Разновидности конденсаторов и их применение. Типы конденсаторов

Во всех радиотехнических и электронных устройствах кроме транзисторов и микросхем применяются конденсаторы. В одних схемах их больше, в других меньше, но совсем без конденсаторов не бывает практически ни одной электронной схемы.

При этом конденсаторы могут выполнять в устройствах самые разные задачи. Прежде всего, это емкости в фильтрах выпрямителей и стабилизаторов. С помощью конденсаторов передается сигнал между усилительными каскадами, строятся фильтры низких и высоких частот, задаются временные интервалы в выдержках времени и подбирается частота колебаний в различных генераторах.

Свою родословную конденсаторы ведут от , которую в середине XVIII века в своих опытах использовал голландский ученый Питер ван Мушенбрук. Жил он в городе Лейдене, так что нетрудно догадаться, почему так называлась эта банка.

Собственно это и была обыкновенная стеклянная банка, выложенная внутри и снаружи оловянной фольгой - станиолем. Использовалась она в тех же целях, как и современная алюминиевая, но тогда алюминий открыт еще не был.

Единственным источником электричества в те времена была электрофорная машина, способная развивать напряжение до нескольких сотен киловольт. Вот от нее и заряжали лейденскую банку. В учебниках физики описан случай, когда Мушенбрук разрядил свою банку через цепь из десяти гвардейцев взявшихся за руки.

В то время никто не знал, что последствия могут быть трагическими. Удар получился достаточно чувствительным, но не смертельным. До этого не дошло, ведь емкость лейденской банки была незначительной, импульс получился очень кратковременным, поэтому мощность разряда была невелика.

Как устроен конденсатор

Устройство конденсатора практически ничем не отличается от лейденской банки: все те же две обкладки, разделенные диэлектриком. Именно так на современных электрических схемах изображаются конденсаторы. На рисунке 1 показано схематичное устройство плоского конденсатора и формула для его расчета.

Рисунок 1. Устройство плоского конденсатора

Здесь S - площадь пластин в квадратных метрах, d - расстояние между пластинами в метрах, C - емкость в фарадах, ε - диэлектрическая проницаемость среды. Все величины, входящие в формулу, указаны в системе СИ. Эта формула справедлива для простейшего плоского конденсатора: можно просто расположить рядом две металлические пластины, от которых сделаны выводы. Диэлектриком может служить воздух.

Из этой формулы можно понять, что емкость конденсатора тем больше, чем больше площадь пластин и чем меньше расстояние между ними. Для конденсаторов с другой геометрией формула может быть иной, например, для емкости одиночного проводника или . Но зависимость емкости от площади пластин и расстояния между ними та же, что и у плоского конденсатора: чем больше площадь и чем меньше расстояние, тем больше емкость.

На самом деле пластины не всегда делаются плоскими. У многих конденсаторов, например металлобумажных, обкладки представляют собой алюминиевую фольгу свернутую вместе с бумажным диэлектриком в плотный клубок, по форме металлического корпуса.

Для увеличения электрической прочности тонкая конденсаторная бумага пропитывается изолирующими составами, чаще всего трансформаторным маслом. Такая конструкция позволяет делать конденсаторы с емкостью до нескольких сотен микрофарад. Примерно так же устроены конденсаторы и с другими диэлектриками.

Формула не содержит никаких ограничений на площадь пластин S и расстояние между пластинами d. Если предположить, что пластины можно развести очень далеко, и при этом площадь пластин сделать совсем незначительной, то какая-то емкость, пусть небольшая, все равно останется. Подобное рассуждение говорит о том, что даже просто два проводника, расположенные по соседству, обладают электрической емкостью.

Этим обстоятельством широко пользуются в высокочастотной технике: в некоторых случаях конденсаторы делаются просто в виде дорожек печатного монтажа, а то и просто двух скрученных вместе проводков в полиэтиленовой изоляции. Обычный провод-лапша или кабель также обладают емкостью, причем с увеличением длины она увеличивается.

Кроме емкости C, любой кабель обладает еще и сопротивлением R. Оба этих физических свойства распределены по длине кабеля, и при передаче импульсных сигналов работают как интегрирующая RC - цепочка, показанная на рисунке 2.

Рисунок 2.

На рисунке все просто: вот схема, вот входной сигнал, а вот он же на выходе. Импульс искажается до неузнаваемости, но это сделано специально, для чего и собрана схема. Пока же речь идет о влиянии емкости кабеля на импульсный сигнал. Вместо импульса на другом конце кабеля появится вот такой «колокол», а если импульс короткий, то он может и вовсе не дойти до другого конца кабеля, вовсе пропасть.

Исторический факт

Здесь вполне уместно вспомнить историю о том, как прокладывали трансатлантический кабель. Первая попытка в 1857 году потерпела неудачу: телеграфные точки - тире (прямоугольные импульсы) искажались так, что на другом конце линии длиной 4000 км разобрать ничего не удалось.

Вторая попытка была предпринята в 1865 году. К этому времени английский физик У. Томпсон разработал теорию передачи данных по длинным линиям. В свете этой теории прокладка кабеля оказалась более удачной, сигналы принять удалось.

За этот научный подвиг королева Виктория пожаловала ученого рыцарством и титулом лорда Кельвина. Именно так назывался небольшой город на побережье Ирландии, где начиналась прокладка кабеля. Но это просто к слову, а теперь вернемся к последней букве в формуле, а именно, к диэлектрической проницаемости среды ε.

Немножко о диэлектриках

Эта ε стоит в знаменателе формулы, следовательно, ее увеличение повлечет за собой возрастание емкости. Для большинства используемых диэлектриков, таких как воздух, лавсан, полиэтилен, фторопласт эта константа практически такая же, как у вакуума. Но вместе с тем существует много веществ, диэлектрическая проницаемость которых намного выше. Если воздушный конденсатор залить ацетоном или спиртом, то его емкость возрастет раз в 15…20.

Но подобные вещества обладают кроме высокой ε еще и достаточно высокой проводимостью, поэтому такой конденсатор заряд держать будет плохо, он быстро разрядится сам через себя. Это вредное явление называется током утечки. Поэтому для диэлектриков разрабатываются специальные материалы, которые позволяют при высокой удельной емкости конденсаторов обеспечивать приемлемые токи утечки. Именно этим и объясняется такое разнообразие видов и типов конденсаторов, каждый из которых предназначен для конкретных условий.

Наибольшей удельной емкостью (соотношение емкость / объем) обладают . Емкость «электролитов» достигает до 100 000 мкФ, рабочее напряжение до 600В. Такие конденсаторы работают хорошо только на низких частотах, чаще всего в фильтрах источников питания. Электролитические конденсаторы включаются с соблюдением полярности.

