Простое замыкание. Uо = E — I*Zo, где. Способы защиты оборудования от коротких замыканий в электроустановках

Добрый день, уважаемые читатели сайта «Заметки электрика».

Давно хотел написать статью про короткое замыкание. Но все как то не доходили руки.

Сегодня решился, потому как повлияли на меня последние события, произошедшие на распределительной подстанции нашего предприятия.

Ранее в статьях мы говорили, что вызывают короткие замыкания, или сокращенно, к.з.

Короткое замыкание — это одно из самых тяжелых и опасных видов повреждения.

Вы спросите почему? Читайте ниже.

Что же такое короткое замыкание?

Википедия на этот вопрос отвечает, что короткое замыкание — это:

Определение прочитали.

А теперь давайте рассмотрим подробно, что же происходит с параметрами электроустановки в момент короткого замыкания.

При возникновении короткого замыкания, напряжение на источнике питания, а правильнее назвать ЭДС, замыкается «накоротко» через небольшое (малой величины) сопротивление кабельных и воздушных линий, обмоток трансформаторов и генераторов. Отсюда и название «короткое замыкание».

В «накоротко» замкнутой цепи появляется ток очень большой величины, который и называется током короткого замыкания.

Рассмотрим классификацию коротких замыканий.

Короткие замыкания разделяются по количеству замкнувшихся фаз:

  • трехфазные короткие замыкания
  • двухфазные короткие замыкания
  • однофазные короткие замыкания

Короткие замыкания разделяются по замыканию:

  • с землей
  • без земли

Короткие замыкания разделяются по количеству замкнувшихся точек в сети:

  • в одной точке
  • в двух точках
  • в нескольких точках (более двух)

Пример

Рассмотрим пример.

Допустим, что наш потребитель питается с подстанции через воздушную линию (ВЛ) электропередач. Питающая линия является транзитной, поэтому питание потребителя осуществляется отпайкой от линии ВЛ в точке «О».

Пунктирной линией под номером 2 показан уровень напряжения на протяжении всей воздушной линии до возникновения короткого замыкания.

По рисунку видно, что напряжение в любой точке электрической сети равно разнице ЭДС источника питания и падения напряжения в электрической цепи до необходимой нам точки.

Например, напряжение в точке «О» можно рассчитать по формуле:

Uо = E — I*Zo, где

  • E — ЭДС источника питания, в нашем случае генератора
  • Zo — полное сопротивление воздушной линий от источника питания до точки «О» (состоит из активного и реактивного сопротивления)
  • I — ток, протекающий по воздушной линии в данный момент времени.

Предположим, что по каким-либо причинам произошло короткое замыкание на воздушной линии, но за пределами нашей отпайки. Назовем эту точку короткого замыкания буквой «К».

Что же произойдет в момент короткого замыкания?

В момент короткого замыкания по воздушной линии проходит уже не номинальный ток, а ток короткого замыкания большой величины, поэтому возрастает падение напряжения на каждом элементе электрической цепи. А именно на сопротивлении Zo и Zк.

Самое наибольшее снижение напряжения будет в месте короткого замыкания, т.е. в точке «К». В остальных точках воздушной линии, удаленных от места к.з., напряжение снизится чуть меньше (это видно на рисунке — линия под номером 1).

В одной из своих статей я привел наглядный . Переходите по ссылочке и знакомьтесь с материалами.

Последствия от короткого замыкания

Мы уже выяснили, что в момент короткого замыкания происходит резкое увеличение величины тока и снижение напряжения, что приводит к следующим последствиям.

1. Разрушения

Вспомним немного физику.

По закону известного физика Джоуля-Ленца, ток короткого замыкания, протекая по активному сопротивлению электрической цепи в течение некоторого времени, выделяет в нем тепло, которое рассчитывается по формуле:

В точке короткого замыкания это тепло, а также пламя электрической дуги, производят огромные разрушения. И чем больше ток короткого замыкания и время его прохождения по цепи, тем больше будут разрушения.

Чтобы было понятно Вам насколько эти разрушения масштабны, ниже приведу примеры из своей практики.

Привод переключающего устройства РПН. Короткое замыкание произошло в обмотке асинхронного двигателя

2. Повреждение изоляции

Во время прохождения тока короткого замыкания по неповрежденным линиям, происходит их нагрев выше предельной допустимой температуры, что приводит к повреждению их изоляции.

