Проблема согласования нагрузки с линией передачи. Применение длинных линий и их согласование с нагрузкой

На практике чаще всего длинные линии используются для передачи сигналов от генератора к нагрузке с минимальными потерями мощности. Для этого предпочтительным является режим бегущей волны. С целью обеспечения указанного режима необходимо, чтобы сопротивление нагрузки Z н = R н + н удовлетворяло двум условиям: активная часть нагрузки R н должна равняться волновому сопротивлению W линии

R н = W , (1)

а реактивная часть нагрузки Х н должна равняться нулю:

Х н = 0. (2)

Если сопротивление нагрузки удовлетворяет условиям (1), (2), то говорят, что линия согласована с нагрузкой.

Общий принцип согласования комплексных сопротивлений состоит в том, что в линию дополнительно включается согласующий элемент, отражение от которого компенсирует отражение от нагрузки. При этом стремятся, чтобы согласующий элемент был расположен как можно ближе к нагрузке. Это делается для уменьшения длины несогласованного участка линии от нагрузки до согласующего элемента.

Включение в линию согласующего элемента преследует следующие цели:

Увеличение мощности, передаваемой в нагрузку;

Увеличение электрической прочности линии;

Увеличение КПД линии;

Устранение вредного влияния отраженной волны на генератор.

В режиме смешанных волн в линии происходит чередование максимумов и минимумов напряжения. В местах максимумов напряжения условия для электрического пробоя являются наиболее благоприятными. Устранение отраженной волны приводит к уменьшению напряжения в максимуме. Поэтому по такой линии можно передать большую мощность или использовать более высокие уровни напряжения.

Влияние согласования влияет на коэффициент полезного действия (КПД) линии. Чем он тем выше, чем лучше согласована линия с нагрузкой, т.е. чем меньше модуль коэффициента отражения |Г|.

Отраженная от нагрузки волна направляется в генератор и может существенно повлиять на режим его работы. Например, недостаточное согласование генератора с линией передачи может привести к изменению частоты генерируемых колебаний, уменьшению выходной мощности генератора или к полному срыву процесса генерации. Требования к K св на выходе генератора в значительной степени определяются типом этого генератора.

Для согласования комплексных нагрузок используются различные согласующие устройства, которые по соображениям сохранения высокого КПД тракта выполняются чаще всего из реактивных элементов.

Рассмотрим способы узкополосного согласования, когда «узкой» принято считать полосу частот 2Df , составляющую единицы процентов от средней частоты f 0 .

В этой полосе должен быть обеспечен допустимый уровень согласования, определяемый допустимым значением коэффициента стоячей волны



K св < K св доп.

Типичный график зависимости K св тракта от частоты представлен на рисунке Рис. 6.16). Конкретное значение K св доп определяется назначением и типом тракта, условиями его эксплуатации и лежит в пределах 1,02... 2.

Рис. 6.16. Типичная зависимость K св тракта от частоты

В узкой полосе частот в качестве согласующих элементов используются следующие устройства:

Четвертьволновый трансформатор;

Последовательный шлейф;

Параллельный шлейф,;

Два и три последовательных или параллельных шлейфа.

Такие согласующие устройства используются в линиях передачи различных типов (двухпроводных, коаксиальных, полосковых, волноводных и т.п.). Тип линии передачи определяет конкретную конструкторскую реализацию этих устройств.

Четвертьволновый трансформатор. Это устройство представляет собой четвертьволновый отрезок линии с волновым сопротивлением W т p ¹ W , включенным в разрыв основной линии передачи. Найдем место включения трансформатора в линию и его волновое сопротивление. Принцип работы такого согласующего устройства основан на трансформирующем свойстве четвертьволнового отрезка линии, которое в рассматриваемом случае примет вид:

Z вх (z 0) Z вх (z 0 + l л / 4) = W 2 т p ,

где z 0 - место подключения трансформатора, отсчитанное от места подключения нагрузки; Z вх (z 0) – входное сопротивление линии в точке z 0, если линия нагружена на сопротивление Z н (Рис. 6.17);

Z вх (z 0 + l л / 4) – входное сопротивление четвертьволнового трансформатора в сечении (z 0 + l л / 4) с подключенным к нему отрезком линии длиной z 0 , нагруженной сопротивлением нагрузки Z н.