Электродами в таких конденсаторах является тонкая пленка из оксида металлов, поэтому часто эти конденсаторы называют оксидными. Тонкий слой воздуха между такими электродами не очень надежный изолятор, поэтому между оксидными обкладками вводится слой электролита. Чаще всего это концентрированные растворы кислот или щелочей.

На рисунке 3 показан один из таких конденсаторов.

Рисунок 3. Электролитический конденсатор

Чтобы оценить размеры конденсатора рядом с ним сфотографировался простой спичечный коробок. Кроме достаточно большой емкости на рисунке можно разглядеть еще и допуск в процентах: ни много ни мало 70% от номинальной.

В те времена, когда компьютеры были большими и назывались ЭВМ, такие конденсаторы стояли в дисководах (по-современному HDD). Информационная емкость таких накопителей теперь может вызвать лишь улыбку: на двух дисках диаметром 350 мм хранилось 5 мегабайт информации, а само устройство весило 54 кг.

Основным назначением показанных на рисунке суперконденсаторов был вывод магнитных головок из рабочей зоны диска при внезапном отключении электроэнергии. Такие конденсаторы могли хранить заряд несколько лет, что было проверено на практике.

Чуть ниже с электролитическими конденсаторами будет предложено проделать несколько простых опытов, чтобы понять, что может делать конденсатор.

Для работы в цепях переменного тока выпускаются неполярные электролитические конденсаторы, вот только достать их почему-то очень непросто. Чтобы как-то эту проблему обойти, обычные полярные «электролиты» включают встречно-последовательно: плюс-минус-минус-плюс.

Если полярный электролитический конденсатор включить в цепь переменного тока, то сначала он будет греться, а потом раздастся взрыв. Отечественные старые конденсаторы разлетались во все стороны, импортные же имеют специальное приспособление, позволяющее избежать громких выстрелов. Это, как правило, либо крестовая насечка на донышке конденсатора, либо отверстие с резиновой пробкой, расположенное там же.

Очень не любят электролитические конденсаторы повышенного напряжения, даже если полярность соблюдена. Поэтому никогда не надо ставить «электролиты» в цепь, где предвидится напряжение близкое к максимальному для данного конденсатора.

Иногда в некоторых, даже солидных форумах, начинающие задают вопрос: «На схеме означен конденсатор 470µF * 16V, а у меня есть 470µF * 50V, можно ли его поставить?». Да, конечно можно, вот обратная замена недопустима.

Конденсатор может накапливать энергию

Разобраться с этим утверждением поможет простая схема, показанная на рисунке 4.

Рисунок 4. Схема с конденсатором

Главным действующим лицом этой схемы является электролитический конденсатор C достаточно большой емкости, чтобы процессы заряда - разряда протекали медленно, и даже очень наглядно. Это дает возможность наблюдать работу схемы визуально с помощью обычной лампочки от карманного фонаря. Фонари эти давно уступили место современным светодиодным, но лампочки для них продаются до сих пор. Поэтому, собрать схему и провести простые опыты очень даже просто.

Может быть, кто-то скажет: «А зачем? Ведь и так все очевидно, да если еще и описание почитать…». Возразить тут, вроде, нечего, но любая, даже самая простая вещь остается в голове надолго, если ее понимание пришло через руки.

Итак, схема собрана. Как она работает?

В положении переключателя SA, показанном на схеме, конденсатор C заряжается от источника питания GB через резистор R по цепи: +GB __ R __ SA __ C __ -GB. Зарядный ток на схеме показан стрелкой с индексом iз. Процесс заряда конденсатора показан на рисунке 5.

Рисунок 5. Процесс заряда конденсатора

На рисунке видно, что напряжение на конденсаторе возрастает по кривой линии, в математике называемой экспонентой. Ток заряда прямо-таки зеркально отражает напряжение заряда. По мере того, как напряжение на конденсаторе растет, ток заряда становится все меньше. И только в начальный момент соответствует формуле, показанной на рисунке.

Через некоторое время конденсатор зарядится от 0В до напряжения источника питания, в нашей схеме до 4,5В. Весь вопрос в том, как это время определить, сколько ждать, когда же конденсатор зарядится?

Постоянная времени «тау» τ = R*C

В этой формуле просто перемножаются сопротивление и емкость последовательно соединенных резистора и конденсатора. Если, не пренебрегая системой СИ, подставить сопротивление в Омах, емкость в Фарадах, то результат получится в секундах. Именно это время необходимо для того, чтобы конденсатор зарядился до 36,8% напряжения источника питания. Соответственно для заряда практически до 100% потребуется время 5* τ.

Часто, пренебрегая системой СИ, подставляют в формулу сопротивление в Омах, а емкость в микрофарадах, тогда время получится в микросекундах. В нашем случае результат удобнее получить в секундах, для чего придется микросекунды просто умножить на миллион, а проще говоря, переместить запятую на шесть знаков влево.

Для схемы, показанной на рисунке 4, при емкости конденсатора 2000мкФ и сопротивлении резистора 500Ω постоянная времени получится τ = R*C = 500 * 2000 = 1000000 микросекунд или ровно одна секунда. Таким образом, придется подождать приблизительно 5 секунд, пока конденсатор зарядится полностью.

Если по истечении указанного времени переключатель SA перевести в правое положение, то конденсатор C разрядится через лампочку EL. В этот момент получится короткая вспышка, конденсатор разрядится и лампочка погаснет. Направление разряда конденсатора показано стрелкой с индексом iр. Время разряда также определяется постоянной времени τ. График разряда показан на рисунке 6.

Рисунок 6. График разряда конденсатора

Конденсатор не пропускает постоянный ток

Убедиться в этом утверждении поможет еще более простая схема, показанная на рисунке 7.

Рисунок 7. Схема с конденсатором в цепи постоянного тока

Если замкнуть переключатель SA, то последует кратковременная вспышка лампочки, что свидетельствует о том, что конденсатор C зарядился через лампочку. Здесь же показан и график заряда: в момент замыкания переключателя ток максимальный, по мере заряда конденсатора уменьшается, а через некоторое время прекращается совсем.

Если конденсатор хорошего качества, т.е. с малым током утечки (саморазряда) повторное замыкание выключателя к вспышке не приведет. Для получения еще одной вспышки конденсатор придется разрядить.

Конденсатор в фильтрах питания

Конденсатор ставится, как правило, после выпрямителя. Чаще всего выпрямители делаются двухполупериодными. Наиболее распространенные схемы выпрямителей показаны на рисунке 8.