Активная часть трансформатора. Короткое замыкание произошло по причине повреждения изоляции

Короткое замыкание кабеля. Последствия

3. Потребители и электроприемники

Снижение напряжения при коротком замыкании нарушает нормальную работу потребителей и электроприемников .

Например, асинхронный при снижении напряжения сети может вообще остановиться, т.к. момент его вращения может оказаться меньше момента сопротивления и трения механизмов.

Также нарушается нормальная работа и осветительных остановок. Здесь я думаю объяснять не требуется.

Смотрите наглядное видео про причины и последствия короткого замыкания в электроустановке 400 (В) на одной из наших подстанций:

А вот уже случай по-серьезнее — трехфазное короткое замыкание в сети 10 (кВ).

Вот еще фрагменты аварии, которая возникла по причине короткого замыкания в разделке кабеля 10 (кВ):

P.S. В завершении статьи на тему короткое замыкание, хочется подтвердить сказанное в начале своей статьи, что короткое замыкание является самым опасным и тяжелым видом повреждения, которое требует мгновенного и быстрого реагирования и отключения поврежденного участка цепи.

Одной из главных причин возникновения пожара является короткое замыкание. Это словосочетание постоянно на слуху, но что же оно означает?

Это соединение провода заземления или нулевого с фазовым либо двух фазовых проводов. Получается взаимодействие двух проводников с отличающимися потенциалами. Коротким контакт называется, потому что он произошел без электроприбора.

При соединении таких проводов происходит маленький взрыв. Объясняется это резким скачком силы тока, достигающей неприемлемого значения. Такое стремительное увеличение силы тока приводит к перегреву проводов и получению электрической дуги между ними, температура которой достигает 5000 градусов С.

Особо зрелищным получается замыкание фазных проводов в трехфазной электросети. Если человек замкнет фазы отверткой, его может отшвырнуть на несколько метров, он может получить серьезные увечья, ожоги. Отвертка при этом просто испарится. В бытовых условиях большого взрыва может и не быть, но оплавление провода и изоляции гарантировано, а это уже прямой путь к возгоранию предметов, которые окажутся поблизости.

Важно помнить, что при обрыве линии электропередачи (ЛЭП) из-за короткого замыкания, может случиться реальный взрыв с электромагнитным ударом. Поэтому ни в коем случае нельзя подходить к месту обрыва линии.

Причины возникновения короткого замыкания известны: старая или поврежденная электропроводка, монтаж, выполненный с нарушениями (это свойственно любителям, плохо разбирающимся в электрике), изоляция с дефектами, электроприборы, не отвечающие условиям электробезопасности (опять же старые или испорченные), ослабление мест соединения проводов, случайные обрывы линии.

Со всеми перечисленными причинами можно успешно бороться, если соблюдать некоторые правила:

1. Не использовать старые провода с несоответствующей изоляцией.

2. Быть внимательным при проведении электромонтажных работ. Не сверлить, не штробить, не резать стены в тех местах, где проложен силовой кабель.

3. Снимать изоляцию при монтаже крайне аккуратно, не резать провод ножом вдоль жил.

4. Следить за тем, чтобы сеть была отключена при работах с ней. На щитке нужно вывешивать табличку «идут работы, электричество не включать» или оставить дежурить человека.

5. Устанавливать защитные устройства отключения - автоматические выключатели , устройства защитного отключения, дифавтоматы.

6. Регулярно следить за состоянием электрических точек - розеток и выключателей. При необходимости сразу же их заменять.

7. Не эксплуатировать поврежденные электроприборы, от которых летят искры, за исключением некоторых инструментов, например, в которых есть угольные щетки - они при работе немного искрят (такое бывает в дрели, электролобзике и других инструментах).

8. При монтаже проводки не вести провода одним большим пучком, лучше пустить их параллельно рядом или использовать специальные короба.

Выполнение этих несложных правил позволит существенно сократить риск возникновения короткого замыкания и пожара. И важно помнить, что работу с электричеством лучше доверить профессиональному электрику. Тогда и жить будет спокойней и безопасней!

Всем привет. Я очень рад, что вы зашли на мой сайт. И сегодня, мы с вами, поговорим о том, что такое короткое замыкание и какие замыкания бывают.