Условия согласования (1), (2) требуют, чтобы Z вх (z 0 + l л / 4) = W , т. е. Z вх (z 0)W = W 2 т p .

Отсюда следует, что Z вх (z 0) должно быть чисто действительной величиной: Z вх (z 0) = R вх (z 0).

Рис. 6.17.Согласование линии с нагрузкой с помощью

четвертьволнового трансформатора

Таким образом, четвертьволновый трансформатор для согласования должен включаться в таких сечениях линии z 0 , в которых входное сопротивление линии чисто активное. Входное сопротивление линии чисто активное в сечениях линии, где напряжение достигает максимума или минимума. Поэтому четвертьволновый трансформатор включается в максимумах или минимумах напряжения и его волновое сопротивление определяется соотношением:

В максимумах напряжения R вх = WK св, поэтому при включении трансформатора в максимум напряжения его волновое сопротивление W т p > W .

В минимумах напряжения R вх = W / K св, поэтому при включении трансформатора в минимум напряжения выполняется неравенство W т p < W .

Таким образом, выбор места включения трансформатора (максимум или минимум напряжения) определяет соотношение его волнового сопротивления с волновым сопротивлением линии, а это, в свою очередь, определяет соотношение геометрических размеров поперечного сечения трансформатора и линии.

На рисунке (Рис. 6.18) представлены варианты исполнения четвертьволнового трансформатора на основе двухпроводной и коаксиальной

линий для двух рассмотренных случаев. Из рисунка следует, что в конструкторском отношении предпочтительнее вариант W т p < W .


Рис. 6.19. Эпюры напряжения в линии: а) – с комплексной нагрузкой;

б) W т p > W ;

в) – с комплексной нагрузкой и трансформатором W т p < W

Последовательный шлейф. Согласующее устройство в виде последовательного шлейфа представляет собой отрезок обычно короткозамкнутой линии длиной l ш, с волновым сопротивлением W , который включается в разрыв одного из проводов линии (Рис. 6.20).

Рис. 6.20. Последовательный согласующий шлейф

Согласование достигается подбором места включения шлейфа в линию z ш и длины шлейфа l ш. Найдем z ш и l ш из условия согласования линии в сечении z ш. В этом сечении входное реактивное сопротивление шлейфа jX ш (l ш) включено последовательно с входным сопротивлением линии Z вх (z ш) = R вх (z ш) + jX вх (z ш). Сумма этих сопротивлений должна быть равна волновому сопротивлению линии:

Z вх (z ш) + jX ш (l ш) º R вх (z ш) + jX вх (z ш) + jX ш (l ш) = W .

Отсюда находим:

R вх (z ш) = W ; (4)

X вх (l ш) = - X вх (z ш). (5)

Из (4)можно найти z ш, а из (5) – длину l ш. Расчетные соотношения могут быть представлены в виде

z ш = (l/b)arctg;

l ш = (l/b)arctg;

Из этих соотношений следует, что последовательный шлейф необходимо включать в таком сечении линии, где активная часть ее входного сопротивления равна волновому сопротивлению линии. Длину шлейфа следует подбирать такой, чтобы его реактивное сопротивление было бы равно по величине и противоположно по знаку реактивной части входного сопротивления линии в месте включения шлейфа. Перечисленным условиям удовлетворяют, например, сечения z 1 и z 2 (см. Рис. 6.21) линии, нагруженной на активное сопротивление. В сечении z 1 шлейф должен иметь индуктивное, а в z 2 – емкостное входное сопротивление.

Недостаток такого способа согласования состоит в том, что при изменении нагрузки изменяется не только длина шлейфа, но и место его включения в линию. Конструктивно это крайне неудобно.

Рис. 6.21. К выбору сечения для подключения шлейфа

Параллельный шлейф. Согласующее устройство в виде параллельного шлейфа показано на рисунке (Рис. 6.22). Как и в предыдущем случае, согласование достигается подбором места включении шлейфа z ш в линию и длины шлейфа l ш. Условие согласования имеет вид

Y вх (z ш) + jB ш (l ш) = 1/W ,

где Y вх (z ш) = 1/Z вх (z ш) = G вх (z ш) + jB вх (l ш) – входная проводимость линии в месте подключения шлейфа; G вх, B вх – активная и реактивная части входной проводимости линии; B ш (l ш) – реактивная проводимость шлейфа длиной l ш. Отсюда находим:

G вх (z ш) = 1/W ; (6)

B ш (l ш) = -B вх (z ш). (7)

Из (6) можно найти z ш, а из (7) – длину l ш.