Рисунок 8. Схемы выпрямителей

Однополупериодные выпрямители также применяются достаточно часто, как правило, в тех случаях, когда мощность нагрузки незначительна. Самым ценным качеством таких выпрямителей является простота: всего один диод и обмотка трансформатора.

Для двухполупериодного выпрямителя емкость конденсатора фильтра можно рассчитать по формуле

C = 1000000 * Po / 2*U*f*dU, где C емкость конденсатора мкФ, Po мощность нагрузки Вт, U напряжение на выходе выпрямителя В, f частота переменного напряжения Гц, dU амплитуда пульсаций В.

Большое число в числителе 1000000 переводит емкость конденсатора из системных Фарад в микрофарады. Двойка в знаменателе представляет собой число полупериодов выпрямителя: для однополупериодного на ее месте появится единица

C = 1000000 * Po / U*f*dU,

а для трехфазного выпрямителя формула примет вид C = 1000000 * Po / 3*U*f*dU.

Суперконденсатор - ионистор

В последнее время появился новый класс электролитических конденсаторов, так называемый . По своим свойствам он похож на аккумулятор, правда, с несколькими ограничениями.

Заряд ионистора до номинального напряжения происходит в течение короткого времени, буквально за несколько минут, поэтому его целесообразно использовать в качестве резервного источника питания. По сути ионистор прибор неполярный, единственное, чем определяется его полярность это зарядкой на заводе - изготовителе. Чтобы в дальнейшем эту полярность не перепутать она указывается знаком +.

Большую роль играют условия эксплуатации ионисторов. При температуре 70˚C при напряжении 0,8 от номинального гарантированная долговечность не более 500 часов. Если же прибор будет работать при напряжении 0,6 от номинального, а температура не превысит 40 градусов, то исправная работа возможна в течение 40 000 часов и более.

Наиболее распространенное применение ионистора это источники резервного питания. В основном это микросхемы памяти или электронные часы. В этом случае основным параметром ионистора является малый ток утечки, его саморазряд.

Достаточно перспективным является использование ионисторов совместно с солнечными батареями. Здесь также сказывается некритичность к условию заряда и практически неограниченное число циклов заряд-разряд. Еще одно ценное свойство в том, что ионистор не нуждается в обслуживании.

Пока получилось рассказать, как и где работают электролитические конденсаторы, причем, в основном в цепях постоянного тока. О работе конденсаторов в цепях переменного тока будет рассказано в другой статье - .

На сегодняшний день существует множество типов конденсаторов и каждый из них обладает своими преимуществам и недостатками.
Одни могут работать при высоких напряжениях, другие обладают большой ёмкостью, третьи малой утечкой, четвёртые малой индуктивностью - эти факторы определяют область применения конденсаторов конкретного типа.
В этой статье будут рассмотрены основные, но далеко не все типы конденсаторов.

Алюминиевые электролитические конденсаторы .

Алюминиевые электролитические конденсаторы, состоят из двух скрученных тонких алюминиевых полосок, между которыми помещается бумага, пропитанная электролитом. Ёмкость этого типа конденсаторов может быть от 0.1uF до 100 000uF, что является их главным преимуществом перед другими типами, а максимальное рабочее напряжение может доходить до 500V. Максимальное рабочее напряжение и ёмкость обычно указываются на конденсаторе, максимальное рабочее напряжение конденсатора, изображенного на картинке, составляет 35 вольт , а ёмкость или заряд приходящийся на 1 вольт, составляет 680uF . Недостатком этого типа конденсаторов является относительно высокий ток утечки и то, что ёмкость их уменьшается с ростом частоты, именно поэтому на платах часто можно встретить алюминиевый электролитический конденсатор, параллельно которому ставят керамический или как горят “шунтируют керамикой”. Также надо сказать, что этот тип конденсаторов имеет полярность, это значит, что вывод конденсатора, обозначенный минусом на корпусе, должен всегда находиться под более отрицательным напряжением, чем другой вывод конденсатора. При несоблюдении этого правила конденсатор скорее всего взорвётся и именно поэтому применять их можно только в цепях с постоянным и пульсирующим током, но не переменным.

Танталовые конденсаторы .

Танталовые конденсаторы изготавливаются из пентаоксида тантала и схожи по свойствам с алюминиевыми электролитическими конденсаторами, но обладают некоторыми особенностями. Они меньшего размера, максимальное рабочее напряжение до 100V, ёмкость этого типа конденсаторов может быть от 47nF до 1000uF, обладают меньшей индуктивностью и могут применяться в более высокочастотных схемах, работающих на частотах в сотни Khz. К недостаткам можно отнести чувствительность к превышению рабочего напряжения. Надо отметить, что в отличии от алюминиевых электролитических конденсаторов, линией на корпусе помечают плюсовой вывод.

Керамические однослойные дисковые конденсаторы .

Дисковые керамические конденсаторы обладают достаточно большой ёмкостью при их размерах, она может быть от 1pF до 220nF, а максимальное рабочее напряжение не должно превышать 50V. Значение ёмкости на данном типе конденсаторов указывается в pF, например ёмкость конденсатора изображенного на картинке равна 100 000 pF или 100nF или 0.1uF, данное значение получается следующим образом, первые две цифры надо умножить на 10, возведенную в степень третьей цифры, в нашем случае надо 10 х 10^4 = 10^5 или 100 000pF. К достоинствам можно отнести, незначительные токи утечки, небольшие габаритные размеры, низкую индуктивность и способность работать на высоких частотах, а также высокую температурную стабильность ёмкости. Могут работать в цепях постоянного, переменного, пульсирующего тока.

Керамические многослойные конденсаторы

Керамические многослойные конденсаторы представляет собой структуру с чередующимися тонкими слоями керамики и металла.
Этот тип конденсаторов схож по свойствам с однослойными дисковыми, но обладает в несколько раз большей ёмкостью, достигающей нескольких uF. Максимальное рабочее напряжение на корпусе этих конденсаторов не указывается и так же как для однослойных дисковых, не должно превышать 50V. Могут работать в цепях постоянного, переменного, пульсирующего тока.

Керамические высоковольтные конденсаторы

Преимущество этого типа конденсаторов понятно из названия, их отличительной особенностью является способность работать под высоким напряжением. Диапазон рабочих напряжений от 50 до 15000V, а ёмкость может 68pF до 150nF. Максимальное напряжение конденсатора, изображенного на картинке конденсатора равно 1000V, а ёмкость 100nF, выше описывалось как её узнать. Могут работать в цепях постоянного, переменного, пульсирующего тока.

Полиэстеровые конденсаторы .