Короткое замыкание – это соединение (соприкосновение) двух или нескольких точек (проводников) электрической цепи с разными потенциальными значениями.

Разные потенциалы – это когда фаза и ноль в сети переменного тока, или плюс и минус в сети постоянного тока.

Теперь давайте рассмотрим, какие бывают виды короткого замыкания.

В однофазной сети может быть только два вида короткого замыкания:

1. фаза и ноль – это вид замыкания очень часто бывает в простых бытовых условиях. К примеру с наступление зимы становится холодно, и многие люди пытаются согреться с помощью электрических обогревателей.

Но мало кто обращает внимание на розетки, в которые включают эти самые обогреватели. Очень часто бывает, что розетки не рассчитаны на токи, которые потребляют обогреватели, или же часто в розетках может быть плохой контакт.

Из-за этого розетки и вилочки начинают греться. В следствии длительных нагревов разрушается изоляция проводов. И в один прекрасный момент два, уже оголевших, проводника могут соприкоснуться, и получится короткое замыкание.

2. фаза и заземление – это когда фазный провод, каким-то образом начинает контактировать с заземлённым корпусом любого электрического оборудования. Будь то электрический водонагреватель, светильник, станок и так далее.

Бывает ещё такое, что корпус может быть занулённым, тогда такое замыкание можно отнести к первому случаю.

А вот в ситуаций, при которых возникает короткое замыкание, может быть намного больше:

1. однофазное замыкание – фаза и ноль. Этот вид я уже описывал выше, так что переходим к следующему.

2. двухфазное – это когда соединились между собой две фазы. Часто случается на воздушных линиях электропередач. Такое явление, наверное, видел каждый человек в своей жизни. Когда на улице сильный ветер и начинает расшатывать провода, и получает не большой салют. На промышленных предприятиях такое замыкание часто случается в силовых цепях.

3. двухфазное и земля – такое, конечно, реже бывает, но всё равно случается. Пример, когда две фазы могут соединиться между собой, и одновременно контактировать ещё и с землёй.

4. трёхфазное – это когда все три фазы каким-то образом замкнулись между собой. Такое замыкание получится при падении или прикосновении, какого-то токопроводящего предмета ко всем трём фазам одновременно.

Какие могут быть последствия от токов короткого замыкания.

При коротком замыкании мгновенно возрастает ток, что приводит сильному нагреву и расплавлению металлов. Брызги этого металла разлетаются во все стороны, и всё это сопровождается яркой вспышкой и огнём. Что легко может привести к пожару и к очень серьёзным последствиям.

В обычных домашних условиях, если не правильно подобрать защиту от короткого замыкания, то реально можно потерять очень многое. Начиная от жилища и мебели, и заканчиваю своей и жизнью людей живущих с вами под одной крышей.

На предприятиях токи короткого замыкания могут привести к аварийным ситуациям, повреждению оборудования, ну и от этого так же могут пострадать люди. Но на предприятиях обычно используют несколько защит сразу, что практически исключает возникновению коротких замыканий.

Вот и всё что хотел сказать. Если у вас есть какие-то вопросы, то задавайте их в комментариях. Если статья была вам полезной, то поделитесь нею со своими друзьями в социальных сетях и подписывайтесь на обновления. До новых встреч.

С уважением Александр!

Короткое замыкание - одна из опасностей техносферы

Даже человек, далекий от электричества, хоть раз в жизни, но сталкивался с явлением, которое получило название «короткое замыкание». Для того чтобы обезопасить себя, своих близких, а также свое жилье и электроприборы от этого процесса, следует тщательно разобраться в его природе, причинах возникновения и разновидностях.

Понятие и характеристика короткого замыкания

Короткое замыкание с точки зрения электротехники представляет собой явление, при котором сопротивление электрической цепи, состоящей из нескольких проводов, крайне незначительно, и его вполне можно сопоставить с сопротивлением самих проводов. В этом случае согласно закону Ома сила тока превысит свое номинальное значение сразу в несколько раз, причем произойдет это практически в одно мгновение. Это, в свою очередь, приведет к тому, что электрическая цепь разорвется намного раньше, чем произойдет критическое увеличение температуры проводов.