Расчетные соотношения могут быть представлены в виде:

z ш – z max = (l/b) arctg;

l ш =(l/b)arctg; b = 2p/l л,

где z max – расстояние от нагрузки до первого максимума натяжения.

Таким образом, из (6) и (7) следует, что параллельный шлейф нужно включать в таком сечении линии, в котором активная часть входной проводимости линии равна волновой проводимости, а длину шлейфа следует выбирать так, чтобы его реактивная проводимость компенсировала реактивную часть входной проводимости линии (была бы противоположного знака).

Недостатки параллельного шлейфа такие же, как и у последовательного: при изменении нагрузки изменяются длина шлейфа и место его включения в линию. В экранированных линиях менять место включения шлейфа сложно по конструктивным соображениям.

Поэтому в качестве согласующего устройства применяют два и три последовательных или параллельных шлейфов. В двухпроводной линии параллельный шлейф может быть сделан подвижным, т.е. перемещающимся вдоль линии.

Два и три последовательных или параллельных шлейфа.

Двухшлейфовые согласующие устройства показаны на рисунке (Рис.6.22). Принцип работы, например, двухшлейфового последовательного согласующего устройства, состоит в том, что, изменяя длину первого шлейфа l ш1, добиваются того, чтобы активная часть входного сопротивления линии в месте включения второго шлейфа стала равной волновому сопротивлению линии.

Подбирая длину второго шлейфа l ш2 , компенсируют реактивную часть входного сопротивления линии. Аналогично работает параллельное двухшлейфовое согласующее устройство. Однако объяснение принципа работы следует провести в терминах входных проводимостей.

Рис. 6.22. Двухшлейфовые согласующие устройства с последовательными (а ) и параллельными (б ) шлейфами

Недостатком двухшлейфовых согласователей является то, что они могут обеспечить согласование не всех возможных нагрузок. Например, схема (Рис. 6.22,а) обеспечивает согласование нагрузок при R н < W , а схема (Рис. 6.22,б) – при R н > W .

Рис. 6.23. Трехшлейфовые согласующие устройства с последовательными (а ) и параллельными (б ) шлейфами

Для устранения этого недостатка используют трехшлейфовые согласующие устройства (Рис. 6.23). В согласовании участвуют два из трех шлейфов. Например, в трехшлейфовом согласующем устройстве с последовательными шлейфами (Рис. 6.23, а) при R н < W используются первый и второй шлейфы, как при двухшлейфовом согласовании. Третий шлейф "отключается", т.е. его длина берется равной l л /2.

Рис. 6.24. Согласование в полосе частот с помощью одного шлейфа: а – схема согласующего устройства; б – графики проводимости нагрузки и шлейфа

При этом входное сопротивление такого шлейфа нулевое, и он не влияет на процессы, происходящие в линии. Если R н > W , то используются второй и третий шлейфы, а длина первого берется равной l л /2.

Аналогично работает трехшлейфовое согласующее устройство с параллельными шлейфами (рис. 2.8, б ). Причем при R н > W работе участвуют первый и второй шлейфы, а при R н < W – второй и третий.

Конкретная конструкторская реализация согласующих устройств на основе шлейфов определяется типом используемой линии передачи.

На практике чаще всего длинные линии используются для передачи мощности от генератора к нагрузке. Для этого предпочтительным является режим бегущей волны. С целью обеспечения указанного режима необходимо, чтобы сопротивление нагрузки Zн = Rн + jХн удовлетворяло двум условиям: активная часть нагрузки Rн должна равняться волновому сопротивлению линии

а реактивная часть нагрузки Хн должна равняться нулю:

Если сопротивление нагрузки удовлетворяет условиям (2.1), (2.2), то говорят, что линия согласована с нагрузкой.