Ёмкость этого типа конденсаторов может быть от 1nF до 15uF, диапазон рабочих напряжений от 50 до 1500V. Они изготавливаются с разными допуском(допустимое отклонение номинальной ёмкости), 5%, 10% и 20%, обладают высокой температурной стабильностью, достаточно большой ёмкостью при их размерах, низкой ценой и как следствие находят широкое применение. Ёмкость конденсатора, изображенного на картинке равна 150 000pF или 150nF, буква К после числа 154 означает допуск, то есть на сколько реальное значение ёмкости может отличаться от указанной на конденсаторе. В данном случае допуск составляет 10%, подробнее об этом будет написано ниже. Нас больше интересует, что в маркировке этого конденсатора означает 2J и чему равно его максимальное рабочее напряжение. Для того чтобы ответить на два эти вопроса можно воспользоваться таблицей, буквенной маркировки напряжения.


Из таблицы становится понятно, что максимальное рабочее напряжение конденсатора равно 630V

Полипропиленовые конденсаторы .

В конденсаторах этого типа в качестве диэлектрика применяется полипропиленовая плёнка, а их ёмкость может быть от 100pF до 10uF. Одним из главных преимуществ этого типа конденсаторов является высокое рабочее напряжение, которое может достигать 3000V, также преимуществом является возможность изготовления этого типа конденсаторов с допуском в 1%. На картинке изображён конденсатор ёмкость которого 5600pF, а максимальное рабочее напряжение равно 630V. Буква J после числа 562 обозначает допуск и в данном случае он равен 5%. Допуск можно определить, пользуясь таблицей, изображенной ниже.


То есть реальное значение ёмкости может отличаться на 5% той, что указана на конденсаторе. Могут работать на частотах до 100KHz.

В магазинах электротехники конденсаторы чаще всего можно увидеть в виде цилиндра, внутри которого располагается множество лент из пластин и диэлектриков.

Конденсатор – что такое?

Конденсатор – это часть электрической цепи, состоящей из 2 электродов, которые способны накапливать, сосредотачивать или передавать ток другим устройствам. Конструктивно электроды представляют собой обкладки конденсатора, у которых заряды противоположны. Для того чтобы устройство работало, между пластинами размещен диэлектрик – элемент, не позволяющий двум пластинам соприкоснуться друг с другом.

Определение конденсатора произошло от латинского слова «condenso», что обозначает уплотнение, сосредоточение.

Элементы для пайки емкостей служат для транспортировки, измерения, перенаправления и передачи электроэнергии и сигналов.

Где применяются конденсаторы

Каждый начинающий радиолюбитель часто задается вопросом: для чего нужен конденсатор? Новички не понимают, зачем он нужен, и ошибочно считают, что он может полноценно заменить батарейку или блок питания.

В комплектацию всех радиоустройств входят конденсаторы, транзисторы и резисторы. Данные элементы составляют кастет платы или целый модуль в схемах со статичными значениями, что делает его базой для любого электроприбора, начиная от небольшого утюга и заканчивая промышленными приборами.

Применение конденсаторов чаще всего наблюдается в качестве:

  1. Фильтрующего элемента для ВЧ и НЧ помех;
  2. Нивелира резких скачков переменного тока, а так для статики и напряжения на конденсаторе;
  3. Выравнивателя пульсаций напряжения.

Назначение конденсатора и его функции определяются целями использования:

  1. Общего назначения. Это конденсатор, в конструкции которого присутствуют только низковольтные элементы, расположенные на небольших платах, например, таких приборах, как телевизионный пульт, радио, чайник и т.д.;
  2. Высоковольтные. Конденсатор в цепи постоянного тока поддерживает производственные и технические системы, находящиеся под высоким напряжением;
  3. Импульсные. Емкостный формирует резкий скачок напряжения и подает его на принимающую панель устройства;
  4. Пусковые. Используются для пайки в тех устройствах, которые предназначены для запуска, включения/выключения приборов, например, пульт или блок управления;
  5. Помехоподавляющие. Конденсатор в цепи переменного тока используется в спутниковом, телевизионном и военном оборудовании.

Типы конденсаторов

Устройство конденсатора определятся видом диэлектрика. Он бывает следующих типов:

  1. Жидкий. Диэлектрик в жидком виде встречается нечасто, в основном, такой вид используется в промышленности или для радиоустройств;
  2. Вакуумный. Диэлектрик в конденсаторе отсутствует, а вместо него расположены пластины в герметичном корпусе;
  3. Газообразный. Основан на взаимодействии химических реакций и применяется для производства холодильного оборудования, производственных линий и установок;
  4. Электролитический конденсатор. Принцип основан на взаимодействии металлического анода и электрода (катода). Оксидный слой анода является полупроводниковой частью, вследствие чего такой вид элемента схемы считается наиболее производительным;
  5. Органический. Диэлектрик может быть бумажным, пленочным и т.д. Он не способен накапливать, а только лишь слегка нивелировать скачки напряжения;
  6. Комбинированный. Сюда относятся металло-бумажные, бумажно-пленочные и т.д. Коэффициент полезного действия увеличивается, если в состав диэлектрика входит металлическая составляющая;
  7. Неорганический. Выделяют наиболее распространенные: стеклянный и керамический. Их использование обуславливается долговечностью и прочностью;
  8. Комбинированный неорганический. Стекло-пленочный, а также стекло-эмалевый, которые выделяются отличными нивелирующими свойствами.

Виды конденсаторов

Элементы радиоплаты различаются по типу изменения емкости:

  1. Постоянные. Элементы поддерживают постоянную емкость напряжения до конца всего срока годности. Данный вид наиболее распространенный и универсальный, так как он подходит для того, чтобы сделать любой тип устройств;
  2. Переменные. Обладают способностью к перемене объема емкости при использовании реостата, варикапы или при изменении температурного режима. Механический метод с помощью реостата предполагает впайку дополнительного элемента на плату, в то время как при использовании вариконды изменяется лишь объем поступающего напряжения;
  3. Подстроечные. Являются наиболее гибким видом конденсатора, с помощью которого можно максимально быстро и эффективно увеличить пропускную способность системы при минимальных реконструкциях.

Принцип работы конденсатора

Рассмотрим, как работает конденсатор при подключении к источнику питания:

  1. Накопление заряда. При подключении к сети ток направляется на электролиты;
  2. Заряженные частицы распределяются на пластину, согласно своему заряду: отрицательные – на электроны, а положительные – на ионы;
  3. Диэлектрик служит преградой между двумя пластинами и не дает частицам смешиваться.

Определение емкости конденсатора проводится путем расчета отношения заряда одного проводника к его потенциальной мощности.

Важно! Диэлектрик также способен снимать образовавшееся напряжение на конденсаторе в процессе работы устройства.