Основные причины короткого замыкания

Как показывает практика, короткое замыкание возникает чаще всего из-за того, что по каким-либо причинам оказывается нарушенной внешняя изоляция проводов или электрического оборудования. Это, в свою очередь, может быть связано и с постепенным старением основных элементов электрической цепи, и с ее механическими повреждениями, и даже с ударом молнии. Кроме того, в последние годы на предприятиях участились случаи, когда короткое замыкание становилось следствием недобросовестного обслуживания электрооборудования со стороны соответствующих служб.

Искусственное замыкание

Впрочем, в работе фабрик и заводов может наступить такой момент, когда возникнет потребность вызвать это явление искусственным путем. В частности, преднамеренное короткое замыкание достаточно часто используют в цепи трансформаторных подстанций, которые действуют на понижении тока. Для этого используется специальное оборудование - короткозамыкатели, выполняющие роль своеобразных контролеров. В том случае, если на линии или в самом трансформаторе возникнет какое-либо повреждение, то этот прибор искусственно вызовет короткое замыкание, цепь окажется разорванной и никаких тяжелых последствий (например пожара) не будет.

Последствия короткого замыкания

Данное явление приводит к весьма серьезным последствиям. Во-первых, достаточно часто оно сопровождается выходом из строя электроустановок и возникновением в них пожаров. Во-вторых, из-за резкого увеличения силы тока в цепи отдельные части кабеля могут быть подвергнуты механическому воздействию, в результате чего появятся механические и термические повреждения. В-третьих, достаточно часто короткое замыкание сопровождается значительным падением напряжения в цепи или на отдельных ее участках. Это, в свою очередь, ведет к ухудшению работы электрооборудования. Наконец, в-четвертых, это явление оказывает крайне негативное влияние на находящиеся поблизости приборы, провода и другое электрическое оборудование.

Способы защиты от короткого замыкания

Защита от короткого замыкания включает в себя целый комплекс мер, исходным пунктом в которых является профилактика повреждений линий электропередач и оборудования. Кроме того, чтобы предотвратить возникновение пожара, используют специальные приборы - плавкие ставки, которые при замыкании сгорают и размыкают электрическую цепь.

Выполнение правил техники безопасности как основной способ профилактики короткого замыкания

Мощность короткого замыкания зависит от множества факторов, главным из которых является сила тока в цепи. В то же время следует помнить, что любое подобное явление представляет собой потенциальную опасность для человека, поэтому при работе с электричеством следует четко придерживаться правил техники безопасности.

Однажды одной даме, не очень сведущей в электротехнике, монтер сообщил причину пропадания света в ее квартире. Это оказалось короткое замыкание, и женщина потребовала немедленно его удлинить. Над этой историей можно посмеяться, но лучше все же рассмотреть эту неприятность подробнее. Специалистам-электрикам и без этой статьи известно, что это за явление, чем оно грозит и как рассчитать ток короткого замыкания. Изложенная ниже информация адресована людям, не имеющим технического образования, но, как и все прочие, не застрахованным от неприятностей, связанных с эксплуатацией техники, машин, производственного оборудования и самых обычных бытовых приборов. Каждому человеку важно знать, что такое короткое замыкание, каковы его причины, возможные последствия и методы его предотвращения. Не обойтись в этом описании и без знакомства с азами электротехнической науки. Не знающий их читатель может заскучать и не дочитать статью до конца.

Популярное изложение закона Ома

Независимо от того, каков характер тока электрической цепи, он возникает только в том случае, если существует разница потенциалов (или напряжение, это то же самое). Природа этого явления может быть объяснена на примере водопада: если есть разность уровней, вода течет в каком-то направлении, а когда нет - она стоит на месте. Даже школьникам известен закон Ома, согласно которому, ток тем больше, чем выше напряжение, и тем меньше, чем выше сопротивление, включенное в нагрузку:

I - величина тока, которую иногда называют «силой тока», хотя это не совсем грамотный перевод с немецкого языка. Измеряется в Амперах (А).

На самом деле силой (то есть причиной ускорения) ток сам по себе не обладает, что как раз и проявляется во время короткого замыкания. Этот термин уже стал привычным и употребляется часто, хотя преподаватели некоторых вузов, услышав из уст студента слова «сила тока» тут же ставят «неуд». «А как же огонь и дым, идущие от проводки во время короткого замыкания? - спросит настырный оппонент, - Это ли не сила?» Ответ на это замечание есть. Дело в том, что идеальных проводников не существует, и нагрев их обусловлен именно этим фактом. Если предположить, что R=0, то и тепло бы не выделялось, как ясно из закона Джоуля-Ленца, приведенного ниже.