Цели согласования

Общий принцип согласования комплексных сопротивлений состоит в том, что в линию дополнительно включается согласующий элемент, отражение от которого компенсирует отражение от нагрузки. При этом стремятся, чтобы согласующий элемент был расположен как можно ближе к нагрузке. Это делается для уменьшения длины несогласованного участка линии от нагрузки до согласующего элемента. Включение в линию согласующего элемента преследует следующие цели:

увеличение мощности, передаваемой в нагрузку;

увеличение электрической прочности линии;

увеличение КПД линии;

устранение вредного влияния отраженной волны на генератор.

В режиме смешанных волн в линии происходит чередование максимумов и минимумов напряжения. В местах максимумов напряжения облегчаются условия для электрического пробоя. Устранение отраженной волны приводит к уменьшению напряжения в максимуме. Поэтому по такой линии можно передать большую мощность или увеличить ее электрическую прочность.

Влияние согласования на КПД линии рассмотрено выше (см. с. 30) и проиллюстрировано на рис. 1.21. Установлено, что КПД тем выше, чем лучше согласована линия с нагрузкой, т.е. чем меньше модуль коэффициента отражения |Г|.

Отраженная от нагрузки волна направляется в генератор и может существенно повлиять на режим его работы. Например, недостаточное согласование генератора с линией передачи может привести к изменению частоты генерируемых колебаний, уменьшению выходной мощности генератора или к полному срыву процесса генерации. Требования к Kсв на выходе генератора в значительной степени определяются типом этого генератора.

Длинные линии находят широкое применение в радиотехнике. Рассмотрим кратко некоторые из них .

Длинная линия как трансформатор . Пусть линия нагружена на сопротивление . Большой интерес представляет свойство линии изменять сопротивление нагрузки при его пересчёте на вход линии – свойство, которое присуще обычному трансформатору при приведении сопротивления нагрузки к первичной обмотке. Поэтому часто длинную линию называют трансформатором сопротивлений .

Можно показать, что:

а) однородная линия без потерь, длина которой равна четверти длины волны (в более общем случае – нечётному числу четвертей длин волн), передаёт любую нагрузку, включённую на одном её конце, на клеммы противоположного конца с изменением (трансформацией) данной нагрузки, определяемой выражением:

,

Например, колебательная система в виде отрезка двухпроводной линии с медными проводами, закороченного на конце, имеет добротность порядка нескольких сотен. Аналогичная колебательная система, образованная коаксиальной линией, характеризуется добротностью . Приведённые цифры показывают преимущества колебательных систем с распределёнными параметрами в диапазоне УКВ по сравнению с обычными колебательными контурами. Расчёт резонансных частот таких колебательных систем произво­дится по формулам (7.55, 7.56, 7.61, 7.62).



Отрезки длинных линий могут применяться также в качестве фильтров, шлейфов согласования и т. д. Шлейфом называют короткозамкнутый отрезок линии. Более подробное изложение этих вопросов приводится, например, в .

Длинная линия как фидер . Линия, по которой осуществляется передача энергии высокочастотных колебаний от генератора к нагрузке, называется фидером (от английского глагола to feed – питать).

В современных радиотехнических устройствах находят применение фидеры различных типов. В диапазоне метровых и более длинных волн для передачи энергии обычно используется открытый двухпроводной фидер. Однако на более коротких волнах открытая линия начинает интенсивно излучать электромагнитную энергию в окружающее пространство, возрастают тепловые потери в проводах. В результате коэффициент полезного действия такого фидера по мере укорочения волны резко падает.

В дециметровом диапазоне волн наиболее широко применяется коаксиальная линия передачи. Она, в отличие от открытой двухпроводной линии, потерь на излучение практически не имеет, т. к. её электромагнитное поле отделено от внешнего пространства экраном – металлической цилиндрической оболочкой. Коаксиальный фидер обладает также меньшими тепловыми потерями, так как образующие его проводники имеют достаточно большие поверхности.

На сантиметровых волнах в качестве фидера используется волновод, представляющий собой полую металлическую трубу, в которой распространяются электромагнитные волны. Отсутствие в волноводе внутреннего проводника уменьшает расход энергии на нагревание и, следовательно, повышает коэффициент полезного действия по сравнению с КПД коаксиального фидера.