Характеристики конденсатора

Характеристики условно делятся на пункты:

  1. Величина отклонения. В обязательном порядке каждый конденсатор перед тем, как попасть в магазин, проходит ряд тестов на производственной линии. После проведения испытаний каждой модели производитель указывает диапазон допустимых отклонений от исходного значения;
  2. Величина напряжения. В основном используются элементы напряжением 12 или 220 Вольт, но также существуют и на 5, 50, 110, 380, 660, 1000 и более Вольт. Для того чтобы избежать перегорания конденсатора, пробоя диэлектрика, лучше всего приобретать элемент с запасом напряжения;
  3. Допустимая температура. Данный параметр очень важен для мелких устройств, работающих от сети 220 Вольт. Как правило, чем больше напряжение, тем выше уровень допустимой температуры для работы. Температурные параметры измеряются с помощью электронного термометра;
  4. Наличие постоянного или переменного тока. Пожалуй, один из важнейших параметров, так как от него полностью зависит производительность проектируемого оборудования;
  5. Количество фаз. В зависимости от сложности устройства, можно использовать однофазные или трехфазные конденсаторы. Для подключения элемента напрямую достаточно однофазного, а если плата представляет собой «город», то рекомендуется использовать трехфазный, так как он более плавно распределяет нагрузку.

От чего зависит емкость

Емкость конденсатора зависит от типа диэлектрика и указывается на корпусе, измеряется в мкФ или uF. Варьируется в диапазоне от 0 до 9 999 пФ в пикофарадах, тогда как в микрофарадах – от 10 000 пФ до 9 999 мкФ. Эти характеристики прописаны в государственном стандарте ГОСТ 2.702.

Обратите внимание! Чем больше емкость электролитов, тем больше время зарядки, и тем больше заряда устройство сможет передать.

Чем больше величина нагрузки или мощность прибора, тем короче время разряда. При этом сопротивление играет немаловажную роль, так как от него зависит количество исходящего электропотока.

Главной частью конденсатора является диэлектрик. Он обладает следующим рядом характеристик, влияющих на мощность оборудования:

  1. Сопротивление изоляции. Сюда относится как внутренняя, так и внешняя изоляция, сделанная из полимеров;
  2. Максимальное напряжение. Диэлектрик определяет, какое напряжение конденсатор способен накапливать или передавать;
  3. Величина потерь энергии. Зависит от конфигурации диэлектрика и его характеристик. Как правило, энергия рассеивается постепенно или резкими импульсами;
  4. Уровень емкости. Для того чтобы конденсатор мог сохранять небольшое количество энергии непродолжительное время, необходимо, чтобы он поддерживал постоянный объем емкости. Чаще всего, он выходит из строя именно по причине невозможности пропускать заданный объем напряжения;

Полезно знать! Аббревиатура «АС», расположенная на корпусе элемента, обозначает переменное напряжение. Накопленное напряжение на конденсаторе невозможно использовать или передавать – его необходимо гасить.

Свойства конденсатора

Конденсатор выступает в роли:

  1. Индуктивной катушки. Рассмотрим на примере обычной лампочки: она загорится, только если подключить ее напрямую к источнику переменного тока. Отсюда вытекает правило, что чем больше емкость, тем мощнее будет световой поток лампочки;
  2. Накопителя заряда. Свойства позволяют ему быстро заряжаться и разряжаться, тем самым создавая сильнейший импульс с малым сопротивлением. Применяется для производства различных видов ускорителей, лазерных установок, электровспышек и т.д.;
  3. Аккумулятора полученного заряда. Мощный элемент способен продолжительное время сохранять полученную порцию тока, при этом он может служить адаптером для других устройств. По сравнению с аккумуляторной батареей, конденсатор теряет часть заряда по истечению времени, а также не способен вместить большой объем электричества, например, для промышленных масштабов;
  4. Зарядки электродвигателя. Подключение осуществляется через третий вывод (рабочее напряжение конденсатора на 380 или 220 Вольт). Благодаря новой технологии, стало возможным использование трехфазного двигателя (с поворотом фазы на 90 градусов), при использовании стандартной сети;
  5. Устройства-компенсатора. Используется в промышленности для стабилизации реактивной энергии: часть поступающей мощности растворяется и на выходе из конденсатора корректируется под определенный объем.

Видео


Электрический конденсатор - один из самых распространених радио элементов, служит он для накопления электроэнергии (заряда). Самый простой конденсатор можно представить в виде двух металлических пластин (обкладок) и диэлектрика который находится между ними.

Когда к конденсатору подключают источник напряжения, то на его обкладках (пластинах) появляются противоположные заряды и возникнет электрическое поле притягивающие их друг к другу, и даже после отключения источника питания, такой заряд остается некоторое время и энергия сохраняется в электрическом поле между обкладками.

В электронных схемах роль конденсатора также может состоять не только в накоплении заряда но и в разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и разных других задачах.
В зависимости от задач и факторов работы, конденсаторы используются очень разных типов и конструкций. Здесь мы рассмотрим наиболее популярные типы конденсаторов.

Конденсаторы алюминиевые электролитические

Это может быть, например, конденсатор К50-35 или К50-2 или же другие более новые типы.
Они состоят из двух тонких полосок алюминия свернутых в рулон, между которыми в том же рулоне находится пропитанная электролитом бумага в роли диэлектрика.
Рулон находится в герметичном алюминиевом цилиндре, чтобы предотвратить высыхание электролита.
На одном из торцов конденсатора (радиальный тип корпуса) или на двух торцах которого (аксиальный тип корпуса) располагаются контактные выводы. Выводы могут быть под пайку либо под винт.


В электролитических конденсаторах емкость исчисляется в микрофарадах и может быть от 0.1 мкф до 100 000 мкф. Как правило большая емкость и характеризует этот тип конденсаторов.
Еще одним из важных параметров есть максимальное рабочее напряжение, которое всегда указывается на корпусе и в конденсаторах этого типа может быть до 500 вольт!


Среди недостатков данного типа можно рассмотреть 3 причины:
1. Полярность. Полярные конденсаторы недопустимы с работой в переменном токе. На корпусе обозначаются соответствующими значками выводы конденсатора, как правило конденсаторы с одним выводом минусовой контакт имеют на корпусе, а плюсовой на выводе.
2. Большой ток утечки. Естественно такие конденсаторы не годятся для длительного хранения энергии заряда, но они хорошо себя зарекомендовали в качестве промежуточных элементов, в фильтрах активных схем и пусковых установках двигателей.
3.Снижение емкости с увеличением частоты. Такой недостаток легко устраняется с помощью параллельно подключенного керамического конденсатора с очень маленькой ёмкостью.