U - та самая разница потенциалов, называемая также напряжением. Измеряется в Вольтах (у нас В, за границей V). Его также называют электродвижущей силой (ЭДС).

R - электрическое сопротивление, то есть способность материала препятствовать прохождению тока. У диэлектриков (изоляторов) оно большое, хотя и не бесконечное, у проводников - малое. Измеряется в Омах, но оценивается в качестве удельной величины. Само собой, что чем толще провод, тем он лучше проводит ток, а чем он длиннее, тем хуже. Поэтому удельное сопротивление измеряется в Омах, умноженных на квадратный миллиметр и деленных на метр. Кроме этого, на его величину влияет температура, чем она выше, тем больше сопротивление. Например, золотой проводник длиной в 1 метр и сечением в 1 кв. мм при 20 градусах Цельсия обладает общим сопротивлением 0,024 Ома.

Есть еще формула закона Ома для полной цепи, в нее введено внутреннее (собственное) сопротивление источника напряжения (ЭДС).

Две простых, но важных формулы

Понять причину, по которой возникает ток короткого замыкания, невозможно без усвоения еще одной нехитрой формулы. Мощность, потребляемая нагрузкой, равна (без учета реактивных составляющих, но о них позже) произведению тока на напряжение.

P - мощность, Ватт или Вольт-Ампер;

U - напряжение, Вольт;

I - ток, Ампер.

Мощность бесконечной не бывает, она всегда чем-то ограничена, поэтому при ее фиксированной величине при увеличении тока напряжение уменьшается. Зависимость этих двух параметров рабочей цепи, выраженная графически, называется вольт-амперной характеристикой.

И еще одна формула, необходимая для того, чтобы произвести расчет токов короткого замыкания, это закон Джоуля-Ленца. Она дает представление о том, сколько тепла выделяется при сопротивлении нагрузке, и очень проста. Проводник будет греться с интенсивностью, пропорциональной величинам напряжения и квадрата тока. И, конечно же, формула не обходится без времени, чем дольше раскаляется сопротивление, тем больше оно выделит тепла.

Что происходит в цепи при коротком замыкании

Итак, читатель может считать, что освоил все главные физические закономерности для того, чтобы разобраться в том, какой может быть величина (ладно, пусть будет сила) тока короткого замыкания. Но сначала следует определиться с вопросом о том, что, собственно, это такое. КЗ (короткое замыкание) - это ситуация, при которой сопротивление нагрузки близко к нулю. Смотрим на формулу закона Ома. Если рассматривать его вариант для участка цепи, несложно понять, что ток будет стремиться к бесконечности. В полном варианте он будет ограничен сопротивлением источника ЭДС. В любом случае ток короткого замыкания очень велик, а по закону Джоуля-Ленца, чем он больше, тем сильнее греется проводник, по которому он идет. Причем зависимость не прямая, а квадратичная, то есть, если I увеличится стократно, то тепла выделится в десять тысяч раз больше. В этом и состоит опасность явления, приводящего порой к пожарам.

Провода накаляются докрасна (или добела), они передают эту энергию стенам, потолкам и другим предметам, которых касаются, и поджигают их. Если фаза в каком-то приборе касается нулевого проводника, возникает ток короткого замыкания источника, замкнутого на самого себя. Горючее основание электропроводки - страшный сон инспекторов пожарной охраны и причина многих штрафов, налагаемых на безответственных собственников зданий и помещений. И всему виной, конечно же, не законы Джоуля-Ленца и Ома, а пересохшая от старости изоляция, неаккуратно или безграмотно произведенный монтаж, повреждения механического характера или перегрузка проводки.

Однако и ток короткого замыкания, каким бы он ни был большим, также не бесконечен. На размеры бед, которые он может натворить, влияет продолжительность нагрева и параметры схемы электроснабжения.

Цепи переменного тока

Рассмотренные выше ситуации имели общий характер или касались цепей постоянного тока. В большинстве случаев электроснабжение и жилых, и промышленных объектов производится от сети переменного напряжения 220 или 380 Вольт. Неприятности с проводкой, рассчитанной на постоянный ток, чаще всего случаются в автомобилях.