При изучении особенностей применения фидеров весьма важным является вопрос согласования линии с нагрузкой, когда в нагрузку передаётся максимальная мощность. Этим условием является равенство

т. е. сопротивление нагрузки должно быть чисто активным и равно волновому сопротивлению фидера . При этом в линии имеет место режим бегущих волн и КСВ линии равен 1. Существуют различные методы согласования линии с нагрузкой. Рассмотрим некоторые из них.

1. Согласование длинной линии с нагрузкой с помощью четвертьволнового трансформатора.

Принцип работы четвертьволнового трансформатора основан на зависимости (7.68), если положить , т. е. произведение входных сопротивлений в сечениях линии, отстоящих друг от друга на равно :


выбрать четвертьволновый трансформатор с требуемым волновым сопротивлением .
Рис. 7.28
На рис. 7.28 показано, что при

при необходимо потребовать, чтобы

На основании (7.70) имеем . Так как нагрузка и волновое сопротивление линии заданы, то задача согласования сводится к определению . В результате при подключении трансформатора с таким волновым сопротивлением в сечении будет выполнено условие согласования

,

т. е. в линии будет иметь место режим бегущих волн. Отметим ещё раз, что если нагрузка активная , то трансформатор подключается непосредственно к нагрузке.

Для расчёта длины волны в коаксиальном кабеле можно рекомендовать следующую формулу:

где ;

– длина волны в воздухе.

Если нагрузка линии комплексная, то трансформатор не может быть подключён непосредственно к нагрузке. Первоначально нужно найти сечение в линии, в котором сопротивление активно. При этом используется то положение, что входное сопротивление длинной линии при произвольной нагрузке в сечениях, где имеются экстремальные значения напряжения и тока, носит чисто активный характер.

В сечениях, где имеются и ,

Рис. 7.29

Варианты включения четвертьволнового трансформатора при комплексной нагрузке показаны на рис. 7.29.

Расчёт волнового сопротивления трансформатора производится в соответствии с формулой (7.70). Если трансформатор подключён в точках , т. е. имеем и , то

В сечении необходимо потребовать, чтобы , тогда

Если трансформатор подключён в точках , т. е. имеем и , то

В сечении должно выполняться условие согласования , тогда

В результате и в том и в другом случаях осуществлено согласование линии с нагрузкой. Согласование с помощью четвертьволнового трансформатора не всегда удобно, так как не всегда возможно подобрать кабель с требуемым волновым сопротивлением.

Более удобным с практической точки зрения является метод согласования, разработанный советским учёным В.В. Татариновым.

2. Согласование длинной линии с нагрузкой при помощи шлейфа В.В. Татаринова.

Сущность метода заключается в следующем. Имеется параллельный реактивный шлейф – отрезок линии (может быть переменной длины), короткозамкнутый на конце с волновым сопротивлением (рис. 7.30а). Входное сопротивление шлейфа чисто реактивное:

Нужно добиться такого положения, чтобы сопротивление в точках было чисто активным (рис. 7.30б):

где

Рис. 7.30

т. е. необходимо потребовать равенство нулю реактивной составляющей этой проводимости:

Это можно достичь выбором требуемой длины шлейфа , при этом

Если же сопротивление в точках не равно волновому сопротивлению линии, то можно подключить к нагрузке четвертьволновый трансформатор, изображённый на рис. 7.31. При этом необходимо выбрать трансформатор с волновым сопротивлением

Если имеется возможность изменять место подключения шлейфа вдоль линии, то согласование осуществляется в следующем порядке:

– определяется место подключения шлейфа;

– определяется длина шлейфа.

Пусть шлейф не подключён к линии и в длинной линии существует режим смешанных волн. В линии всегда имеется сечение , где активная часть входной проводимости (в этом случае вместо сопротивлений удобно пользоваться проводимостями)

так как в соответствии с формулами (7.71) и (7.72) активная составляющая входной проводимости линии изменяется в пределах от



Рис. 7.32
Рис. 7.31
В этом сечении и необходимо подключить шлейф и скомпенсировать реактивную часть входной проводимости линии, т. е. подобрать такую длину шлейфа, чтобы его проводимость была равна по величине и противоположна по знаку входной реактивной проводимости линии (рис. 7.32):

Линия, таким образом, согласована. Данный способ согласования связан с необходимостью перемещения параллельного шлейфа вдоль фидера. Это приводит к определённым конструктивным трудностям при согласовании коаксиальных линий. Поэтому применяют устройства, состоящие из двух неподвижных параллельных шлейфов. Существо такого согласования изложено, например, в .