Керамические однослойные конденсаторы

Такие типы, например как К10-7В, К10-19, КД-2. Максимальное напряжения такого типа конденсаторов лежит в пределах 15 - 50 вольт, а ёмкость от 1 пФ до 0.47 мкф при сравнительно небольших размерах довольно не плохой результат технологии.
У данного типа характерны малые токи утечки и низкая индуктивность что позволяет им легко работать на высоких частотах, при постоянном, переменном и пульсирующих токах.
Тангенс угла потерь tgδ не превышает обычно 0,05, а максимальный ток утечки – не более 3 мкА.
Конденсаторы данного типа спокойно переносят внешние факторы, такие как вибрация с частотой до 5000 Гц с ускорением до 40 g, многократные механические удары и линейные нагрузки.


Маркировка на корпусе конденсатора обозначает его номинал. Три цифры расшифровываются следующим образом. Если две первые цифры умножать на 10 в степени третьей цифры, то получится значение емкости данного конденсатора в пф. Так, конденсатор с маркировкой 101 имеет емкость 100 пф, а конденсатор с маркировкой 472 — 4,7 нф. Для удобства составлены таблицы наиболее "ходовых" ёмкостей конденсаторов и их маркировочные коды.
Наиболее часто применяются в фильтрах блоков питания и как фильтр поглощающий высокочастотные импульсы и помехи.

Керамические многослойные конденсаторы

Например К10-17А или К10-17Б.
В отличии от вышеописанных, состоят уже из нескольких слоев металлических пластин и диэлектрика в виде керамики, что позволяет иметь им большую ёмкость чем у однослойных и может быть порядка нескольких микрофарад, но максимальное напряжение у данного типа все также ограничено 50 вольтами.
Применяются в основном как фильтрующие элементы и могут исправно работать как с постоянным так и с переменным и пульсирующим током.

Керамические высоковольтные конденсаторы

Например К15У, КВИ и К15-4
Максимальное рабочее напряжение данного типа может достигать 15 000 вольт! Но ёмкость у них небольшая, порядка 68 - 100 нФ.


Работают они как с переменным так и с постоянным током. Керамика в качестве диэлектрика создает нужное диэлектрическое свойство выдерживать большое напряжение, а особая форма защищает конструкцию от пробоя пластин.


Применение у них самое разнообразное, например в схемах вторичных источников питания в качестве фильтра для поглощения высокочастотных помех и шумов, или в конструирование катушек Тесла, мощной и ламповой радиоаппаратуре.

Танталовые конденсаторы

Например К52-1 или smd А. Основным веществом служит - пентоксид тантала, а в качестве электролита - диоксид марганца.

Твердотельный танталовый конденсатор состоит из четырех основных частей: анода, диэлектрика, электролита (твердого или жидкого) и катода.
По рабочим свойствам танталовые конденсаторы схожи с электролитическими, но рабочее максимальное напряжение ограничено 100 вольтами, а ёмкость как правило не превышает 1000 мкФ.
Но в отличии от электролитических, у данного типа собственная индуктивность намного меньше что дает возможность их использования на высоких частотах, до несколько сотен килогерц.


Основной причиной выхода из строя бывает превышение максимального напряжения.
Применение у них в большинстве наблюдается в современных платах электронных устройств, что возможно из за конструктивной особенности smd-монтажа.

Полиэстеровые конденсаторы

Например K73-17 или CL21, на основе металлизированной пленки...
Весьма популярные из за небольшой стоимости конденсаторы встречающиеся в почти всех электронных устройствах, например в балластах энергосберегающих ламп. Их корпус состоит из эпоксидного компаунда что придает конденсатору устойчивость к внешним неблагоприятным факторам, химическим растворам и перегревам.


Ёмкость таких конденсаторов идет порядка 1 нф - 15мкф и максимальное рабочее напряжение у них от 50 до 1500 вольт.
Большой диапазон максимального напряжения и ёмкости дает возможность использования полиэстеровых конденсаторов в цепях постоянного, переменного и импульсных токов.

Полипропиленовые конденсаторы

Например К78-2 и CBB-60.
В данного типа конденсаторов в качестве диэлектрика выступает полипропиленовая пленка. Корпус изготовлен из негорючих материалов, а сам конденсатор призначен для работы в тяжелых условиях.
Ёмкость, как правило в пределах 100пф - 10мкф, но в последнее время выпускают и больше, а по поводу напряжение то большой запас может достигать и 3000 вольт!

Преимущество этих конденсаторов заключается не только в высоком напряжении, но и в чрезвычайно низком тангенсе угла потерь, поскольку tg? может не превышать 0,001, что позволяет использовать конденсаторы на больших частотах в несколько сотен килогерц и применять их в индукционных обогревателях и пусковых установках асинхронных электродвигателей.

Пусковые конденсаторы (CBB-60) могут иметь ёмкость и до 1000мкф что стает возможным из за особенностей конструкции такого типа конденсаторов. На пластиковый сердечник наматывается металлизированная полипропиленовая пленка, а сверху весь этот рулон покрывается компаундом.

Они бывают полярные и неполярные. Различия их в том, что одни применяются в цепях постоянного напряжения, а другие в цепях переменного. Возможно, применение постоянных конденсаторов в цепях переменного напряжения при включении их последовательно одноименными полюсами, но они при этом показывают не лучшие параметры.

Конденсаторы неполярные

Неполярные, так же как и резисторы бывают постоянные, переменные и подстроечные.

Подстроечные конденсаторы применяются для настройки резонансных цепей в приемо-передающей аппаратуре.

Рис. 1. Конденсаторы КПК

Тип КПК. Представляют из себя посеребренные обкладки и керамический изолятор. Имеют емкость в несколько десятков пикофарад. Встретить можно в любых приемниках, радиолах и телевизионных модуляторах. Подстроечные конденсаторы также обозначаются буквами КТ. Затем следует цифра, указывающая тип диэлектрика:

1 - вакуумные; 2 - воздушные; 3 - газонаполненные; 4 - твердый диэлектрик; 5 - жидкий диэлектрик. Например, обозначение КП2 означает конденсатор переменной емкости с воздушным диэлектриком, а обозначение КТ4 - подстроечный конденсатор с твердым диэлектриком.




Рис. 2 Современные подстроечные чип-конденсаторы

Для настройки радиоприемников на нужную частоту применяют конденсаторы переменной емкости (КПЕ)


Рис. 3 Конденсаторы КПЕ

Их можно встретить только в приемо-передающей аппаратуре

1- КПЕ с воздушным диэлектриком, найти можно в любом радиоприемнике 60- 80-х годов.
2 - переменный конденсатор для УКВ блоков с верньером
3 - переменный конденсатор, применяется в приемной технике 90-х годов и по сей день, можно встретить в любом музыкальном центре, магнитофоне, кассетном плеере с приемником. В основном китайского производства.