Между этими двумя основными типами электропитания есть разница, и существенная. Дело в том, что прохождению переменного тока препятствуют дополнительные составляющие сопротивления, называемые реактивными и обусловленные волновой природой возникающих в них явлений. На переменный ток реагируют индуктивности и емкости. Ток короткого замыкания трансформатора ограничивается не только активным (или омическим, то есть таким, которое можно измерить карманным приборчиком-тестером) сопротивлением, но и его индуктивной составляющей. Второй тип нагрузки - емкостный. Относительно вектора активного тока векторы реактивных составляющих отклонены. Индуктивный ток отстает, а емкостный опережает его на 90 градусов.

Примером разницы поведения нагрузки, обладающей реактивной составляющей, может служить обычный динамик. Его некоторые любители громкой музыки перегружают до тех пор, пока диффузор магнитное поле не выбивает вперед. Катушка слетает с сердечника и тут же сгорает, потому что индуктивная составляющая ее напряжения уменьшается.

Виды КЗ

Ток короткого замыкания может возникать в разных цепях, подключенных к различным источникам постоянного или переменного тока. Проще всего дело обстоит с обычным плюсом, который вдруг соединился с минусом, минуя полезную нагрузку.

А вот с переменным током вариантов больше. Однофазный ток короткого замыкания возникает при соединении фазы с нейтралью или ее заземлении. В трехфазной сети может возникнуть нежелательный контакт между двумя фазами. Напряжение в 380 или более (при передаче энергии на большие расстояния по ЛЭП) вольт также может вызвать неприятные последствия, в том числе и дуговую вспышку в момент коммутации. Замкнуть может и все три (или четыре, вместе с нейтралью) провода одновременно, и ток трехфазного короткого замыкания будет течь по ним до тех пор, пока не сработает защитная автоматика.

Но и это еще не все. В роторах и статорах электрических машин (двигателей и генераторов) и трансформаторах порой случается такое неприятное явление, как межвитковое замыкание, при котором соседние петли провода образуют своеобразное кольцо. Этот замкнутый контур обладает крайне низким сопротивлением в сети переменного тока. Сила тока короткого замыкания в витках растет, это становится причиной нагрева всей машины. Собственно, если такая беда произошла, не следует ждать, пока оплавится вся изоляция и электромотор задымится. Обмотки машины нужно перематывать, для этого необходимо специальное оборудование. Это же касается и тех случаев, когда из-за «межвиткового» возник ток короткого замыкания трансформатора. Чем меньше обгорит изоляция, тем проще и дешевле будет перемотка.

Расчет величины тока при коротком замыкании

Каким бы ни было катастрофичным то или иное явление, для инженерной и прикладной науки важна его количественная оценка. Формула тока короткого замыкания очень похожа на закон Ома, просто к ней требуются некоторые пояснения. Итак:

I к.з.=Uph / (Zn + Zt),

I к.з. - величина тока короткого замыкания, А;

Uph - фазное напряжение, В;

Zn - полное (включая реактивную составляющую) сопротивление короткозамкнутой петли;

Zt - полное (включая реактивную составляющую) сопротивление трансформатора питания (силового), Ом.

Полные сопротивления определяются как гипотенуза прямоугольного треугольника, катеты которого представляют собой величины активного и реактивного (индуктивного) сопротивления. Это очень просто, нужно пользоваться теоремой Пифагора.

Несколько чаще, чем формула тока короткого замыкания, на практике используются экспериментально выведенные кривые. Они представляют собой зависимости величины I к.з. от длины проводника, сечения провода и мощности силового трансформатора. Графики представляют собой совокупность нисходящих по экспоненте линий, из которых остается лишь выбрать подходящую. Метод дает приблизительные результаты, но его точность вполне отвечает практическим потребностям инженеров по энергоснабжению.

