии передачи. В настоящее время

Линии связи на симметричном кабеле
Электрический кабель – это электротехническое изделие, содержащее изолированные друг от друга проводники, объединенные в одну конструкцию. В качестве изоляции используются бумага, полистирол, полиэ

Волоконнооптические кабели
Оптический кабель представляет из себя скрученные оптические волокна (4 – 32 штуки) из кварцевого стекла. В них используется явление полного внутреннего отражения. Работают волокн

Радиоканалы
В зоновых сетях и сетях доступа широко используется передача информации с помощью беспроводных технологий (радиоканалы и оптическая связь). Рассмотрим здесь основные принципы, достоинства и недоста

Коммутация каналов и коммутация пакетов
При распределении цифровых потоков преимущественно используются две технологии коммутации: 1. Коммутация каналов (КК). Здесь (рис. 6.1) между

Пространственная коммутация
Основной функцией коммутатора является установление и разрыв соединения между двумя каналами передачи. Каналы передачи могут идти от коммутатора либо к абоненту, либо к другому комм

Временная коммутация
Как было отмечено в разделе 6.1. временная коммутация имеет место только для цифровых потоков с временным разделением каналов. Здесь в одном цифровом потоке (рисунок 6.12) информац

Цифровая телекоммуникационная сеть SDH
Цифровая телекоммуникационная сеть SDH (рисунок 8.1) строилась поэтапно. В начале было построено волоконно-оптическое кольцо в г. Томске на базе 16-ти волоконного оптического кабеля

Сеть передачи данных
Сеть передачи данных выполнена по комбинированной схеме путем построения выделенной магистральной сети с дополнением ее сегментами, наложенными на цифровую сеть SDH-PDH (рисунок 8.2

Перспективы развития сетей
Развитие телекоммуникационных сетей прежде всего связано с развитием услуг и качеством их предоставления. Сейчас на ряду с традиционными услугами (телефония, телевидение, радиовещан

Современные системы сбора и обработки информации содержат обычно несколько взаимодействующих между собой устройств (контроллеры, микро-ЭВМ и др.), которые разнесены на десятки, сотни, иногда даже на тысячи метров.

Это обстоятельство выдвигает проблему передачи информации по каналам связи. Эти каналы связи должны работать в промышленной среде, которая может характеризоваться высоким уровнем помех, запыленностью, химической агрессивностью, большими колебаниями температуры, вибрациями. В зависимости от назначения к каналам связи могут предъявляться требования высокого быстродействия и высокой достоверности передаваемых сигналов.

Канал связи состоит из оконечной аппаратуры и линии передачи, то есть среды, по которой распространяется сигнал. В функции оконечной аппаратуры входит согласование сигналов на выходе передатчика и сигналов, распространяющихся по линии передачи, а также сигналов на выходе из линии передачи и на входе приемника.

Эти функции обычно разделяют на два уровня:

Управления линией;

Управления каналом.

К задачам управления линией относят формирование на передающей стороне сигнала, непосредственно направляемого в линию, преобразование на приемной стороне поступившего из линии сигнала в сигнал, воспринимаемый аппаратурой информационного канала, синхронизацию сигналов и контроль их достоверности.

Линия передачи вместе с узлами оконечной аппаратуры образует физический канал .

Для связи с АЦП и ЦАП, с одной стороны, датчиками и исполнительными механизмами - с другой, используют аналоговые физические каналы.

Для передачи сообщений узлам обработки данных используют дискретные физические каналы , передающие сигналы кодом.

Импульсы, используемые для передачи цифровой информации по физическому каналу, занимают определенный спектр частот. Этот спектр совпадает с полосой эффективно пропускаемых линией частот только в том случае, когда полоса частот, занимаемая сигналом в линии, начинается с нулевой частоты, то есть, когда передача осуществляется видеоимпульсами. Если же спектр сигнала не совпадает с рабочим диапазоном канала связи, его преобразуют с помощью модуляции.

Использование для передачи сигнала той части полосы частот, которую пропускает физический канал, позволяет уплотнить его по частоте. То есть несколько абонентов могут пользоваться одним физическим каналом одновременно.