Типов постоянных конденсаторов существует великое множество, в рамках этой статьи невозможно описать все их разнообразие, опишу лишь те, что в бытовой аппаратуре чаще всего встречаются.


Рис. 4 Конденсатор КСО

Конденсаторы КСО - Конденсатор слюдяной опресованный. Диэлектрик - слюда, обкладки - алюминиевое напыление. Залит в корпус из коричневого компаунда. Встречаются в аппаратуре 30-70-х годов, емкость не превышает несколько десятков нанофарад, на корпусе указывается в пикофарадах нанофарадах и микрофарадах. Благодаря применению слюды в качестве диэлектрика, эти конденсаторы способны работать на высоких частотах, поскольку имеют малые потери и имеют большое сопротивление утечки около 10^10 Ом.


Рис. 5 Конденсаторы КТК

Конденсаторы КТК - Конденсатор трубчатый керамический В качестве диэлектрика используется керамическая трубка, обкладки из серебра. Широко применялись в колебательных контурах ламповой аппаратуры с 40-х по начало восьмидесятых годов. Цвет конденсатора означает ТКЕ(температурный коэффициент изменения емкости). Рядом с емкостью, как правило прописывается группа ТКЕ, которая имеет буквенное или цифровое обозначение (Таблица1.) Как видно из таблицы, самые термостабильные - голубые и серые. Вообще этот тип очень хорош для ВЧ техники.

Таблица 1. Маркировка ТКЕ керамических конденсаторов

При настройке приемников часто приходится подбирать конденсаторы гетеродинных и входных контуров. Если в приемнике используются конденсаторы КТК, то подбор емкости конденсаторов в этих контурах можно упростить. Для этого на корпус конденсатора рядом с выводом наматывают плотно несколько витков провода ПЭЛ 0,3 и один из концов этой спиральки подпаивают к выводу конденсаторов. Раздвигая и сдвигая витки спиральки, можно в небольших пределах регулировать емкость конденсатора. Может случиться, что, подключив конец спиральки к одному из выводов конденсатора, добиться изменения емкости не удается. В этом случае спираль следует подпаять к другому выводу.


Рис. 6 Керамические конденсаторы. Вверху советские, внизу импортные.

Керамические конденсаторы, их обычно называют «красные флажки», также иногда встречается название «глиняные». Эти конденсаторы широко применяются в высокочастотных цепях. Обычно эти конденсаторы не котируются и редко применяются любителями, поскольку конденсаторы одного и того же типа могут быть изготовлены из разной керамики и имеют различные характеристики. В керамических конденсаторах выигрывая в размерах, проигрывают в термостабильности и линейности. На корпусе обозначается емкость и ТКЕ (таблица 2.)

Таблица 2

Достаточно взглянуть на допустимое изменение емкости у конденсаторов с ТКЕ Н90 емкость может изменяться почти в два раза! Для многих целей это не приемлемо, но все же не стоит отвергать этот тип, при небольшом перепаде температур и не жестких требованиях ими вполне можно пользоваться. Применяя параллельное включение конденсаторов с разными знаками ТКЕ можно получить достаточно высокую стабильность результирующей емкости. Встретить их можно в любой аппаратуре, особенно любят китайцы в своих поделках.

Имеют на корпусе обозначение емкости в пикофарадах или нанофарадах, импортные маркируются числовой кодировкой. Первые две цифры указывают на значение емкости в пикофарадах (пФ), последняя - количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть "9". При емкостях меньше 1.0 пФ первая цифра "0". Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 - 0.5 пФ. Несколько примеров собраны в таблице:

Маркировка цифробуквенная:
22р-22 пикофарада
2n2- 2.2 нанофарада
n10 - 100 пикофарад

Хотелось бы особо отметить керамические конденсаторы типа КМ, применяются в промышленном оборудовании и военных аппаратах, имеют высокую стабильность, найти весьма сложно, потому как содержат редкоземельные металлы, и если вы нашли плату, где применяется данный тип конденсаторов, то в 70 % случаев их вырезали до вас).

В последнее десятилетие очень часто стали применяться радиодетали для поверхностного монтажа, вот основные типоразмеры корпусов для керамических чип-конденсаторов

Конденсаторы МБМ – металлобумажный конденсатор(рис 6.), применялся как правило в ламповой звукоусилительной аппаратуре. Сейчас весьма ценятся некоторыми аудиофилами. Также к данному типу относятся конденсаторы К42У-2 военной приемки, но их иногда можно встретить и в бытовой вппаратуре.


Рис. 7 Конденсатор МБМ и К42У-2

Следует отметить отдельно такие типы конденсаторов как МБГО и МБГЧ(рис.8), любителями зачастую используются как пусковые конденсаторы для запуска электродвигателей. Как пример, мой запас на двигатель на 7кВт (рис 9.). Рассчитаны на высокое напряжение от 160 до 1000в, что им дает много различных применений в быту и промышленности. Следует помнить, что для использования в домашней сети, нужно брать конденсаторы, с рабочим напряжением не менее 350в. Найти такие конденсаторы можно в старых бытовых стиральных машинах, различных устройствах с электродвигателями и в промышленных установках. Часто применяются в качестве фильтров для акустических систем, имея для этого неплохие параметры.


Рис. 8. МБГО, МБГЧ


Рис. 9

Кроме обозначения, указывающего конструктивные особенности (КСО - конденсатор слюдяной спрессованный, КТК -керамический трубчатый и т. д.), существует система обозначений конденсаторов постоянной емкости, состоящая из ряда элементов: на первом месте стоит буква К, на втором месте -двухзначное число, первая цифра которого характеризует тип диэлектрика, а вторая - особенности диэлектрика или эксплуатации, затем через дефис ставится порядковый номер разработки.

Например, обозначение К73-17 означает пленочный полиэтилен-терефталатный конденсатор с 17 порядковым номером разработки.


Рис. 10. Различные типы конденсаторов



Рис. 11. Конденсатор типа К73-15

Основные типы конденсаторов, в скобочках импортные аналоги.