На практике линия считается согласованной с нагрузкой, если коэффициент стоячей волны в ней не хуже 1,2, . Согласующие устройства должны обладать определенной полосой пропускания (узкой или широкой) и должны выполняться на отрезках линий с распределенными параметрами. Согласующие элементы можно классифицировать по полосе пропускания: узкополосные (девиация частоты), широкополосные (девиация частоты), сверхширокополосные (девиация частоты). Сверхширокополосные называют также частотно независимыми.

Таблица. Классификация согласующих элементов по конструкции.

п\п

Название

Обозначение

Полоса

Четвертьволновый трансформатор

Узкополосный

Двойной четвертьволновый трансформатор

Широкополосный

Экспоненциальная линия

Частотно независимый

Широкополосный

Многоступенчатые переходы

Частотно независимый

Рис.20. Понижающий трансформатор и повышающий трансформатор.

При несогласовании нагрузки с линией передачи в л.п. появляются отраженные волны. Задача согласования – подавить отраженные волны. Этого можно добиться двумя способами: 1. компенсация отражения падающей волны; 2. недопущение появления отраженной волны (за счет подбора элементов линии передачи).

При использовании тр-р в сеченияхa-a,b-b,c-cиd-dприсутствуют неоднородности, следовательно появляются отраженные волныU 1 иU 2 . Потребуем отсутствия отраженных волнU 1 . Этого возможно добиться изменяя только одну величину:. Рассчитаем входное сопротивлениетр-р, который нагружен на.

Подставим в формулу известные величины: .

Чтобы U 1 =0 необходимо, чтобы нагрузкой основной линии (основная линия нагружена на трансформатор) являлось.

Выводы : 1. Для компенсации отраженной волны необходимо, чтобы волновое сопротивление согласующего элемента являлось среднегеометрическим между сопротивлением основной линии и нагрузкой.

2. Линия передачи, работающая в режиме стоячих волн, не может быть согласованно согласующим устройством, так как если или, то волновое сопротивление должно быть равно 0 или. Реализовать л.п. с такими параметрами невозможно.

3. Рис.21. согласование сопротивлений тр-р осуществляется за счет непрерывного изменения напряжения и тока, а следовательно, и сопротивления.

Согласование сопротивлений с помощью трансформатора.

Рис.22.Повышающий трансформатор.

При использовании трансформатора допустим существованиеU 1 ,U 2 ,U 3 , но за счет подбора волновых сопротивленийипотребуем, чтобы их амплитуды соотносились определенным образом:. Амплитудные соотношения отраженных волн определяются волновыми сопротивлениямии, а фазовые соотношения определяются расстояниями проходимыми волнамиU 2 ,U 3 относительно сечения а-а.

Относительно сечения а-а волна U 2 проходит путьaa–bb–aa, длинна пути равна, за счет этого фаза измениться на. волнаU 3 относительно сечения а-а проходит путьaa–bb–cc–bb–aa, длинна пути равна, и изменение фазы составляет.

Рассмотрим векторные диаграммы.

Рис.23.

При изменении изменяются фазовые соотношения, а амплитудные остаются прежними. Рассмотри случай, когда. При суммированииU 1 иU 3 очевидно, что суммирующий вектор будет противофазенU 2 , но амплитуда будет немного отличаться. Чтобы линия считалась согласованной необходимо выполнение неравенства, при этом девиация частоты. То есть согласование сохраняется в широком диапазоне частот, а двойнойтрансформатор можно считать широкополосной системой.

Согласование сопротивлений с помощью экспоненциальной линии.

Линия называется экспоненциальной, если ее первичные параметры изменяются по закону .

Рис.24. Понижающая и повышающая экспоненциальные линии.

При x=l:L 1 ,C 1 ,.

Для произвольного сечения: ,,

.

Выводы : 1. Вслед за непрерывным изменением первичных параметроввдоль перехода меняется непрерывно, следовательно, отраженной волны не возникает.

2. не зависит от частоты, следовательно данный согласующий элемент является частотно независимым, и может работать в диапазоне частот от 0 до.