Как проходит процесс

Кажется, что все происходит мгновенно. Что-то загудело, свет померк и тут же погас. На самом деле, как любое физическое явление, процесс можно мысленно растянуть, замедлить, проанализировать и разбить на фазы. До наступления аварийного момента цепь характеризуется установившимся значением тока, находящимся в пределах номинального режима. Внезапно полное сопротивление резко уменьшается до величины, близкой к нулю. Индуктивные составляющие (электродвигатели, дроссели и трансформаторы) нагрузки при этом как бы замедляют процесс роста тока. Таким образом, в первые микросекунды (до 0,01 сек) сила тока короткого замыкания источника напряжения остается практически неизменной и даже несколько снижается за счет начала переходного процесса. ЭДС его при этом постепенно достигает нулевого значения, затем проходит через него и устанавливается в каком-то стабилизированном значении, обеспечивающем протекание большого I к.з. Сам ток в момент переходного процесса представляет собой сумму из периодической и апериодической составляющих. Форма графика процесса анализируется, в результате чего можно определить постоянную величину времени, зависящую от угла наклона касательной к кривой разгона в точке ее перегиба (первой производной) и времени запаздывания, определяемого величиной реактивной (индуктивной) составляющей суммарного сопротивления.

Ударный ток КЗ

В технической литературе часто встречается термин «ударный ток короткого замыкания». Не следует пугаться этого понятия, оно вовсе не такое страшное и к поражению электричеством прямого отношения не имеет. Понятие это означает максимальное значение I к.з. в цепи переменного тока, достигающее своей величины обычно через полпериода после того, как возникла аварийная ситуация. При частоте 50 Гц период составляет 0,2 секунды, а его половина - соответственно 0,1 сек. В этот момент взаимодействие проводников, расположенных вблизи друг относительно друга, достигает наибольшей интенсивности. Ударный ток короткого замыкания определяется по формуле, которую в этой статье, предназначенной не для специалистов и даже не для студентов, приводить не имеет смысла. Она доступна в специальной литературе и учебниках. Само по себе это математическое выражение не представляет особой сложности, но требует довольно объемных комментариев, углубляющих читателя в теорию электроцепей.

Полезное КЗ

Казалось бы, очевидный факт состоит в том, что короткое замыкание - явление крайне скверное, неприятное и нежелательное. Оно может привести в лучшем случае к обесточиванию объекта, отключению аварийной защитной аппаратуры, а в худшем - к выгоранию проводки и даже пожару. Следовательно, все силы нужно сосредоточить на том, чтобы избежать этой напасти. Однако расчет токов короткого замыкания имеет вполне реальный и практический смысл. Изобретено немало технических средств, работающих в режиме высоких токовых значений. Примером может служить обычный сварочный аппарат, особенно дуговой, замыкающий в момент эксплуатации практически накоротко электрод с заземлением. Другой вопрос состоит в том, что режимы эти носят кратковременный характер, а мощность трансформатора позволяет выдерживать эти перегрузки. При сварке в точке касания окончания электрода проходят огромные токи (они измеряются в десятках ампер), в результате чего выделяется достаточно тепла для местного расплавления металла и создания прочного шва.

Методы защиты

В первые же годы бурного развития электротехники, когда человечество еще отважно экспериментировало, внедряя гальванические приборы, изобретало различные виды генераторов, двигателей и освещения, возникла проблема защиты этих устройств от перегрузок и токов короткого замыкания. Самое простое ее решение состояло в последовательной с нагрузкой установке плавких элементов, которые разрушались под воздействием резистивного тепла, в случае если ток превышал установленное значение. Такие предохранители служат людям и сегодня, их главные достоинства состоят в простоте, надежности и дешевизне. Но есть у них и недостатки. Сама простота «пробки» (так назвали держатели плавких ставок за их специфическую форму) провоцирует пользователей после ее перегорания не мудрствовать лукаво, а заменять вышедшие из строя элементы первыми попавшимися под руку проволочками, скрепками, а то и гвоздями. Стоит ли упоминать о том, что такая защита от токов короткого замыкания не выполняет своей благородной функции?

На промышленных предприятиях для обесточивания перегруженных цепей автоматические выключатели начали использовать раньше, чем в квартирных щитках, но в последние десятилетия «пробки» были в основном заменены ими. «Автоматы» намного удобнее, их можно не менять, а включить, устранив причину КЗ и дождавшись, когда тепловые элементы остынут. Контакты у них иногда подгорают, в этом случае их лучше заменить и не пытаться почистить или починить. Более сложные дифференциальные автоматы при высокой стоимости не служат дольше обычных, но функционально их нагрузка шире, они отключают напряжение в случае минимальной утечки тока «на сторону», например при поражении человека током.

В обыденной же жизни экспериментировать с коротким замыканием не рекомендуется.




Top