К10 -Керамический, низковольтный (Upa6<1600B)
К50 -Электролитический, фольговый, Алюминиевый
К15 -Керамический, высоковольтный (Upa6>1600B)
К51 -Электролитический, фольговый, танталовый,ниобиевый и др.
К20 -Кварцевый
К52 -Электролитический, объемно-пористый
К21 -Стеклянный
К53 -Оксидо-полупроводниковый
К22 -Стеклокерамический
К54 -Оксидно-металлический
К23 -Стеклоэмалевый
К60- С воздушным диэлектриком
К31- Слюдяной малой мощности (Mica)
К61 -Вакуумный
К32 -Слюдяной большой мощности
К71 -Пленочный полистирольный(KS или FKS)
К40 -Бумажный низковольтный(ираб<2 kB) с фольговыми обкладками
К72 -Пленочный фторопластовый (TFT)
К73 -Пленочный полиэтилентереф-талатный (KT ,TFM, TFF или FKT)
К41 -Бумажный высоковольт-ный(ираб>2 kB) с фольговыми обкладками
К75 -Пленочный комбинированный
К76 –Лакопленочный (MKL)
К42 -Бумажный с металлизированными Обкладками (MP)
К77 -Пленочный, Поликарбонатный (KC, MKC или FKC)
К78 – Пленочный полипропилен (KP, MKP или FKP)

Конденсаторы с пленочным диэлектриком в простонародье называют слюдяными, различные применяемые диэлектрики дают хорошие показатели ТКЕ. В качестве обкладок в пленочных конденсаторах используют либо алюминиевую фольгу, либо напыленные на диэлектрическую пленку тонкие слои алюминия или цинка. Они имеют достаточно стабильные параметры и применяются для любых целей (не для всех типов). Встречаются в бытовой аппаратуре повсеместно. Корпус таких конденсаторов может быть как металлическим, так и пластмассовым и иметь цилиндрическую или прямоугольную форму(рис. 10.) Импортные слюдяные конденсаторы(рис.12)


Рис. 12. Импортные слюдяные конденсаторы

На конденсаторах указывается номинальное отклонение от емкости, может быть показано в процентах или иметь буквенный код. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H, M, J, K. Буква, обозначающая допуск указывается после значения номинальной ёмкости конденсатора, вот так 22nK, 220nM, 470nJ.

Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости конденсаторов. Допуск в %

Буквенное обозначение

Важным является значение допустимого рабочего напряжения конденсатора, указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая маркировка). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.

Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения конденсаторов.

Номинальное напряжение, В

Буква обозначения

Поклонники Николы Тесла имеют частую потребность в высоковольтных конденсаторах, вот некоторые которые можно встретить, в основном в телевизорах в блоках строчной развертки.


Рис. 13. Высоковольтные конденсаторы

Конденсаторы полярные

К полярным конденсаторам относятся все электролитические, которые бывают:

Алюминиевые электролитические конденсаторы обладают высокой емкостью, низкой стоимостью и доступностью. Такие конденсаторы широко применяются в радиоприборостроении, но имеют существенный недостаток. Со временем электролит внутри конденсатора высыхает и они теряют емкость. Вместе с емкостью увеличивается эквивалентное последовательное сопротивление и такие конденсаторы уже не справляются с поставленными задачами. Это как правило служит причиной неисправности многих бытовых приборов. Использование б/у конденсаторов не желательно, но все же если возникло желание их использовать, нужно тщательно измерить емкость и esr, чтоб потом не искать причину неработоспособности прибора. Перечислять типы алюминиевых конденсаторов не вижу смысла, поскольку особых отличий в них нет, кроме геометрических параметров. Конденсаторы бывают радиальные(с выводами с одного торца цилиндра)и аксиальные(с выводами с противоположных торцов), встречаются конденсаторы с одним выводом, в качестве второго-используется корпус с резьбовым наконечником(он же и является крепежом), такие конденсаторы можно встретить в старой ламповой радиотелевизионной технике. Также стоит заметить, что на материнских платах компьютеров, в импульсных блоках питания часто встречаются конденсаторы с низким эквивалентным сопротивлением, так называемые LOW ESR, так вот они имеют улучшенные параметры и заменяются только на подобные, иначе при первом включении будет взрыв.


Рис. 14. Электролитические конденсаторы. Снизу - для поверхностного монтажа.

Танталовые конденсаторы, лучше чем алюминиевые, за счет использования более дорогой технологии. В них применяется сухой электролит, поэтому им не свойственно «высыхание» алюминиевых конденсаторов. Кроме того, танталовые конденсаторы имеют более низкое активное сопротивление на высоких частотах (100 кГц), что важно при использовании в импульсных источниках питания. Недостатком танталовых конденсаторов является относительно большое уменьшение емкости с увеличением частоты и повышенная чувствительность к переполюсовке и перегрузкам. К сожалению, этот тип конденсаторов характеризуется невысокими значениями емкости (как правило, не более 100 мкФ). Высокая чувствительность к напряжению заставляет разработчиков делать запас по напряжению Увеличенным в два и более раз.


Рис. 14. Танталовые конденсаторы. Первые три отечественные, предпоследний импортный, последний импортный для поверхностного монтажа.

Основные размеры танталовых чип-конденсаторов:

К одной из разновидностей конденсаторов (на самом деле это полупроводники и с обычными конденсаторами имеют мало общего, но упомянуть их все же имеет смысл) относятся варикапы. Это особый вид диодо-конденсатора, который изменяет свою емкость в зависимости от приложенного напряжения. Применяются в качестве элементов с электрически управляемой ёмкостью в схемах перестройки частоты колебательного контура, деления и умножения частоты, частотной модуляции, управляемых фазовращателей и др.


Рис. 15 Варикапы кв106б, кв102

Также весьма интересны «суперконденсаторы» или ионисторы. При малых размерах они обладают колоссальной емкостью и часто используются для питания микросхем памяти, и иногда ими подменяют электрохимические батареи. Ионисторы могут работать и в буфере с батареями в целях защиты их от резких скачков тока нагрузки: при низком токе нагрузки батарея подзаряжает суперконденсатор, и если ток резко возрастет, ионистор отдаст запасенную энергию, чем уменьшит нагрузку на батарею. При таком варианте использования его размещают либо непосредственно возле аккумуляторной батареи, либо внутри ее корпуса. Их можно встретить в ноутбуках в качестве элемента питания для CMOS.

К недостаткам можно отнести:
Удельная энергия меньше, чем у аккумуляторов (5-12 Вт·ч/кг при 200 Вт·ч/кг для литий-ионных аккумуляторов).
Напряжение зависит от степени заряженности.
Возможность выгорания внутренних контактов при коротком замыкании.
Большое внутреннее сопротивление по сравнению с традиционными конденсаторами (10...100 Ом у ионистора 1 Ф × 5,5 В).
Значительно больший, по сравнению с аккумуляторами, саморазряд: порядка 1 мкА у ионистора 2 Ф × 2,5 В.


Рис. 16. Ионисторы




Top