Чаще всего используется стандартный телефонный канал. Он размещается в полосе частот от 300 до 3400 Гц. Международный консультативный комитет по телеграфии и телефонии (МККТТ) рекомендует шесть вариантов деления этого диапазона: максимум на 26, 13, 8, 6, 2 или 1 канал (рис. 3.1).

На рисунке 3.1 штриховкой выделены полосы сигналов телефонного вызова, контроля частоты синхронизации.

В системах связи и телемеханики обычно используется частотное разделение (уплотнение) каналов. В локальных сетях АСУ ТП (децентрализованные системы) к частотному уплотнению в последнее время не прибегают. Данные передаются последовательно, по битам, физический канал используется для обмена данными между различными абонентами в режиме разделения времени.


На рис. 1 приняты следующие обозначения: X, Y, Z, W – сигналы, сообщения; f – помеха; ЛС – линия связи; ИИ, ПИ – источник и приемник информации; П – преобразователи (кодирование, модуляция, декодирование, демодуляция).

Существуют различные типы каналов, которые можно классифицировать по различным признакам:

1.По типу линий связи: проводные; кабельные; оптико-волоконные;

линии электропередачи; радиоканалы и т.д.

2. По характеру сигналов: непрерывные; дискретные; дискретно-непрерывные (сигналы на входе системы дискретные, а на выходе непрерывные, и наоборот).

3. По помехозащищенности: каналы без помех; с помехами.

Каналы связи характеризуются:

1. Емкость канала определяется как произведениевремени использования канала T к, ширины спектра частот, пропускаемых каналом F к и динамического диапазона D к . , который характеризует способность канала передавать различные уровни сигналов


V к = T к F к D к. (1)

Условие согласования сигнала с каналом:

V c £ V k ; T c £ T k ; F c £ F k ; V c £ V k ; D c £ D k .

2.Скорость передачи информации – среднее количество информации, передаваемое в единицу времени.

3.

4. Избыточность – обеспечивает достоверность передаваемой информации (R = 0¸1).

Одной из задач теории информации является определение зависимости скорости передачи информации и пропускной способности канала связи от параметров канала и характеристик сигналов и помех.

Канал связи образно можно сравнивать с дорогами. Узкие дороги – малая пропускная способность, но дешево. Широкие дороги – хорошая пропускная способность, но дорого. Пропускная способность определяется самым «узким» местом.

Скорость передачи данных в значительной мере зависит от передающей среды в каналах связи, в качестве которых используются различные типы линий связи.

Проводные:

1. Проводные – витая пара (что частично подавляет электромагнитное излучение других источников). Скорость передачи до 1 Мбит/с. Используется в телефонных сетях и для передачи данных.

2. Коаксиальный кабель. Скорость передачи 10–100 Мбит/с – используется в локальных сетях, кабельном телевидении и т.д.

3. Оптико-волоконная. Скорость передачи 1 Гбит/с.

В средах 1–3 затухание в дБ линейно зависит от расстояния, т.е. мощность падает по экспоненте. Поэтому через определенное расстояние необходимо ставить регенераторы (усилители).

Радиолинии:

1.Радиоканал. Скорость передачи 100–400 Кбит/с. Использует радиочастоты до 1000 МГц. До 30 МГц за счет отражения от ионосферы возможно распространение электромагнитных волн за пределы прямой видимости. Но этот диапазон сильно зашумлен (например, любительской радиосвязью). От 30 до 1000 МГц – ионосфера прозрачна и необходима прямая видимость. Антенны устанавливаются на высоте (иногда устанавливаются регенераторы). Используются в радио и телевидении.

2.Микроволновые линии. Скорости передачи до 1 Гбит/с. Используют радиочастоты выше 1000 МГц. При этом необходима прямая видимость и остронаправленные параболические антенны. Расстояние между регенераторами 10–200 км. Используются для телефонной связи, телевидения и передачи данных.

3. Спутниковая связь . Используются микроволновые частоты, а спутник служит регенератором (причем для многих станций). Характеристики те же, что у микроволновых линий.

2. Пропускная способность дискретного канала связи

Дискретный канал представляет собой совокупность средств, предназначенных для передачи дискретных сигналов .

Пропускная способность канала связи – наибольшая теоретически достижимая скорость передачи информации при условии, что погрешность не превосходит заданной величины.Скорость передачи информации – среднее количество информации, передаваемое в единицу времени. Определим выражения для расчета скорости передачи информации и пропускной способности дискретного канала связи.