3. Техническое исполнение идеальной экспоненциальной линии в настоящее время невозможно. Поэтому, на практике на коэффициент bнакладываются ограничения:.

Линия становится частотно зависимой, но технически реализуемая. К – КСВ без экспоненциальной линии.

Согласование сопротивлений с помощью шлейфов.

Шлейфы предназначены для компенсации реактивной составляющей нагрузки, трансформируемой в произвольное сечение х.

Рис.25.

Конструктивно последовательный шлейф выполнить сложнее, поэтому используется значительно реже. В шлейфах могут применяться отрезки разомкнутой и короткозамкнутой линии, но для разомкнутых характерны дополнительные потери (излучение из открытого торца). Поэтому, предпочтительно использовать короткозамкнутые шлейфы.

Рассмотрим короткозамкнутый шлейф с регулируемой длинной.

Рис.26.

При распространении энергии от генератора к нагрузке она доходит до сечения а-а, и часть ее распространяется к нагрузке, где частично поглощается, а часть энергии ответвляется в шлейф. Так как шлейф короткозамкнут в нем образуется стоячая волна. В результате основная линия от генератора до а-а работает в режиме бегущих волн, отрезок от а-а до нагрузки – в режиме смешанных волн, шлейф – в режиме стоячих.

Рассмотрим согласование с помощью шлейфа при условии что ().

Так как входное сопротивление отрезка от а-а доможно представить в виде графика входных сопротивлений для линии разомкнутой на конце, причем, чемR 2 , тем допущение более справедливо.

Рис.27.

В произвольное сечение х шлейф должен вносить реактивность, равную по величине и обратную по знаку реактивности, вносимые нагрузкой. Проекции отрезков ОА, ОВ, ОС на ось х принято обозначать , , ,– соответствует длине шлейфа, а так е длине отрезка от а-а доZ2. Так как в точках А, В, С реактивности шлейфа и линии равны по модулю и противоположны по знаку выполняется согласование.

В зависимости от рабочего диапазона частот в конкретном случае в качестве длинны шлейфа выбирается одно из значений , , и так далее, чтобы шлейф технически можно было реализовать. Как правиловыбирается в метровом диапазоне,в дециметровом,в сантиметровом и так далее. Точный расчет длинны шлейфа осуществляется с помощью круговых диаграмм полных сопротивлений.

Согласование нагрузок с линией передачи

Для обеспечения в линиях передачи режима бегущей волны применяются нагрузки. Нагрузки классифицируются на:

‑ согласованные;

‑ реактивные.

Согласованные нагрузки предназначены для поглощения мощности, передаваемой по линии передачи. Согласованные нагрузки применяют также в качестве эквивалентов антенн при настройке передающей аппаратуры и в виде меры согласования в измерительных устройствах СВЧ.

При включении согласующего элемента в линию должен обеспечиваться принцип согласования:

в линию дополнительно включается согласующий элемент, отражение от которого компенсирует отражение от нагрузки. При этом стремятся, чтобы согласующий элемент был расположен как можно ближе к нагрузке . Это делается для уменьшения длины несогласованного участка линии от нагрузки до согласующего элемента.

При согласовании необходимо, чтобы сопротивление нагрузки удовлетворяло двум условиям:

1) Активная часть нагрузки должна равняться волновому сопротивлению линии:

2) Реактивная часть нагрузки должна равняться нулю:

Если сопротивление нагрузки удовлетворяет условиям (1.1), то говорят, что линия согласована с нагрузкой .

Включение в линию согласующего элемента преследует следующие цели :

‑ увеличение мощности, передаваемой в нагрузку;

‑ увеличение электрической прочности линии;

‑ устранение вредного влияния отраженной волны на генератор.

Основной характеристикой согласованной нагрузки является модуль ее коэффициента отражения (или соответствующие значения КБВ или КСВ) в заданной полосе частот. Технически возможно создание нагрузок с в относительной полосе частот 20-30 % и более. Ввиду малости требования к фазе коэффициента отражения от нагрузки не предъявляются и эта фаза может иметь любое значение в интервале 0…2 .

Наряду с КСВН для описания согласования линии передачи с генератором используются такие показатели, как

‑ коэффициент возвратных потерь

. (1.2а)

Иногда она выражается и с отрицательным значением, т.е.

; (1.2б)

‑ потери на рассогласование – рабочее затухание

(1.3а)

. (1.3б)

Согласование может быть выполнено в узкой или в широкой полосе частот.

Узкой принято считать полосу частот , составляющую единицы процентов от средней частоты . В этой полосе должен быть обеспечен допустимый уровень согласования . Типичный график зависимости КСВН тракта от частоты представлен на рисунке 1.2. Конкретное значение определяется назначением и типом тракта, условиями его эксплуатации и лежит в пределах 1,1..2.

Рисунок 1.2 – Типичная зависимость КВСН тракта от частоты

В узкой полосе частот в качестве согласующих элементов используются :

‑ четвертьволновый трансформатор;

‑ последовательный шлейф;

‑ параллельный шлейф;

‑ два и три последовательных или параллельных шлейфа.

Данные согласующие устройств используются в линиях передачи различных типов (двухпроводных, коаксиальных, полосковых, волноводных и т.п.). Тип линии передачи определяет конкретную конструкторскую реализацию этих устройств.

Рассмотрим применение указанных выше согласующих устройств.

Четвертьволновый трансформатор – устройство, представляющее собой четвертьволновый отрезок линии с волновым сопротивлением , включенным в разрыв основной линии передачи.

Найдем место включения трансформатора в линию и его волновое сопротивление. В предыдущей лекции было показано, что принцип работы такого согласующего устройства основан на трансформирующем свойстве четвертьволнового отрезка линии, которое в рассматриваемом случае примет вид:

где ‑ входное сопротивление линии, нагруженной сопротивлением нагрузки , в месте подключения трансформатора , как показано на рисунке 1.3;

Рисунок 1.3 – Согласование линии с нагрузкой с помощью

четвертьволнового трансформатора

‑ входное сопротивление четвертьволнового трансформатора в сечении с подключенным к нему отрезком линии длиной , нагруженной сопротивлением нагрузки .

Условия согласования (1.1) требуют, чтобы , т.е. . Отсюда следует, что должно быть чисто действительной величиной: .

Таким образом, четвертьволновый трансформатор для согласования может включаться в таких сечениях линии , в которых входное сопротивление линии чисто активное. Такое наблюдается в сечениях, где напряжение достигает максимума или минимума:

. (1.5)

В максимумах напряжения . В связи с этим .

В минимумах напряжения , следовательно, .

На рисунке 1.4 представлены варианты исполнения четвертьволнового трансформатора на основе двухпроводной и коаксиальной линий для двух рассмотренных случаев. Из анализа рисунка следует, что в конструкторском отношении предпочтительнее вариант . На рисунке 1.5 представлены эпюры напряжений в линии без согласующего устройства и согласующими четвертьволновыми трансформаторами и .

Рисунок 1.4 – Четвертьволновые трансформаторы:

а – на двухпроводной линии; б – на коаксиальном кабеле

Рисунок 1.5 – Эпюры напряжения в линии: а – с комплексной нагрузкой;

б – с комплексной нагрузкой и трансформатором ;

в – с комплексной нагрузкой и трансформатором

Согласующее устройство в виде последовательного шлейфа представляет собой отрезок обычно короткозамкнутой линии длиной с волновым сопротивлением W , который включается в разрыв одного из проводов линии, как показано на рисунке 1.6.

Рисунок 1.6 – Согласующий последовательный короткозамкнутый шлейф

Согласование достигается подбором места включения шлейфа в линию и длины шлейфа .

Найдем и из условия согласования линии в сечении . В этом сечении входное реактивное сопротивление шлейфа включено последовательно с входным сопротивлением линии . Сумма этих сопротивлений должна быть равна волновому сопротивлению линии:

; .

, , . (1.6)

Из анализа выражений (1.6) следует, что последовательный шлейф необходимо включать в таком сечении линии, где активная часть ее входного сопротивления равна волновому сопротивлению линии . Длину шлейфа следует выбирать такой, чтобы его реактивное сопротивление было бы равно по величине и противоположно по знаку реактивной части входного сопротивления линии в месте включения шлейфа .

Недостаток – при изменении нагрузки изменяется не только длина шлейфа, но и место его включения в линию. Конструктивно это крайне неудобно.




Top