При передаче каждого символа в среднем по каналу связи проходит количество информации, определяемое по формуле

I (Y, X) = I (X, Y) = H(X) – H (X/Y) = H(Y) – H (Y/X) , (2)

где: I (Y, X) – взаимная информация, т.е.количество информации, содержащееся в Y относительно X ; H(X) – энтропия источника сообщений; H (X/Y) – условная энтропия, определяющая потерю информации на один символ, связанную с наличием помех и искажений.

При передаче сообщения X T длительности T, состоящего из n элементарных символов, среднее количество передаваемой информации с учетом симметрии взаимного количества информации равно:

I(Y T , X T) = H(X T) – H(X T /Y T) = H(Y T) – H(Y T /X T) = n . (4)

Скорость передачи информации зависит от статистических свойств источника, метода кодирования и свойств канала.

Пропускная способность дискретного канала связи

. (5)

Максимально-возможное значение, т.е. максимум функционала ищется на всем множестве функций распределения вероятности p(x) .

Пропускная способность зависит от технических характеристик канала (быстродействия аппаратуры, вида модуляции, уровня помех и искажений и т.д.). Единицами измерения пропускной способности канала являются: , , , .

2.1 Дискретный канал связи без помех

Если помехи в канале связи отсутствуют, то входные и выходные сигналы канала связаны однозначной, функциональной зависимостью.

При этом условная энтропия равна нулю, а безусловные энтропии источника и приемника равны, т.е. среднее количество информации в принятом символе относительно переданного равно


I (X, Y) = H(X) = H(Y); H (X/Y) = 0.

Если Х Т – количество символов за время T , то скорость передачи информации для дискретного канала связи без помех равна

где V = 1/ – средняя скорость передачи одного символа.

Пропускная способность для дискретного канала связи без помех

(7)

Т.к. максимальная энтропия соответствует для равновероятных символов, то пропускная способность для равномерного распределения и статистической независимости передаваемых символов равна:

. (8)

Первая теорема Шеннона для канала:Если поток информации, вырабатываемый источником, достаточно близок к пропускной способности канала связи, т.е.

, где - сколь угодно малая величина,

то всегда можно найти такой способ кодирования, который обеспечит передачу всех сообщений источника, причем скорость передачи информации будет весьма близкой к пропускной способности канала.

Теорема не отвечает на вопрос, каким образом осуществлять кодирование.

Пример 1. Источник вырабатывает 3 сообщения с вероятностями:

p 1 = 0,1; p 2 = 0,2 и p 3 = 0,7.

Сообщения независимы и передаются равномерным двоичным кодом (m = 2 ) с длительностью символов, равной 1 мс. Определить скорость передачи информации по каналу связи без помех.

Решение: Энтропия источника равна

[бит/с].

Для передачи 3 сообщений равномерным кодом необходимо два разряда, при этом длительность кодовой комбинации равна 2t.

Средняя скорость передачи сигнала

V =1/2 t = 500 .

Скорость передачи информации

C = vH = 500 × 1,16 = 580 [бит/с].

2.2 Дискретный канал связи с помехами

Мы будем рассматривать дискретные каналы связи без памяти.

Каналом без памяти называется канал, в котором на каждый передаваемый символ сигнала, помехи воздействуют, не зависимо от того, какие сигналы передавались ранее. То есть помехи не создают дополнительные коррелятивные связи между символами. Название «без памяти» означает, что при очередной передаче канал как бы не помнит результатов предыдущих передач.

При наличии помехи среднее количество информации в принятом символе сообщении Y , относительно переданного – X равно:

Для символа сообщения X T длительностиT , состоящегоиз n элементарных символов среднее количество информации в принятом символе сообщении – Y T относительно переданного – X T равно:

I(Y T , X T) = H(X T) – H(X T /Y T) = H(Y T) – H(Y T /X T) = n = 2320 бит/с

Пропускная способность непрерывного канала с помехами определяется по формуле


=2322 бит/с.

Докажем, что информационная емкость непрерывного канала без памяти с аддитивным гауссовым шумом при ограничении на пиковую мощность не больше информационной емкости такого же канала при той же величине ограничения на среднюю мощность.

Математическое ожидание для симметричного равномерного распределения

Средний квадрат для симметричного равномерного распределения

Дисперсия для симметричного равномерного распределения

При этом, для равномерно-распределенного процесса .

Дифференциальная энтропия сигнала с равномерным распределением


Разность дифференциальных энтропий нормального и равномерно распределенного процесса не зависит от величины дисперсии

= 0,3 бит/отсч.

Таким образом, пропускная способность и емкость канала связи для процесса с нормальным распределением выше, чем для равномерного.

Определим емкость (объем) канала связи

V k = T k C k = 10 × 60 × 2322 = 1,3932 Мбит.

Определим количество информации, которое может быть передано за 10 минут работы канала

10× 60× 2322=1,3932 Мбит.

Задачи

1. В канал связи передаются сообщения, составленные из алфавита x 1, x 2 и x 3 с вероятностями p ( x 1 )=0,2; p ( x 2) =0,3 и p ( x 3 )=0,5 .

Канальная матрица имеет вид:

при этом .

Вычислить:

1.Энтропию источника информации H ( X ) и приемника H ( Y ) .

2. Общую и условную энтропию H ( Y / X ).

3. Потери информации в канале при передаче к символов (к = 100 ).

4. Количество принятой информации при передаче к символов.

5. Скорость передачи информации, если время передачи одного символаt = 0,01 мс .

2. По каналу связи передаются символы алфавита x 1 , x 2 , x 3 и x 4 с вероятностями . Определить количество информации принятой при передаче 300 символов, если влияние помех описывается канальной матрицей:

.

3. Определить потери информации в канале связи при передаче равновероятных символов алфавита, если канальная матрица имеет вид


.

t = 0,001 сек.

4.Определить потери информации при передаче 1000 символов алфавита источникаx 1 , x 2 и x 3 с вероятностями p =0,2; p =0,1 и p ()=0,7 , если влияние помех в канале описывается канальной матрицей:

.

5. Определить количество принятой информации при передаче 600 символов, если вероятности появления символов на выходе источника X равны: а влияние помех при передаче описывается канальной матрицей:

.

6. В канал связи передаются сообщения, состоящие из символов алфавита , при этом вероятности появления символов алфавита равны:

Канал связи описан следующей канальной матрицей:


.

Определить скорость передачи информации, если время передачи одного символа мс .

7.По каналу связи передаются сигналы x 1 , x 2 и x 3 с вероятностями p =0,2; p =0,1 и p ()=0,7. Влияние помех в канале описывается канальной матрицей:

.

Определить общую условную энтропию и долю потерь информации, которая приходится на сигнал x 1 (частную условную энтропию).

8. По каналу связи передаются символы алфавита x 1 , x 2 , x 3 и x 4 с вероятностями .

Помехи в канале заданы канальной матрицей

.

Определить пропускную способность канала связи, если время передачи одного символа t = 0,01 сек.

Определить количество принятой информации при передаче 500 символов, если вероятности появления символов на входе приемника Y равны: , а влияние помех при передаче описывается канальной матрицей:


.

Список литературы

1 Гринченко А.Г. Теория информации и кодирование: Учебн. пособие. – Харьков: ХПУ, 2000.

2 Куприянов М.С., Матюшкин Б.Д. – Цифровая обработка сигналов: процессоры, алгоритмы, средства проектирования. – СПб: Политехника, 1999.

3 Хемминг Р.В. Цифровые фильтры: Пер. с англ. / Под ред. А.М. Трахтмана. – М.: Сов. радио, 1980.

4 Сиберт У.М. Цепи, сигналы, системы: В 2-х ч. / Пер. с англ. – М.: Мир, 1988.

5 Скляр Б. Цифровая связь. Теоретические основы и практическое применение: Пер. с англ. – М.: Издательский дом «Вильямс», 2003. – 1104 с.

6 Kalinin, V.I. Microwave & Telecommunication Technology, 2007. CriMiCo 2007. 17th International Crimean ConferenceVolume, Issue, 10–14 Sept. 2007 Page(s):233 – 234

7 Феер К. Беспроводная цифровая связь. Методы модуляции и расширения спектра. Пер. с англ. – М.: Радио и связь, 2000.

8 Игнатов В.А. Теория информации и передачи сигналов: Учебник для вузов. – 2-е изд., перераб. и доп. – М.: Радио и связь, 1991;




Top